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Yutaro Torizuka,1 Kouichi Hosaka,1,* Philipp Schmidt,2 Takeshi Odagiri,3 Andre Knie,2 Arno Ehresmann,2 Ryoko Kougo,1

Masashi Kitajima,1 and Noriyuki Kouchi1
1Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

2Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel,
Heinrich-Plett-Straße 40, D-34132 Kassel, Germany

3Department of Materials and Life Sciences, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan

(Received 29 March 2019; published 25 June 2019)

The angular correlation functions (ACFs) of a pair of Lyman-α photons in photodissociation of H2 and D2 are
measured with linearly polarized incident light at a 33.66-eV incident photon energy in a wider angular range at
a narrower angular step with smaller distortion than before [Y. Nakanishi et al., Phys. Rev. A 90, 043405 (2014)]
so that we identify the atom-pair state emitting the pair of Lyman-α photons and find out whether the atom
pair is entangled or not. Searching for reasonable 2p atom-pair states that reproduce the experimental ACFs to
solve the issue, we show that hydrogen molecules are photoexcited to the Q2

1�u(1) state in the Franck-Condon
region and then the Q2

1�u(1) state comes to superpose with the Q2
3�+

u (2) state as the internuclear distance
increases to infinity. The superposition is brought about by the spin-orbit coupling, which is effective around
infinite internuclear distance because the potential-energy curves of those states are close to each other, but is
negligibly small around the Franck-Condon region because they are apart from each other. The 2p atom pairs
turn out to be in the 1u superposition state, which is entangled. We therefore conclude that an entangled pair
of hydrogen atoms is spontaneously produced through the photodissociation of a hydrogen molecule, and the
entanglement originates from the 1u symmetry properties, which are invariant during the dissociation from the
Franck-Condon region towards infinite internuclear distance.

DOI: 10.1103/PhysRevA.99.063426

I. INTRODUCTION

Investigations on entanglement in massive quantum par-
ticles have been becoming active in atomic and molecular
physics as reviewed in Ref. [1] because the entanglement
is essential for understanding composite quantum systems.
There is a possibility that a breakup of molecules, i.e., molec-
ular dissociation, is a promising source of entangled systems
of atoms, which approach is passive and thus remarkable
because entangled systems of massive quantum particles are,
in general, produced with active control techniques [2,3]. In
fact Miyagi et al. [4] and Jänkälä et al. [5] have theoretically
shown the possibility that an entangled pair of H(2p) atoms is
produced through photodissociation of a hydrogen molecule.
According to their investigations the entanglement originates
from the symmetry properties that the electronic state of the
2p atom pair possesses. It is hence a significant subject to
reveal the electronic state of the 2p atom pairs in the photodis-
sociation of H2 so that we substantiate the production of the
entangled 2p atom pairs without any active control technique,
a subject which is achieved with measuring the angular corre-
lation function (ACF) of a pair of Lyman-α photons emitted
by 2p atoms [4,5]. In regard to a pair of hydrogen atoms in
other states, Robert et al. reported that a pair of metastable
H(2s) atoms was produced through dissociation of a hydrogen
molecule mediated by electron collisions [6]. The same group
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has planned to substantiate the production of an entangled pair
of H(2s) atoms by means of atomic interferometry [7]. The
investigation has just begun on the production of entangled
systems of fragment atoms through molecular dissociation. As
for the decay processes of an entangled pair of excited atoms,
Sancho and Plaja [8] theoretically investigated the radiative
decay process of an entangled pair of a He(21S) atom and
a He(23S) atom and predicted that the decay rates of the
metastable He atoms in an entangled pair were different from
those in a product pair.

Our group [9–11] measured the ACFs of a pair of Lyman-α
photons emitted by a pair of H(2p) atoms in the dissociative
photoexcitation to the doubly excited Q2

1�u(1) state of H2

molecules, process (1) below, and compared the experimental
ACFs with the theoretical ones to find out whether or not the
2p atom pair is entangled in accordance with the predictions
[4,5]:

H2(X 1 �+
g ) + γex

−→ H∗∗
2 [Q2

1�u(1) state in the Franck-Condon region]

−→ H(2p) + H(2p)

