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Multiparticle entangled states, essential ingredients for modern quantum technologies, are routinely generated
in experiments of atomic Bose-Einstein condensates (BECs). However, the entanglement in ultracold interacting
Fermi gases has not been yet exploited. In this work, by using an ansatz of composite bosons, we show that
many-particle entanglement between two fermionic ensembles localized in spatially separated modes can be
generated by splitting an ultracold interacting Fermi gas in the (molecular) BEC regime. This entanglement relies
on the fundamental fermion exchange symmetry of molecular constituents and might be used for implementing
quantum applications in oncoming experiments. We show that the generated fermionic ensembles can be highly
entangled and exhibit nonlocal quantum correlations. Entanglement-induced suppression of fluctuations in the
single-fermion spectral density of the ultracold fermionic gas is also observed.
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I. INTRODUCTION

The progress towards the generation and manipulation of
large ensembles of ultracold entangled atoms has been mainly
focused on bosonic particles. Indeed, most of the experi-
ments aimed at generating multiparticle entangled states of
matter, such as spin squeezing states [1], twin Fock states
[2–4], non-Gaussian states [5–7] or Dicke states [8], deal
with Bose-Einstein condensates (BECs). These states can ex-
hibit full many-particle entanglement [7,8] including Einstein-
Podolsky-Rosen (EPR) [9] and Bell [10,11] correlations.

Although entanglement-enhanced precision in atomic in-
terferometry has been achieved with the aforementioned states
[1–8], further quantum information applications require in-
dividual addressing of the subsystems. In addition, the in-
distinguishability of the atoms makes the standard notion of
entanglement more subtle, since the very notion of entangled
subsystems makes sense when each of the entangled parties
can be individually addressed. Nevertheless, the generation
of entanglement in identical particle systems is strongly re-
lated to the correlations due to the fundamental particle-
exchange symmetry of the wave function. In particular, cor-
relations appearing among inaccessible identical particles due
entirely to symmetrization can be extracted into an entangled
state of independent modes in one-to-one correspondence
[12,13]. An example of this would be the splitting of a two-
indistinguishable-particle state into two individually address-
able modes. For instance, the state (|↑↓〉 ± |↓↑〉)/

√
2 yields

the state (|↑〉1|↓〉2 ± |↓〉1|↑〉2)/
√

2, once each particle is fixed
in one of the two modes. This entangled state (in the spin de-
grees of freedom) can be used for Bell measurements between
two independent-particle resources [14]. Also, the generation
of entanglement by splitting an ensemble of ultracold identical
particles into two entangled twin Fock states of an atomic

BEC was recently demonstrated [15] and EPR steering has
been observed [16,17]. The above procedure, which entangles
individually addressable subsystems, will allow the exploita-
tion of correlations due to indistinguishability as a resource in
several quantum information tasks [18].

The Pauli exclusion principle makes the physics of ultra-
cold interacting fermions and bosons to differ dramatically
[19]. For instance, the crossover from BEC to BCS super-
fluidity [20,21], a remarkable feature of strongly correlated
fermion systems, is achieved with two-component ultracold
interacting Fermi gases [22–26]. Since multiple occupation
of the same single-fermion state is forbidden, even the sim-
plest state of identical fermions (a single Slater determinant)
has correlations due to the fermion-exchange antisymmetry,
which are extractable in the form of mode entanglement [13].
In this regard, here we address the following questions. Is it
experimentally possible to generate multiparticle entangled
states by splitting an ultracold interacting Fermi gas? How
strong is the generated entanglement? Does this entanglement
have observable consequences?

Our goal is to demonstrate that large ensembles of fully
entangled fermionic atoms can be generated with current
technologies by splitting an ultracold interacting fermionic
gas and to give a complete set of theoretical tools to quan-
tify the entanglement between the generated ensembles. We
also demonstrate entanglement-induced suppression of fluc-
tuations in the single-particle spectral density of strongly
correlated fermionic gases and that the ensembles generated
by splitting can be sufficiently entangled to exhibit nonlocal
quantum correlations.

In the regime where the scattering length characterizing
the interaction between different fermion species is positive
(a > 0), a finite fraction of fermion pairs condenses to the
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same molecular bound state |ψg.s.〉 forming a BEC of diatomic
molecules [27]. It has been shown that an ansatz of composite
bosons (coboson) [28] constitutes a good approximation for
the ground-state wave function at temperature T = 0 on the
BEC side of the crossover [29–31]. From a quantum infor-
mation point of view, the advantage of coboson theory over
mean field and Bogoliubov theories [20,21] lies in the fact
that the many-body ground state can be written in terms of
the single-fermion states of the system and this allows the
characterization of the many-particle quantum correlations
present in the system and their observable consequences.

By using the coboson ansatz we faithfully quantify the
entanglement between two ensembles of fermionic atoms
generated when splitting an ultracold interacting Fermi gas
in the BEC side of the resonance. We predict that large
ensembles, of the order of 105 fully entangled fermionic
atoms, can be generated in current experiments of ultracold
interacting Fermi gases. Many-particle correlations in ultra-
cold interacting Fermi gases increase when the system goes
from the BEC to the unitarity regime. We also show that,
close to unitarity, the number of effective single-fermion states
decreases to approximately the number of fermion pairs.
This prevents fluctuations in the single-particle spectrum of
the gas, experimentally observable in ultracold interacting
Fermi gases [26,32]. As for squeezed states of bosonic atoms,
this suppression of fluctuations indicates strong entanglement
among the fermionic atoms [1]. When splitting the ultracold
interacting Fermi gas, the resulting individually accessible
fermionic ensembles can be highly entangled and their single-
particle spectral densities almost perfectly correlated.

Finally, we propose a Bell test of quantum nonlocality
experimentally feasible only for a deterministic preparation
of the state. We show that the Clauser-Horne-Shimony-Holt
(CHSH) inequality [33] can be violated by using quadrature
phase amplitudes based on single-particle resolved measure-
ments of the spectral density of the gas. For this ideal case, we
demonstrate that the splitting of a strongly interacting Fermi
gas generates two highly entangled fermionic ensembles with
nonlocal correlation and steering entanglement.