−→ H(1s) + H(1s) + γLy-α + γLy-α, (1)

where γex is a linearly polarized incident photon and γLy-α

a Lyman-α photon. Typical distance between the two H(2p)
atoms reaches 93 μm when the H(2p) atoms emit the Lyman-
α photons, as calculated from the incident photon energy
(33.66 eV as mentioned later), the dissociation limit of H(2p)
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FIG. 1. Experimental setup. The left panel (a) is a schematic view and the right panel (b) shows arrangements of the photon detectors c and
d when facing into the propagation direction of the incident light (the photon detectors are placed on the plane perpendicular to the incident
light beam). The gas cell consists of three coaxial cylinders, of which symmetry axis coincides with the incident light beam. The incident light
with the wave-number vector k travels down the space-fixed X axis and the space-fixed Z axis points to the direction of the unit polarization
vector of the linearly polarized incident light denoted by ε̂. The origin of the space-fixed XY Z frame is taken at the crossing point of the three
axes, i.e., the axes of the two detectors and the axis of the incident light beam, which crosses the axes of the detectors at right angles. The
positive directions of the detector angles �c and �d , which are measured from the unit polarization vector ε̂, are shown in (b). AMP: amplifier;
CFD: constant-fraction discriminator; TDC: time-to-digital converter; PC: personal computer.

+ H(2p) (Table II in [12]), and the lifetime of H(2p) atoms,
i.e., 1.6 ns (pp. 200–201 in Ref. [13]). The distance between
two D(2p) atoms is shortened to approximately (1/

√
2) × 93

μm if an H2 molecule is replaced with a D2 molecule in
process (1). The cross sections of the photodissociation (1)
were experimentally measured as functions of the incident
photon energy [14–16], and it has been well substantiated
from the discussion on those cross-section curves that only the
Q2

1�u(1) state is responsible for the production of 2p atom
pairs in the photoexcitation of H2 and D2 in the range of the
incident photon energy 30–40 eV [14–16]. Nakanishi et al.
[11] showed that the experimental ACF was not in agreement
with the theoretical ACF [4,5] for the pair of H(2p) atoms in
the Q2

1�u(1) state at infinite internuclear distance.
In the present experiment the ACFs of a pair of Lyman-α

photons in the photodissociation of H2 and D2 are measured
in a wider angular range with a narrower angular step with
smaller distortion than before [11]. We aim to identify the
atom-pair state in process (1) through a comprehensive search
for the 2p atom-pair state that is reasonably accessed from the
Q2

1�u(1) state and reproduces the experimental ACFs, and
to find out whether or not the 2p atom pairs in process (1) are
entangled.

II. EXPERIMENTS

A. Experimental setup

The experiments were carried out at the bending beamline
BL20A [17] of the Photon Factory, Institute of Materials
Structure Science, KEK. The experimental setup was the same
as that used in the early experiment for measuring ACFs [11],
and is illustrated in Fig. 1.

Linearly polarized light, traveling down the space-fixed X
axis, was introduced into a gas cell filled with H2 or D2 gas,
and the unit polarization vector of the incident light ε̂ is on
the space-fixed Z axis. We refer to the space-fixed XY Z frame
in detail in Sec. IV A. The polarization degree of the incident
light is approximately 0.8 [18,19] and the spot size is 2 mm

× 2 mm. The incident photon energy was 33.66 eV as in the
early experiments [9–11] since this photon energy gives the
maximum value of the cross sections for emission of a pair
of Lyman-α photons for H2 [14–16], and the energy width
of the incident photons was 140 meV. The flux of incident
photons passing through an exit of the gas cell was recorded
with measuring the photocurrent of an Au plate. The photon
detectors c and d on the plane perpendicular to the incident
light beam are rotated over the axis of the incident light beam,
i.e., the space-fixed X axis, plane which is referred to as
the dipole plane [5]. The rotation angles of the detectors c
and d , �c and �d , respectively, are measured from the unit
polarization vector of the incident light ε̂, which is parallel to
the space-fixed Z axis. The positive directions of the angles
�c and �d are shown in Fig. 1(b): the angles �c/d are a
part of Euler angles (�c/d = 3π/2, �c/d , 	c/d = 0). This
definition of the rotation angles is the same as in Refs. [4]
and [9–11], and slightly different from that in Ref. [5]. The
minimum value of |�c − �d | is 120◦. The direction of the unit
polarization vector of the incident light ε̂ was experimentally
determined with the measurement of the angular distribution
of photoelectrons from He as mentioned in [11].

B. Coincidence measurements between two Lyman-α photons

Each photon detector consists of a 1-mm-thick MgF2 win-
dow and a microchannel plate coated with CsI, a detector
which provides a filter range of approximately 115–200 nm
in wavelength. Only Lyman-α photons, with a 121.6-nm
wavelength for H atoms, are detected at a 33.66-eV incident
photon energy. Molecular fluorescence is unlikely to be emit-
ted by doubly excited hydrogen molecules since fluorescent
processes are in general much slower than autoionization
and neutral dissociation. The wavelength of the Lyman-β
fluorescence, 102.6 nm for H atoms, is out of the detection
range. Other fluorescence of atomic hydrogen besides the
Lyman series does not lie in the vacuum ultraviolet range.
The solid angle subtended by each detector is 0.64 sr as
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FIG. 2. An example of the two-photon coincidence time spectra.
This time spectrum was measured at a 33.66-eV incident photon
energy, a 0.4-Pa H2 gas pressure, and a set of detector angles (�c,
�d ) = (−90◦, 90◦). The accidental coincidence counts have been
subtracted following the method described in Ref. [11]. The four
channels of the time-to-digital converter in Fig. 1(b) are binned to
be 0.1004 ns/channel.

in the early experiments [9–11]. The detection time by the
detector d , td , is measured with respect to the detection time
by the detector c, tc, with a coincidence system shown in
Fig. 1(b) and the number of events that the time difference
td − tc is equal to T is recorded against T so that a two-photon
coincidence time spectrum is obtained. One example recorded
at a 0.4-Pa H2 gas pressure is shown in Fig. 2, where the
accidental coincidence counts have been subtracted in the
manner described in detail in the early paper [11]. The decay
times on both sides are in good agreement with the lifetime of
the 2p state, 1.6 ns (pp. 200–201 in Ref. [13]), as expected.

The sample gas pressure should be carefully chosen so that
the ACFs are not influenced by secondary processes such as
reactions of 2p atoms with hydrogen molecules. Pressure in
the gas cell was in fact lower than approximately 1 Pa for
H2 and D2 gas because it has been confirmed that the angle-
resolved two-photon coincidence count rates are proportional
to the D2 gas pressure up to approximately 2 Pa [15], a result
indicating that secondary processes do not play a role in the
pressure range lower than approximately 2 Pa. The target gas

pressure was kept constant within a variation of less than ±4%
during the coincidence measurement at a given set of �c and
�d . The false coincidence counts due to cosmic muons, 0.4 ×
10−3–1.2 × 10−3 cps depending on angles, were reported in
the same apparatus as that used in the present experiments
[11]. In the present range of the target gas pressure, the ratio
of the false coincidence counts to the two-photon coincidence
counts was less than 1%, and the false counts were not hence
subtracted.

C. Measuring the angular correlation functions
of a pair of Lyman-α photons

In the present experiment we measure the experimental
ACFs for the following arrangements of the detectors c and d:
(a) �d = �c + 180◦, (b) �d = −�c, (c) �d = −�c + 180◦,
arrangements which are illustrated in Fig. 3. The arrangement
(a) is referred to as the opposite arrangement and those in (b)
and (c) are referred to as the nonopposite arrangements.

The ACF of a pair of Lyman-α photons is equivalent to the
cross section for emission of a pair of Lyman-α photons differ-
ential with respect to solid angles of emitted photons, d2σ

d�cd�d
.

Early papers [15,16] show how the two-photon coincidence
count rate Ṅcd (�c,�d ) is related to the cross section d2σ

d�cd�d
,

the target gas pressure P, and photocurrent from the Au plate
iAu:

Ṅcd (�c,�d )

PiAu
= CGcd (�c,�d )ηcd

〈
d2σ

d�cd�d

〉
(�c,�d ),

(2)

where Gcd (�c,�d ) is a geometric factor, ηcd is a coincidence
detection efficiency of the photon detectors for Lyman-α pho-
tons, 〈 d2σ

d�cd�d
〉 is the differential cross section averaged with

the present angular resolution, and C is a constant independent
of (�c,�d ). The geometric factor Gcd (�c,�d ) is an integral
of the product of two solid angles subtended by the detectors
c and d over the interaction region, and it turned out from ray
tracing of the Lyman-α photon that the factor was independent
of (�c,�d ) [11]. The plot of the values of the left-hand side
of Eq. (2) against (�c,�d ) hence gives the ACF.