The article is organized as follows. We introduce the cobo-
son ansatz and its application to two-component Fermi gases
in Sec. II. We thoroughly discuss the splitting process of an
ultracold interacting Fermi gas and we analyze the particle
correlation structure of the resulting state in Sec. III. In
Sec. IV we quantify the entanglement between the generated
fermionic ensembles using the purity of the square reduced
density matrix of one ensemble. In Sec. V we show how the
entanglement is reflected as a suppression of fluctuations in
the single-particle spectral densities of the fermionic ensem-
bles. We present in detail the observables used for the Bell
test in Sec. VI and discuss its validity and scope regarding
the statistics and particle fluctuations of the prepared quantum
state. Section VII is devoted to a summary and an outlook for
future work.

II. COBOSON ANSATZ FOR TWO-COMPONENT
FERMI GASES

The ansatz of composite bosons was simultaneously intro-
duced by Leggett [34] and Combescot and Tanguy [35] for

correlated pairs of bosonic and fermionic particles, respec-
tively. In the case of fermions, it has been extensively applied
to excitons [36], which feature long-range Coulomb interac-
tions. Its application to ultracold interacting Fermi gases was
shown very recently: For an attractive short-range interaction
between different fermion species (A and B), it has been
demonstrated that the ground state of two-component Fermi
gases at zero temperature can be approximated by a Fock
state of composite bosons, |N〉, whenever two-fermion bound
states exist [29]. Indeed, in the BEC regime, the universal
dimer-dimer scattering length given by the coboson ansatz,
acob

dd = 0.64a [30], matches closely the well-established add ≈
0.6a [37], and the molecular condensate fraction [31] matches
remarkably well the fixed-node diffusion Monte Carlo [38]
and Bogoliubov results.

The pair-correlated state |N〉 is given by successive appli-
cations of identical coboson operators ĉ† on the vacuum [28]

|N〉 = 1√
N!χN

(ĉ†)N |0〉, (1)

where the operator c† creates two fermions in a particular
entangled state ĉ†|0〉 = |ψg.s.〉. A well-known solution of
|ψg.s.〉 for ultracold Fermi gases with large N is the usual
pair projection from a BCS state [39,40]. Nevertheless, the
solution given by the coboson ansatz is valid for any particle
number N . Therefore, it is possible to start from scratch by
defining the operator ĉ† such that |ψg.s.〉 is the ground state
of a single trapped molecule [31]. Moreover, since any two-
particle system in a pure state admits always a state repre-
sentation in terms of the single-particle states, the coboson
state |N〉 can be written in terms of the single-fermion states
of the system. Such state representation has two important
advantages over the ground states used so far: It is rewarding
when it comes to describing the particle correlations of the
system and it allows one to calculate observables based on
the exact single-particle spectral density of the gas which is
experimentally accessible [26,32].

Following [31], we compute the molecular ground state
〈�rα, �rβ |ψg.s.〉 = ψg.s.(�rα, �rβ ) by solving the Schrödinger equa-
tion of a simple model of a harmonically trapped Feshbach
molecule [19]. In particular, this is performed using a strong-
binding approximation between fermions A and B, and the
model is applied to the 6Li broad resonance. The molecular
state has six degrees of freedom associated with the coordi-
nates of each particle (rα, θα, ϕα, rβ, θβ, ϕβ ). The interaction
between fermions A and B introduces an extra symmetry (with
respect to the noninteracting system) which increases the
degeneracy of the system. The ground state is thus given by
a particular superposition of all possible single-fermion states
determined by the interaction strength and size of the trap.

By using the discretization technique of Refs. [31,41,42],
we carry out the Schmidt decomposition of the ground state

|ψg.s.〉 =
∑

n

∑
l

l∑
m=−l

√
λnl

∣∣φ(α)
nlm(�rα )

〉∣∣φ(β )
nlm(�rβ )

〉
, (2)

where λnl are the Schmidt coefficients and〈
�rγ

∣∣φ(γ )
nlm(�rγ )

〉 = unl (rγ )Ylm(θγ , ϕγ )

rγ

, (3)
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with γ = α, β the Schmidt modes. That is, the state |ψg.s.〉 is
written in the basis of the single-particle states associated with
fermion A, {φ(α)

nlm(�rα )}, and fermion B, {φ(β )
nlm(�rβ )}, respectively.

Here Ylm(θ, ϕ) are spherical harmonic functions, and the
radial functions unl (r) are numerically obtained for a discrete
space r = (x1, x2, . . . , xmax). The states nlm have degeneracy
gl = (2l + 1) and therefore the single-particle energies Enl , as
well as the Schmidt coefficients λnl , do not depend explicitly
on the quantum number m. This is because the system is
invariant under rotations around the axis �rα − �rβ . We order
the nlm states in increasing single-particle energy and use one
single index j to list these states such that

λ1︸︷︷︸
nl=00

g0=1

< λ2 = λ3 = λ4︸ ︷︷ ︸
nl=01

g1=3

< λ5︸︷︷︸
nl=10

g0=1

< λ6 = · · · = λ10︸ ︷︷ ︸
nl=02

g2=5

< · · · (4)

and |a j〉 = |φ(α)
nlm(�rα )〉 and |b j〉 = |φ(β )

nlm(�rβ )〉. Note that the
quantum number n does not constrain the values of l , also
because of the rotational symmetry. By using a single-index
j, the ground state of Eq. (2) reads

|ψg.s.〉 =
S∑

j=1

√
λ j |a j〉|b j〉, (5)

with
∑S

j=1 λ j = 1 and S the Schmidt rank. The computed
Schmidt distribution � = (λ1, λ2, . . . , λS ) depends on the
ratio between the scattering length a and the characteristic
length of the trap L, �(a/L), and has finite but large enough
S (approximately equal to 106).

Given the Schmidt representation of the state (5), the
coboson creation operator is naturally defined as ĉ† =∑S

j=1

√
λ j â

†
j b̂

†
j [43], where â†

j (b̂†
j) creates a fermion A (B)

in the single-fermion state |a j〉 (|b j〉). Because of the Pauli
principle, (â†

j )
2 = (b̂†

j )
2 = 0, and

|N〉 = 1√
N!χN

S∑
j1, j2, . . . , jN = 1

σ ( j1, . . . , jN )

(
N∏

k=1

√
λ jk â†

jk
b̂†

jk

)
|0〉, (6)

where σ ( j1, . . . , jN ) indicates that the sum over all the indices
appearing in the summand has the restriction that the indices
j1, j2, . . . , jN must take distinct values. The N-coboson
normalization factor χN [43–45] is the elementary symmetric
polynomial χN = N!

∑
1< j1< j2<···< jN <S λ j1λ j2 · · · λ jN and

|0〉 ≡ ⊗S
j=1 |vac〉a j ⊗ |vac〉b j is the vacuum. Note that

the Pauli exclusion principle is guaranteed due to the
restriction σ ( j1, . . . , jN ), i.e., there are not two labels with
the same value. The ensemble of fermionic atoms |N〉 is
controlled by the universal interaction parameter kF a, where
kF = (6π2n)1/3 is the Fermi wave number of a noninteracting
gas with atom-pair density n = N/V . The volume of the
system is V = 4πL3/3, with L = √

h̄/mLiω the characteristic
length of the trap, ω the confining frequency, and mLi the
atomic 6Li mass.

The computed ground-state wave function of the fermionic
ensemble |N〉 is only valid for (kF a)−1 � 0.5, in principle,
because of the strong-binding approximation performed to
obtain the ground state of the Feshbach molecule |ψg.s.〉
[31]. However, the impact of the confining potential on

the many-body behavior, which becomes apparent close
to the unitary regime (kF a)−1 < 0.5, is a difficult task to
understand in ultracold fermionic gases [21]. In general, the
problem of nonuniform configurations is highly nontrivial.
Semiclassical approximations, such as the local-density
approximation, have provided a reliable and relatively simple
description to infer the many-body behavior in large-size
traps [46]. Therefore, coboson states |N〉 based on a more
precise description of the pair-correlated states |ψ ′

g.s.〉 might
be required to address harmonically trapping fermionic gases
close to the unitary regime.

We emphasize that this representation of the state plays
a key role for the improvement in computation time of the
many-particle state (and observables) of interest when com-
pared to the computation time required by quantum Monte
Carlo (QMC) techniques. In this work we deal with ensembles
of 103 fermionic atoms, which in fact it would be infeasible to
simulate with other techniques such as QMC or variational
techniques [38,47]. The required numerical simulations for
computing the coboson state is feasible within short compu-
tational times [31,41,42,48]. Also, the analytical expressions
used and developed here are relatively simple (in the sense
that they do not require much quantum field knowledge),
leading to results which include correlations neglected by the
mean field approach and also showing great agreement with
the results obtained through Bogoliubov theory and QMC
simulations [31].

III. GENERATION OF TWO ENTANGLED
FERMIONIC ENSEMBLES

Here we show that two highly entangled fermionic en-
sembles can be generated by splitting an ultracold inter-
acting Fermi gas in the BEC side of the resonance where
(kF a)−1 � 0.5. We discuss the experimental conditions in
which the splitting process should be performed and discuss
the many-particle correlations of the resulting state.

Beam-splitter-like dynamics in ultracold interacting Fermi
gases can be very complicated to address theoretically. How-
ever, it has been shown for a few interacting fermions that
in the strong-attractive-interaction regime, ultracold fermionic
atoms cotunnel between two separated traps as pairs [49–51].
On the other hand, for a large number of fermion pairs,
fluctuations between fermion hyperfine states are negligible
when splitting an ultracold Fermi gas in the BEC regime
into two spatially separated traps, thus keeping the fermionic
ensembles of each trap unpolarized [52]. Fermion pairs can
therefore be described by a single bifermion creation operator
d̂†

j = â†
j b̂

†
j , which simplifies the dynamics of the fermionic

ensemble [53,54].
We consider a splitting dynamic governed by the evolution

operator d̂†
j → (

√
Rd̂†

1, j + √
T d̂†

2, j ), where R (T = 1 − R) is

the reflection (transmission) coefficient and d̂†
q, j = â†

q, j b̂
†
q, j

creates a fermion pair in the jth two-fermion state of mode
q = 1, 2, i.e., d̂†

q, j |0〉q = |d j〉q = |a jb j〉q. This unitary oper-
ation describes the experimental situation where a trapped
fermionic gas is split into two identical traps of the same
volume as the initial one, V , keeping the magnetic field fixed
in order to preserve the interaction strength, the total particle
correlation of the system, and the value of global observables
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such as the total condensate fraction. Then the N-coboson
Fock state evolves as [54]

|N〉 → |�N 〉 =
N∑

M=0

√
RMT N−M

(
N

M

)
|�M,N−M〉, (7)

where the states

|�M,N−M〉 = (N!χN )−1/2

√(
N

M

) S∑
j1, . . . , jN = 1
σ ( j1, . . . , jN )

(
M∏

k=1

√
λ jk d̂†

1, jk

)

×
(

N∏
l=M+1

√
λ jl d̂

†
2, jl

)
|0〉1|0〉2 (8)

are orthonormal, i.e., 〈�N1,N2 |�N ′
1,N

′
2
〉 = δN1,N ′

1
δN2,N ′

2
. For

(kF a)−1 < 1 the splitting dynamics of Eqs. (7) and (8) is
jeopardized by molecular dissociations [52].

In Eq. (7) we observe that fermion pairs are distributed
binomially on the two modes of a perfect beam splitter (T =
R = 1/2), as for ideal bosons or distinguishable particles.
However, the final state |�N 〉 is a multiparticle entangled
state, since |�M,N−M〉 = |M〉1|N − M〉2. Pauli correlations are
preserved in the splitting process [see the constraints on the
j’s in Eqs. (6) and (8)] and no more than a single fermion
occupies the same single-fermion state, independently of the
mode in which it is localized. Analogous to the EPR thought
experiment [55], measurements on ensemble 1 yield predic-
tions on the measurement results of ensemble 2. Specifically,
Pauli correlations between M and N − M fermion pairs in the
initial state |N〉 are mapped onto multiparticle entanglement
between two individual modes. This multiparticle entangle-
ment between individual modes becomes operationally acces-
sible when the system is projected onto the state |�M,N−M〉
with fixed particle number [12,13]. Nevertheless, the particle
number in both modes is usually determined during detection
[15] and therefore, even though the prepared initial state has
nonzero particle fluctuation, the system can be well described
by states with a defined particle number.