FIG. 3. Arrangements of the photon detectors c and d with respect to the space-fixed XY Z frame, where the Z axis points to the unit
polarization vector of the linearly polarized incident light ε̂ and the X axis points to the propagation direction of the incident light. This figure
is the view when facing into the propagation direction of the incident light. The positive directions of the angles �c and �d are indicated. The
ACFs of a pair of Lyman-α photons for H2 and D2 are measured for the arrangements (a)–(c).
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FIG. 4. The angular dependence of the geometric factor
Gcd (�c, �d ), which was obtained through measuring the values of
the left-hand side of Eq. (3) for the arrangement (a) in Fig. 3 with
the circularly polarized incident light at a 33.6-eV incident photon
energy and at a 0.4-Pa H2 gas pressure. The angle �c is measured
not from the unit polarization vector of the incident light but from
the horizontal direction in contrast to measuring the ACF with the
linearly polarized incident light. This result shows the flatness of
the angular characteristics in the present apparatus (see the text for
details).

In fact, however, we carried out reference measurements
at a set of constant angles (�c,�d ) = (−90◦, 90◦) to cancel
out a possible but small and slow change of CGcdηcd in Eq. (2)
during the measurement of an ACF, and based on the reference
measurements the following relation is obtained:

[Ṅcd (�c,�d )/(PiAu)]
1
2 {[Ṅ ′

cd (−90◦, 90◦)/(P′i′Au)] + [Ṅ ′′
cd (−90◦, 90◦)/(P′′i′′Au)]}

=
〈

d2σ

d�cd�d

〉
(�c,�d )/

〈
d2σ

d�cd�d

〉
(−90◦, 90◦), (3)

where ′ and ′′ mean the reference measurements before and
after the measurement of Ṅcd (�c,�d ), respectively, and the
factor CGcdηcd is considered unchanged during the measure-
ments of Ṅ ′

cd , Ṅcd , and Ṅ ′′
cd . We eventually plot the values of

the left-hand side of Eq. (3) against (�c, �d ) to obtain the
ACF of a pair of Lyman-α photons.

The values of the left-hand side of Eq. (3) were measured
as a function of (�c, �d ) for the arrangement (a) in Fig. 3
using circularly polarized incident light to experimentally
substantiate that the geometric factor Gcd (�c,�d ) is inde-
pendent of (�c, �d ). Because of physical reasons the ACF,

d2σ
d�cd�d

, due to the circularly polarized light is expected to be
independent of the direction of the line joining the detectors
c and d [see Fig. 3(a)] and the left-hand side of Eq. (3) in
this case consequently expresses the angular dependence of
the geometric factor. The experiment was carried out at the
undulator beam line BL28B [20] of the Photon Factory with
a 33.6-eV incident photon energy and 0.4-Pa H2 gas pressure,
and the result, Gcd (�c,�d )/Gcd (90◦, 270◦) vs �c, is shown
in Fig. 4. The distortion from the expected flatness, horizontal
dotted line, has turned out to be at most ±4%. There remains
a possibility that the angular dependence of Gcd (�c,�d ) at
the BL20A is different from that at the BL28B shown in
Fig. 4 because the spot size of the incident light beam at the

BL28B is much smaller than that at the BL20A, 2 mm ×
2 mm. The ACFs measured at the BL28B and BL20A with
the linearly polarized incident light, however, are in good
agreement with each other [11], and we hence conclude that
the geometric factor Gcd (�c,�d ) at the BL20A is as flat as in
Fig. 4.

III. RESULTS

In Fig. 5 shown are the experimental ACFs of a pair of
Lyman-α photons in the photodissociation of H2 (©) and D2