Quantum correlations generated by splitting a system of
composite particles have already been discussed in Ref. [54],
where one of the generated ensembles (for instance, 2) is
brought to interfere with a third one (3). The entanglement
between ensembles 1 and 2 is evidenced in the pair-counting
statistics between ensembles 2 and 3 after the interference pro-
cess. Such interference scenarios are difficult to experimen-
tally implement with molecular wave matter. In contrast with
Ref. [54], in the present work we determine the entanglement
between ensembles 1 and 2 generated by an experimentally
feasible splitting process (without implementing any interfer-
ence processes), as well as its behavior with the characteristic
interaction parameter kF a of ultracold interacting Fermi gases.

IV. QUANTIFICATION OF ENTANGLEMENT

The coboson ansatz |N〉 describes the many-particle system
in terms of the single-fermion states |a j〉 and |b j〉. This allows
us to faithfully describe the quantum correlations present
in the system. Here, in order to quantify the entanglement
between the generated fermionic ensembles, we use the purity

Pq of one ensemble q = 1 or q = 2 (P1 = P2). The reduced
density matrix of ensemble 1, ρ1, is the partial trace of
the density matrix ρ = |�N,N−M〉〈�N,N−M | with respect to
ensemble 2,

ρ1 =
∑

1� j1< j2<···< jN−M�S

2〈 j1, . . . , jN−M |ρ| j1, . . . , jN−M〉2,

(9)

where

| j1, . . . , jn〉q ≡
n∏

k=1

d̂†
q, jk

|0〉q. (10)

By counting fermion states and their multiplicities, we show
in Appendix A that the purity

P1 =
∑

1� j1< j2<···< jM�S

1〈 j1, . . . , jM |ρ2| j1, . . . , jM〉1 (11)

is the symmetric polynomial

P1 = 1

χ2
N

S∑
j1, . . . , jN , i1, . . . , iN = 1

σ ( j1, . . . , jN )
σ (i1, . . . , iN )

σ (i1, . . . , iM , jM+1, . . . , jN )
σ ( j1, . . . , jM , iM+1, . . . , iN )

N∏
k=1

λ jk λik . (12)

The numerical evaluation of Eq. (12) becomes infeasible for
large N and S; however, it can be expanded as a linear
combination of elementary symmetric polynomials

P1 =
(

N

M

)−1

+
N−2∑
m=0

αmχmχ2N−m/χ2
N , (13)

where αm = αm(N, M ) > 0. Both αm and χN can be evaluated
by recursion formulas, allowing the computation of P1 up to
N = 103, with S ≈ 106. Note that the first term in Eq. (13)
constitutes a minimum for the purity, leading to the maximum
entanglement that can be generated. It corresponds to the one
given by the splitting of a single Slater state of N identical

fermions [13], i.e., P1 �
(N

M

)−1
.

If molecular constituents are not perfectly bound, fermion
exchange interactions become relevant, yielding strongly cor-
related fermion ensembles [21]. According to this, the en-
tanglement between modes (1|2) increases with kF a. We
found that, for small (kF a)−1 and large N , highly entangled
molecular BECs (mBECs) are generated since the purity P1

decreases many orders of magnitude [see Fig. 1(a)].
The number of effective (non-negligible) Schmidt coef-

ficients decreases as the value of (kF a)−1 diminishes [see
Fig. 1(c)]. The competition for the occupation of the single-
fermion states is the underlying reason for increasing corre-
lations between fermion pairs. In the BCS limit [(kF a)−1 �
−1] the momentum distribution of the atoms vanishes for

k > kF and the normalization ratio χN+1/χN
BCS−−→ 0 [40].

Since the many-particle system has an infinite number of
single-particle states, to fulfill the latter limit for all N the
Schmidt distribution �BCS should have an effective Schmidt
rank SBCS � N , with the others S − SBCS coefficients being
infinitesimally small. According to the above observations,
we foresee that unitary [(kF a)−1 = 0] Fermi gases present a
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FIG. 1. (a) Purity of the fermionic ensemble 1 (with M = N/2
fermion pairs) for different values of the interaction parameter
(kF a)−1. The gray dots represent the lower bound of the purity P1 =(N

M

)−1
. For the colored circles, squares, stars, and triangles, respec-

tively, the distribution of the purity with the population imbalance
of the condensates (1 − 2M/N) is the same and it is shown in (b).
(c) Schmidt coefficients λnl for N = 360 and (kF a)−1 = 0.5, 1, and 2.
We label single-particle states (n, l ) (with degeneracy gl = 2l + 1)
using a single index j. All depicted quantities are dimensionless.

Schmidt distribution with just a few Su � N effective coeffi-
cients. In that case χ2N−m ≈ 0 for 2N − m > Su and therefore
the entanglement generated approaches its maximum value

with P1 ≈ (N
M

)−1
[small gray dots in Fig. 1(a)].

We observed also that the entanglement is equally dis-
tributed with the population imbalance of the condensates,
independently of the interaction parameter kF a and the total
number of particles N . This is shown in Fig. 1(b), where we
plot the purity as a function of 1 − 2M/N . The behavior of
the entanglement with the population imbalance is strongly
related to the universality of ultracold interacting Fermi gases
in the sense that both of them imply the constraint on the
normalization ratio [31]

χN+1

χN

∣∣∣∣
kF a

= χN ′+1

χN ′

∣∣∣∣
k′

F a′=kF a

, (14)

where k′
F /kF = (N ′/N )1/3.