(♦) with the linearly polarized incident light at the photon
energy of 33.66 eV. The ACFs for the opposite arrangement
[the arrangement (a) in Fig. 3] are shown in the left panel
and those for the nonopposite arrangements [the arrangements
(b) and (c) in Fig. 3] are shown in the right panel. The
experimental ACFs for the two nonopposite arrangements are
displayed in the same panel of Fig. 5 because the theoretical
ACFs [4,5] for the nonopposite arrangement (b) in Fig. 3 are
the same as those for the other nonopposite arrangement (c)
in Fig. 3. The error bars were obtained from the uncertainty
of each two-photon coincidence count rate in the left-hand
side of Eq. (3) using the law of the propagation of errors.
The alignment of the apparatus in the present experiment
was better than that in the early experiment [11], which was
substantiated with the angular distributions of photoelectrons
from He and Lyman-α photons from H2 or D2, and the
ACFs with smaller distribution were obtained as a result. The
anisotropy of the experimental ACFs for H2 and D2 is so
weak that the values at the reference angles of (�c,�d ) =
(−90◦, 90◦) are approximately set equal to 1/(4π )2 sr−2:
the ACF expresses the probability density for the detection
of photon pairs and it is hence normalized to unity when
integrated over the entire range of the solid angles for the
detectors c and d . The absolute values of the experimental
ACFs in Fig. 5 hence have a small uncertainty of a constant
multiple, which is in the range 1–1.2. The present ACF for
H2 is consistent with the previous one for H2 measured at
the same incident photon energy in a narrower angular range
with a wider angular interval [11]. The ACFs for H2 and D2

are almost identical as seen in Fig. 5, while the ratio of the
initial population, (the odd number J)/(the even number J), is
3 in H2 and it is 1/2 in D2 (J is the quantum number of the
total angular momentum of H2 and D2 in the ground electronic
states) (p. 134 in Ref. [21]). The negligible isotope effect on
the ACFs shows that the electronic motion dominates the state
of a pair of Lyman-α photons and the nuclear motion gives
just a small effect on the state of a photon pair. We identify the
electronic state of a pair of the 2p atoms produced in process
(1) and find out whether the atom pair is entangled or not in
the following section.

IV. DISCUSSION

In this section we search for a state of a pair of 2p atoms
that is reasonably accessed from the precursor Q2

1�u(1)
state in process (1) and gives the ACF in agreement with the
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FIG. 5. The experimental ACFs of a pair of Lyman-α photons in the photodissociation of H2 (©) and D2 (♦) at the incident photon energy
of 33.66 eV. The left panel shows the ACFs for the opposite arrangement (a) in Fig. 3, and the right panel shows those for the nonopposite
arrangements (b) and (c) in Fig. 3. The error bars were obtained from the uncertainty of each two-photon coincidence count rate in the left-hand
side of Eq. (3) using the law of the propagation of errors.

experimental ACFs in Fig. 5, and identify the state as the
2p atom-pair state in process (1). We rely on the following
framework to solve the issue:

(1) The Born-Oppenheimer approximation is used and
only electronic states are considered at infinite internuclear
distance.

(2) The nonadiabatic radial coupling between two adiabatic
electronic states is taken into account. The nonadiabatic rota-
tional coupling, however, is not taken into account because
the potential-energy curves of the doubly excited states of H2

are repulsive [22–26] and the kinetic energy of the relative
motion of the two nuclei, 8.8 eV, at a 33.66-eV incident
photon energy, is much higher than the rotational energy, in
which situation the axial recoil approximation holds [27]. The
internuclear axis does not rotate against the space-fixed frame
during the molecular dissociation in process (1) under the
axial recoil approximation.

(3) The spin-orbit coupling is neglected.
The doubly excited Q2 states of H2 resulting in the

H(n = 2) + H(n = 2) limit were intensively studied [28]:
the potential-energy curves were calculated in the range of
the internuclear distance from 3a0 up to the distance of the
asymptotic van der Waals regime and their dissociation limits,
i.e., H(2s) + H(2s), H(2s) + H(2p), or H(2p) + H(2p), were
identified. In Table I are listed all those doubly excited Q2

states together with their dissociation limits. It follows that
a pair of atoms in any Q2 state in the first or third group
in Table I emits a pair of Lyman-α photons observed in
this experiment. We hence calculate the ACFs of a pair of
Lyman-α photons originating from the Q2 states in the first or
third group that are reasonably accessed from the precursor
Q2

1�u(1) state in process (1), and compare the calculated
ACFs with the experimental ones in Fig. 5. The method for
the calculation of the ACF is mentioned in the following
subsection.

A. Calculation of angular correlation functions
of a Lyman-α photon pair

We calculate the ACF of a pair of Lyman-α photons
emitted by an atom pair in a given electronic state along the
line mentioned in Ref. [4]. In Fig. 6, the frames of reference,
i.e., the space-fixed XY Z frame and molecular xyz frame, are
shown. The space-fixed frame is partly mentioned in Sec. II
and the comprehensive explanation is given here. The origin
of the XY Z frame is taken at a point on the axis of the incident
light, which travels down the positive direction of the X axis.