V. FLUCTUATIONS OF SINGLE-PARTICLE
SPECTRAL DENSITIES

The coboson ansatz also has the advantage of providing
an exact and closed expression for the single-particle spectral
density of the fermionic gas. The single-particle density ma-
trix associated with fermion A or B (ρa or ρb) of the fermionic
ensemble |N〉 has the same eigenstates (|aj〉 or |b j〉) as the
two-fermion state |ψg.s.〉, which we have already obtained.
Hence, the coboson ansatz allows us to find the exact single-
particle spectral density

nspect(nl ) = gl

∣
∣〈N |φ(a/b)

nlm (�ra/b)〉∣∣2
. (15)

(a)
(b)

FIG. 2. (a) Mean population of the t lowest energetic states of
the single-particle spectrum (〈Nt 〉N = N

∑t
j=1 Dj) of an interacting

Fermi gas with N = 103 fermion pairs and interaction parameter
(kF a)−1 = 2, 1, and 0.5 (green, orange, and blue, respectively).
Suppression of particle fluctuations in this spectral region �̃t is
shown in (b), where the probability P (n) is plotted for t = 56.
Dashed areas are Poissonian distributions and connected gray dots
are binomial distributions. All depicted quantities are dimensionless.

In this section we show that the many-particle entanglement
present in the system is reflected in the particle fluctuations of
the single-particle spectral density.

The matrix elements of ρa are 〈ai|ρa|a j〉 = 〈â†
i â j〉N =

NDj[N]δi, j , where δi, j is the Kronecker delta, Dj[N] =
λ jχ

� j

N−1/χN , and χ
� j

N−1 are the elementary symmetric poly-
nomials of � j = (λ1, λ2, . . . , λ j−1, λ j+1, . . . , λS ). The eigen-
values of ρa are therefore given by the diagonal elements of
ρa, 〈ai|ρa|ai〉, which are the populations of the single-fermion
states of the gas. Such populations multiplied by the degener-
acy gl give the exact single-particle spectral density nspect(nl ).
The energy of the single-fermion states is bound from below
by the single-particle energy E1 associated with λ1 and from
above by the continuum E∞ = 0. It is important to mention
that the single-particle spectral density can be experimentally
measured with an energy resolution of �E = h × 2.1 kHz
[26,32], coarser than the one required to measure with single-
particle resolution (�E < E2 − E1). We also note that the pair
density fulfills 〈d j |ρd |d j〉 = 〈a j |ρa|a j〉, while 〈di|ρd |d j〉 = 0
with i = j due to fermion exchange correlations.

Particle correlations can be read from the occupation
probabilities of the single-fermion states, which give infor-
mation on how the entanglement is distributed among the
particles of the system. For instance, when (kF a)−1 = 0.5
(blue line), almost t fermion pairs populate the t lowest
energetic states �̃t = (λ1, λ2, . . . , λt ) [see Fig. 2(a)]. Since
no more than t fermion pairs can populate this spectral re-
gion due to Pauli blocking, particle fluctuations are strongly
suppressed. This is shown in Fig. 2(b), where we plot
the probability P (n) = ∑

1� j1< j2<···< jn�t 〈
∏n

k=1 d̂†
jk

d̂ jk 〉N =(N
n

)
χ�̃t

n χ
�̄S−t
N−n /χN , with �̄S−t = (λt+1, λt+2, . . . , λS ), of find-

ing n fermion pairs in �̃t . Here χ
�̃t
n>t = 0 prevents populations

larger than t . For (kF a)−1 = 2 (green) the fermionic ensemble
behaves as a perfect BEC of uncorrelated bosonic molecules
which yields Poissonian distributions of P (n). Tuning to
(kF a)−1 = 1 (orange) and then to 0.5 (blue), the probability
distribution P (n) changes from binomial to subbinomial.
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FIG. 3. Particle fluctuations in the states �̃t of the fermionic
ensemble 1 [P1(n1)] after splitting the system into two balanced
ensembles of M = N/2 = 0.5 × 103 fermion pairs. When decreasing
(kF a)−1, P1(n1) approaches the binomial distribution

( t
n1

)
/2t of two

maximally entangled fermionic ensembles with perfectly correlated
fluctuations. All depicted quantities are dimensionless.

The latter resembles the typical particle distributions of spin
squeezing states of entangled atomic BECs [1]. Indeed, sup-
pression of particle fluctuations in this regime is a direct
consequence of the Pauli exclusion principle among identi-
cal fermions, a correlation of purely quantum nature. This
demonstrates, therefore, entanglement-induced suppressions
of particle fluctuations in ultracold interacting Fermi gases.

Splitting the interacting fermion ensemble, the prob-
ability of detecting n1 and n2 fermion pairs in modes
1 and 2, respectively, on �̃t is given by P1,2(n1, n2) =(M

n1

)(N−M
n2

)
χ�̃t

n χ
�̄S−t
N−n /χN . If (kF a)−1 decreases, the entangle-

ment between these n1 and n2 particles moves towards its
maximum value. This is reflected by the sub-Poissonian prob-
ability distribution P1(n1) = ∑t

n2=0 P1,2(n1, n2) of finding n1

fermion pairs in the spectral region �̃t of mode 1 (Fig. 3). For
(kF a)−1 = 0.5 and t = 56, P1(n1) approaches the binomial
distribution

( t
n1

)
/2t , and particle fluctuations in each individ-

ual mode are highly correlated in this spectrum range.

VI. NONLOCAL QUANTUM CORRELATIONS

Entanglement constitutes a fundamental resource for mod-
ern quantum technologies. However, most quantum applica-
tions require some kind of specific highly entangled states.
For instance, quantum steering is used as a resource for secure
quantum teleportation [56]. According to Wiseman et al. [57],
there is a hierarchy of quantum correlations: The steerable
states are a subset of the entangled ones and a superset of
states exhibiting Bell nonlocality. Here we propose a Bell test
of quantum nonlocality, which can be achieved experimen-
tally with a deterministic preparation of the state. As we will
explain later, it is also feasible to perform this test when the
states present only particle number fluctuations. Nevertheless,
it cannot be used to detect nonlocal quantum correlations
in experiments with large ensembles of interacting fermions
because the preparation of the quantum state is highly prob-
abilistic. On the other hand, the proposed Bell test seems
feasible for a few interacting fermions since the preparation

of the state is now deterministic [49]. From few to many
fermion pairs, our results demonstrate that the entanglement
between the generated ensembles can be large enough to
present nonlocal quantum correlations and therefore steering
entanglement, both essential resources for the implementation
of quantum applications.

Bell-like quantum correlations can be recognized in the
state |�M,N−M〉 [Eq. (8)] when it is written as a superposition
of states having a fermion pair in the jth states of mode 1 or
2, respectively. The resulting equation is

|�M,N−M〉 = √
MDjd̂

†
1, j

∣∣�[λ j ]
M−1,N−M

〉 + √
(N − M )Djd̂

†
2, j

× ∣∣�[λ j ]
M,N−M−1

〉 + √
1 − NDj

∣∣�[λ j ]
M,N−M

〉
, (16)

where |�[λ j ]
N1,N2

〉 is given by the state |�N1,N2〉 being removed
from the terms with populated single-fermion state j. The
state (8) becomes a maximally entangled Bell-like state when
the occupation probability of the state j fulfills NDj → 1.

Inspired by Eq. (16), we consider the quadrature phase
amplitudes Q = Z1, R = X1, S = (X2 − Z2)/

√
2, and T =

(X2 + Z2)/
√

2, based on projections of the single-particle
spectral density with the single-fermion state j of mode q
occupied

|o j,Nq〉q =
∑

1 � j1 < j2 < · · · < jNq−1 � S

d̂†
q, j | j1, . . . , jNq−1〉q (17)

or empty

|e j,Nq〉q =
∑

1 � j1 < j2 < · · · < jNq+1 � S

d̂q, j | j1, . . . , jNq+1〉q, (18)

namely, Zq = ∑
Nq

(|e j,Nq〉q q〈e j,Nq | − |o j,Nq〉q q〈o j,Nq |), to-
gether with measurements in the rotated spectrum Xq =∑

Nq
(|e j,Nq〉q q〈o j,Nq | + |o j,Nq〉q q〈e j,Nq |). Classically, the pos-

sible results of the measurements in the ensemble 1 (2)
are Q,R = ±1 (S, T = ±1). Therefore, for local theories,
the quantity M = QS + RS + RT − QT fulfills the CHSH
inequality M � 2. Violation of the CHSH inequality would
indicate the presence of nonlocal quantum correlations. The
entanglement resulting from the splitting, rooted in the par-
ticle exchange symmetry, guarantees the existence of EPR
correlations [12,13], and the violation of the CHSH inequality
M � 2 [33] would demonstrate quantum nonlocality and
therefore EPR steering.

For a deterministic preparation of the quantum state (8),
the results of the above measurements are

〈QS〉�M,N−M =
√

2{NDj[N] − 1
2

+
√

M
√

Dj[N](1 − NDj[N])}, (19)

〈RS〉�M,N−M =
√

2{
√

M(N − M )Dj[N]

−
√

(N − M )
√

Dj[N](1 − NDj[N])}, (20)

〈RT 〉�M,N−M =
√

2{
√

M(N − M )Dj[N]

+
√

(N − M )
√

Dj[N](1 − NDj[N])}, (21)

〈QT 〉�M,N−M =
√

2{ 1
2 − NDj[N]

+
√

M
√

Dj[N](1 − NDj[N])} (22)
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FIG. 4. Violation of the CHSH inequality (M � 2) for local
theories. The represented states j = 1, 5, 21, 57, 121 are the first
nondegenerate states (nl ) of Fig. 1(c) with (kF a)−1 = 0.5, l = 0, and
n = 1, 2, 3, 4, 5. All depicted quantities are dimensionless.

and the mean value CHSH quantity reads

〈M〉�M,N−M =
√

2{2Dj[N][N +
√

M(N − M )] − 1}. (23)

In Fig. 4 we show the resulting 〈M〉�N/2,N/2 =√
2(3NDj[N] − 1) for two balanced condensates (M = N/2)

as a function of the total number of particles N . It is found that
〈M〉�N/2,N/2 reaches values above 2 for small (kF a)−1 = 0.5
and large N > 103, for the lowest energetic states ( j < 21).
Fermions in this range of the spectrum are therefore strongly
entangled with each other and with the rest of the system.

However, the quantum state produced in experiments with
large ensembles of ultracold Fermionic atoms is usually a
mixed state with fluctuating particle number, i.e., the initial
state reads ρspl = ∑

N1,N2
ζN1,N2ρN1,N2 , with

∑
N1,N2

ζN1,N2 = 1.
Contrary to the deterministic case, for mixed states ρspl the
error of the measured observables (19)–(22) cannot be esti-
mated from measurements of the spectral density (�Dj[N])
and the number of particles (�N and �M). In the following
we will show that the uncertainty of the measured observables
can be estimated when the initial state has fluctuations only of
the particle number and, as assumed above, when the splitting
process is ideal, i.e., completely nonadiabatic and isolated
from its environment.

In an ideal splitting process, one can consider the final state

ρN1,N2 =
∑

r

ξr

∣∣�r
N1,N2

〉〈
�r

N1,N2

∣∣, (24)

where r runs over the possible statistical mixtures of the
system before the splitting, with different distributions �(r)

possible. The mean value of the CHSH observable M is now
given by 〈M〉ρspl = Tr[M̂ρspl]. Since ζN1,N2ξr � 0 ∀N1, N2, r,
also the maximum value of M is

max[M] =
∑

N1,N2,r

ζN1,N2ξrmax[QS + RS + RT − QT ]=2

for local theories. The splitting operation preserves the
quantum correlations among fermion pairs and the occupation
probabilities of the single-fermion states 〈â†

j â j〉ρin =
〈â†

1, j â1, j〉ρspl + 〈â†
2, j â2, j〉ρspl ≡ N̄D̄ j , where 〈â†

q, j âq, j〉ρspl ≡
N̄qD̄ j . The number of particles in each spatial mode q = 1, 2
must be determined in each experimental realization and the
number of realizations should be large in order to obtain
accurately the mean particle numbers N̄1 + N̄2 = N̄ . By

FIG. 5. Occupation probability of the lowest energetic state
ND1[N], normalized to Nλ1, for a Fermi gas with (kF a)−1 = 0.5
and a mean number of particles N̄ . Red lines are the function
1/[1 + λ j (N − 1)]. All depicted quantities are dimensionless.