TABLE I. The doubly excited Q2 states correlating with the n =
2 + n = 2 dissociation limit.a

States Dissociation limits

1�+
g (2), 3�+

u (2) [1u] b

1�g(2), 3�u(2) [1u]
1�u(1) [1u],c 3�g(1) 2p + 2p
1�−

u (1), 3�−
g (1)

1�g(1), 3�u(1) [1u]
1�+

g (3), 3�+
u (3) [1u]

1�g(1), 3�u(1) [1u]
1�u(2) [1u], 3�g(2) 2s + 2p
1�+

u (1), 3�+
g (1)

superposition of
1�+

g (1), 3�+
u (1) [1u] 2p + 2p and

1�+
g (4), 3�+

u (4) [1u] 2s + 2s

aFrom Ref. [28].
bThe 1u states arising from the n = 2 + n = 2 limit are shown right to
the corresponding Lz eigenstates, being enclosed by angled brackets
(see Sec. IV D for details).
cThe precursor state in process (1).
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FIG. 6. The space-fixed frame, the XY Z frame, and the molecu-
lar frame, the xyz frame, for calculating the ACF of a pair of Lyman-α
photons emitted by a pair of hydrogen atoms. The unit polarization
vector of the linearly polarized incident light is denoted by ε̂ and the
wave-number vector of the incident light is denoted by k. Two nuclei
are labeled a and b. See Sec. IV A for details.

The Z axis points to the direction of the unit polarization
vector of the linearly polarized incident light ε̂. The Y axis
is taken so that the XY Z frame is a right-handed system. The
directions of the two photon detectors c and d are specified
by the Euler angles (�c/d , �c/d , 	c/d = 0) in reference to the
space-fixed XY Z frame, provided the detectors are originally
on the +Z axis. In the present experiments �c/d are held fixed
to 3π/2 as mentioned in Sec. II A.

The electronic states of a hydrogen molecule and a pair of
hydrogen atoms are expressed in reference to the molecular
xyz frame. The pair of hydrogen atoms is considered a hy-
drogen molecule with infinite internuclear distance. The two
nuclei in the hydrogen molecule are labeled a and b, and the
two electrons are labeled 1 and 2. The z axis points from
the nucleus a to b. The origin of the xyz frame is taken at the
midpoint between the nucleus a and b, and coincides with the
origin of the XY Z frame as seen in Fig. 6. The molecular xyz
frame, also a right-handed system, is given in reference to the
space-fixed XY Z frame with the Euler angles (φ, θ , χ = 0)
so that the unit polarization vector of the linearly polarized
incident light, ε̂, is on the xz plane (the light green panel in
Fig. 6) and the y axis is on the XY plane (the gray circle in
Fig. 6).

We investigate the time evolution of a given state of a 2p
atom pair to obtain a state of a pair of the Lyman-α photons
|�〉. The two-photon correlation function G(2)(rc, tc, rd , td ) in
quantum optics [29] is then calculated for the photon-pair state
|�〉 following Ref. [4], function which is proportional to the
probability density of detecting a photon pair at the time tc
and td by the detector c at the position rc and detector d at rd ,
respectively. The function G(2)(rc, tc, rd , td ) for the photon-
pair state |�〉 hence gives the ACF of the pair of Lyman-α
photons in |�〉. The explicit expression of G(2)(rc, tc, rd , td )

for the photon-pair state |�〉 is given below:

G(2)(rc, tc, rd , td )

= 〈�| E (−)(rc, tc)E (−)(rd , td )E (+)(rd , td )E (+)(rc, tc) |�〉 ,

(4)

where E (+) and E (−) are the positive and negative frequency
parts of the electric-field operator, respectively, and line up in
the normal order. The ACF calculated in this manner involves
the Euler angles (φ, θ , χ = 0) that determines the molecular
frame in reference to the space-fixed frame, and the ACF is
hence averaged with the weight of the distribution of the z-axis
direction, i.e., the distribution of the dissociation direction,
which is expressed as [3/(8π )] sin2 θ in process (1) under
the axial recoil approximation [27]. This function is obtained
from the probability density for the � → � excitation with
the Euler angles (φ, θ , χ = 0) held fixed [see Eq. (26)] with
considering the axial recoil approximation.