measuring the above occupation probabilities, and the mean
particle numbers N̄1 ± �N̄1 and N̄2 ± �N̄2, the error ±�D̄ j

can be inferred.
The error of the observables 〈QS〉, 〈QT 〉, 〈RS〉, and 〈RT 〉

cannot be determined for the general state (24) due to the
mixedness of the single-fermion-state basis �(r). Neverthe-
less, Fig. 5 shows numerically that the spectral density factor
Dj[N] fits extremely well with the function λ j/[1 + λ j (N −
1)]. Then, for any pure fluctuating particle number state,
where �(r) ≈ � for all r, the observables 〈QS〉ρspl , 〈RS〉ρspl ,
〈RT 〉ρspl , and 〈QT 〉ρspl can be evaluated by replacing N , M,
and Dj by their mean values in Eqs. (19)–(22),

〈QS〉ρspl ≈
√

2[N̄D̄ j − 1
2 +

√
N̄1

√
D̄ j (1 − N̄D̄ j )],

〈RS〉ρspl ≈
√

2[
√

N̄1N̄2D̄ j −
√

N̄2

√
D̄ j (1 − N̄D̄ j )],

〈RT 〉ρspl ≈
√

2[
√

N̄1N̄2D̄ j +
√

N̄2

√
D̄ j (1 − N̄D̄ j )],

〈QT 〉ρspl ≈
√

2[ 1
2 − N̄D̄ j +

√
N̄1

√
D̄ j (1 − N̄D̄ j )],

and their error can be estimated from �N1, �N2, and �Dj .
Considering that the spectral density of the statistical mix-
ture of pure fluctuating particle number states is approxi-
mately N̄D̄ j ≈ NDj for a given (kF a)−1 < 1, the inequality
〈M〉ρspl � 2 can be violated for nonzero particle invariance
when N̄ is large and N̄1 ≈ N̄2.

VII. CONCLUSION AND OUTLOOK

In the present work, by using an ansatz of composite
bosons, we showed that many-particle entanglement between
two fermionic ensembles localized in spatially separated
modes can be generated by splitting an ultracold interacting
Fermi gas. Interference with molecular wave matter was ex-
perimentally demonstrated in Ref. [52] by splitting a mBEC
of the order of 105 fermion pairs. A double-well potential was
generated by quickly transforming a Gaussian optical dipole
trap in order to keep the motional potential of the atoms,
and thus almost reaching a perfect nonadiabatic splitting. This
splitting process was performed at large (kF a)−1 ≈ 3, where
our splitting dynamics apply. Then the external magnetic field,
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acting globally on both condensates, was adiabatically ramped
down (in a timescale larger than ω−1 [49]), increasing the
scattering length. Since the interaction parameter kF a can be
tuned to arbitrary position, we obtained that two entangled
fermionic ensembles with almost perfectly correlated spectral

densities [P1 ≈ (N
M

)−1
] could be generated close to the uni-

tary regime (kF a < 1). The generated fermionic ensembles
became strongly entangled in their single-fermion spectra and
these EPR correlations can be large enough to exhibit quan-
tum nonlocality. We showed violations of the CHSH inequal-
ity by using quadrature phase amplitudes based on single-
particle state projective measurements, which demonstrated
nonlocal quantum correlation and steering entanglement be-
tween particles of both ensembles. Violations involving states
j > 1 of both modes indicated that all fermions with single-
particle energy lower than the energy Ej will be even more
entangled.

Although imperfect splitting processes can contribute to
the mode mixing of both condensates destroying entangle-
ment, close-to-ideal splitting is feasible in current experi-
ments of ultracold bosonic [15–18] and fermionic [52] gases.
Entanglement-induced suppression of particle fluctuations
can be detected experimentally if the energy resolution of
the measured single-particle spectral density is increased to
reach an error �E below E2 − E1. Measurements of quadra-
ture phase amplitudes, however, constitute an experimental
challenge to be reached in ultracold Fermi gases. Also, the
state generated in the experiments concerning large ensem-
bles of ultracold atoms can be highly probabilistic and then
nonlocality could not be verified with the proposed Bell test.

Interacting Fermi gases close to the unitary regime have
been proven experimentally to be large ensembles of highly
correlated fermions [20,21,26]. These quantum correlations
may derive in entanglement useful for most quantum infor-
mation applications when the fermionic ensemble is split
into two (Alice and Bob) or more individually accessible
subsystems. The universal behavior of pair correlations in
ultracold interacting Fermi gases might be useful to find
entanglement witnesses for arbitrary mixed states based on
macroscopic observables, since it allows one to relate the
contact interaction between fermions at large momentum

(k > kF ) to thermodynamic quantities experimentally accessi-
ble [58,59]. This, combined with alternative Bell inequalities
involving only two-body correlations [10], could allow one to
implement tests of quantum nonlocality in real experiments
with fermionic gases. Beyond the presented creation of spa-
tial entanglement, Pauli correlations can be used to generate
highly entangled fermionic ensembles in two spatially sepa-
rated modes by using the interference between independent-
particle resources [53] or in many modes by separating the gas
into single molecules in an optical lattice.

Finally, considering that interacting fermion systems of
up to ten pairs were deterministically prepared in a quasi-
one-dimensional dipole trap [49,50], where the number of
available single-fermion states is fully controlled, we expect
that deterministic entanglement can be generated by splitting
these interacting few-fermion system. Although in this work
we focus on large ensembles of fermionic atoms, the coboson
ansatz can also be applied to few-fermion systems in one
dimension, for which the control of the quantum state ad-
vances impressively towards resolving quantum correlations
[60]. The understanding of the entanglement in these one-
dimensional few-interacting-fermion systems is particularly
relevant, since the single-fermion states of the system are
nondegenerate and can have almost unit probability, such that
S = N , in the noninteracting regime. Therefore, the max-
imally entangled state for each fermion species could be
generated deterministically by performing splitting processes.
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APPENDIX: DERIVATION OF THE PURITY P1

In order to quantify the amount of entanglement between two molecular BECs, we calculate the purity Pq of the reduced
density matrix of the particles localized in one of the modes, for instance, mode q = 1. In this Appendix we derive analytically
the purity P1, i.e., Eq. (13).

Let ρ1 be the reduced density matrix of particles in mode 1 corresponding to the projected state |�N,M〉 [Eq. (3)] with a fixed
number of particles in each mode, i.e.,

ρ1 = Tr2(ρ) =
∑

1� jM+1<···< jN�S

2〈 jM+1, . . . , jN |ρ| jM+1, . . . , jN 〉2, (A1)

where ρ = |�N,M〉〈�N,M |, Tr2 stands for the trace over all (N − M) particles in mode 2, and

| j1, . . . , jn〉q =
n∏

k=1

d̂†
q, jk

|0〉q. (A2)
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Therefore, the reduced density matrix squared ρ2
1 reads

ρ2
1 =

∑
1 � jM+1 < · · · < jN � S
1 � iM+1 < · · · < iN � S

2〈 jM+1, . . . , jN |ρ| jM+1, . . . , jN 〉22〈iM+1, . . . , iN |ρ|iM+1, . . . , iN 〉2. (A3)

The purity of the reduced density matrix is given by the trace of ρ2
1 ,

P1 = Tr
(
ρ2

1

) =
∑

1� j1<···< jM�S

1〈 j1, . . . , jM |ρ2
1 | j1, . . . , jM〉1. (A4)

Projections of the state | jM+1, . . . , jN 〉2 onto |�N,M〉 are straightforwardly obtained by counting the multiplicity of
| jM+1, . . . , jN 〉2, that is,

2〈 jM+1, . . . , jN |�N,M〉 = (N!χN )−1/2

√(
N

M

)
(N − M )!

⎛
⎝ N∏

j=M+1

√
λ j j

⎞
⎠ S∑

j1, . . . , jM = 1
σ ( j1, . . . , jN )

(
M∏

k=1

√
λ jk d̂†

1, jk

)
|0〉1. (A5)

From Eq. (A5) it follows that

〈�N,M | jM+1, . . . , jN 〉2 2〈iM+1, . . . , iN |�N,M〉 = (N − M )!

χN

N∏
k=M+1

√
λ jk λik

S∑
i1, . . . , iM = 1
σ (i1, . . . , iN )

σ (i1, . . . , iM , jM+1, . . . , jN )

M∏
l=1

λil (A6)

and

1〈 j1, . . . , jM |2〈iM+1, . . . , iN |�N,M〉 = (N!χN )−1/2

√(
N

M

)
M!(N − M )!

(
N∏

k=1

√
λ jk

)(
N∏

l=M+1

√
λil

)
, (A7)

from which the following symmetric polynomial is obtained:

P1 = 1

χ2
N

S∑
j1, . . . , jN , i1, . . . , iN = 1

σ ( j1, . . . , jN )
σ (i1, . . . , iN )

σ (i1, . . . , iM , jM+1, . . . , jN )
σ (iM+1, . . . , iN , j1, . . . , jM )

N∏
k=1

λ jk λik . (A8)

For a large number of particles N � 1 and Schmidt coefficients S > N , the numerical evaluation of the sum in Eq. (A8)
becomes infeasible. However, we can expand such an equation as a linear combination of elementary symmetric polynomials
χN , which can be evaluated for large N and S by using the recursion [61]

χN = (N − 1)!
N∑

m=1

(−1)m+1

(N − m)!
M(m)χN−m, (A9)

where M(m) = ∑S
j=1 λm

j are the power sums [62] of the Schmidt coefficient distribution � = (λ1, . . . , λS ). Equation (A9)
allows us to evaluate the purity P1, e.g., with N ≈ 103 and S ≈ 106. Since Eq. (A8) is a symmetric polynomial containing 2N
coefficients with 2 as the maximum multiplicity, we can perform the partial sum of indices jM+1 · · · jN and iM+1 · · · iN . By
counting the multiplicity of the coefficients, Eq. (A8) can be written as

P1 = 1

χ2
N

M∑
L=0

1

L!

(
M!

(M − L)!

)2 S∑
j1, . . . , j2M−L = 1
σ ( j1, . . . , j2M−L )

(
χ

[ j1,..., j2M−L]
N−M

)2
L∏

k=1

λ2
jk

2M−L∏
l=L+1

λ jl , (A10)

where [ j1, . . . , jp] is the Schmidt coefficient distribution � = (λ1, λ2, . . . , λS ) without considering the coefficients λ j1 , . . . , λ jp .
If we take into account the relation [54]

χN1χN2 =
N1∑

L=0

N1!N2!

L!(N1 − L)!(N2 − L)!

S∑
j1, . . . , jN1+N2−L = 1
σ ( j1, . . . , jN1+N2−L )

(
L∏

k=1

λ2
jk

)(
N1+N2−L∏

l=L+1

λ jl

)
, (A11)
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with N2 = N1 = N − M, in order to expand (χ [ j1,..., j2M−L]
N−M )2, we obtain

P1 = 1

χ2
N

M∑
L1=0

N−M∑
L2=0

1

L1!

(
M!

(M − L1)!

)2 1

L2!

(
(N − M )!

(N − M − L2)!

)2 S∑
j1, . . . , j2N−L1−L2 = 1
σ ( j1, . . . , j2N−L1−L2 )

L1+L2∏
k=1

λ2
jk

2N−L1−L2∏
l=L1+L2+1

λ jl (A12)

= 1

χ2
N

N∑
LT =0

min[LT ,M]∑
L1=max[0,LT −N+M]

1

L1!

(
M!

(M − L1)!

)2 1

(LT − L1)!

(
(N − M )!

(N − M − LT + L1)!

)2 S∑
j1, . . . , j2N−LT = 1
σ ( j1, . . . , j2N−LT )

LT∏
k=1

λ2
jk

2N−LT∏
l=LT +1

λ jl ,

(A13)

with LT = L1 + L2. Finally, if we rearrange Eq. (A11) we find that the purity is given by the lineal combination of elementary
symmetric polynomials (4)

P1 =
(

N

M

)−1

+ 1

χ2
N

N−2∑
LT =0

αLT χLT χ2N−LT , (A14)

where αLT is evaluated by recursion,

αLT = (2N − 2LT )!

(2N − LT )!

[
min[LT ,M]∑

L1=max[0,LT −N+M]

1

L1!(LT − L1)!

(
M!(N − M )!

(M − L1)!(N − M − LT + L1)!

)2

− M!N!(N − M )!

LT ![(−LT + N )!]2
−

N−2∑
k=LT +1

αk
k!(2N − k)!

(k − LT )!LT !(2N − k − LT )!

⎤
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