B. Q2
1�u(1) state at infinite internuclear

distance as a 2p atom-pair state

We first calculate the ACF of a pair of Lyman-α photons
emitted by an atom pair in the Q2

1�u(1) state at infinite
internuclear distance to compare with the experimental ACFs
in Fig. 5 since the precursor Q2

1�u(1) state in process (1)
adiabatically correlates with the 2p + 2p dissociation limit as
shown in Table I.

The Q2
1�u(1) state at infinite internuclear distance

|1�u; η, R → ∞〉 |χ e
0 0〉 is written as

|1�u; η, R → ∞〉 ∣∣χ e
0 0

〉

= (1/

√
2)

(∣∣1�Lz=+1
u ; R → ∞〉

+ eiη
∣∣1�Lz=−1

u ; R → ∞〉) ⊗ ∣∣χ e
0 0

〉
, (5)

∣∣χ e
0 0

〉 = (1/

√
2)[|α(1)〉 |β(2)〉 − |β(1)〉 |α(2)〉], (6)

where the phase η ranges from 0 to 2π and R is the in-
ternuclear distance. The ket vectors |α〉 and |β〉 are spin
eigenstates of an electron. A � level has twofold degeneracy:
one component has the quantum number Lz = 1 and the
other has Lz = −1, where the quantum number Lz expresses
projection of the electron orbital-angular momentum on the
z axis, the axis joining the nucleus a and b, in the unit
of h̄. The Lz = 1 component of the 1�u level is written
as a ket vector |1�Lz=+1

u 〉 and the Lz = −1 component as
|1�Lz=−1

u 〉 in Eq. (5). The explicit forms of the ket vectors
|1�Lz=±1

u ; R → ∞〉 are given in Ref. [4] and rewritten below:∣∣1�Lz=±1
u ; R → ∞〉

= (1/2)
[ ∣∣2pa

±1(1)
〉 ∣∣2pb

0(2)
〉 + ∣∣2pa

±1(2)
〉 ∣∣2pb

0(1)
〉

− ∣∣2pa
0(1)

〉 ∣∣2pb
±1(2)

〉 − ∣∣2pa
0(2)

〉 ∣∣2pb
±1(1)

〉 ]
, (7)

where a ket vector |2pa
m(1)〉 (m = −1, 0, 1), for example,

means that the electron 1 is bound by the nucleus a and
the projection of the electron orbital-angular momentum on
the z axis is m in the unit of h̄. A ket vector |2pa

m(i)〉
(i = 1, 2) is given through the translation of a ket vector
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|2pm(i)〉 along the z axis by −(1/2)R, where R denotes
the relative position vector of the two nuclei in reference
to the nucleus a (see Fig. 6). A ket vector |2pb

m(i)〉 (i =
1, 2) is given through the translation of a ket vector |2pm(i)〉
along the z axis by (1/2)R. We note that σxz |1�Lz=±1

u 〉 =
− |1�Lz=∓1

u 〉 and σxz |2pm(i)〉 = (−1)m |2p−m(i)〉 (i = 1, 2),
where σxz is a reflection operator at the xz plane for elec-
tronic states. The electronic states |1�u; η, R → ∞〉 |χ e

0 0〉 and
|1�u; η + π, R → ∞〉 |χ e

0 0〉 compose a set of eigenstates for
the permutation operator of the two identical nuclei a and b.
The atom-pair state |1�u; η, R → ∞〉 |χ e

0 0〉 in Eqs. (5)–(7) is
entangled because the state of the electron 1 is not definite
and the state of the electron 2 is not definite as well, e.g., the
projection of the orbital-angular momentum of the electron 1
on the z axis is not definite and that of the electron 2 is not def-
inite as well. The entanglement originates from the symmetry
properties that the atom-pair state |1�u; η, R → ∞〉 |χ e

0 0〉
possesses.

The time evolution of the 2p atom pairs in the
|1�u; η, R → ∞〉 |χ e

0 0〉 state is investigated based on the time
evolution of 2p atoms shown below (i = 1, 2) [4]:

∣∣2pa
+1(i)

〉 |vac〉 time t→∞−−−−−→ |1sa(i)〉 |γa〉 , (8)

∣∣2pb
+1(i)

〉 |vac〉 −−−−−→ |1sb(i)〉 |γb〉 , (9)

∣∣2pa
0(i)

〉 |vac〉 −−−−−→ |1sa(i)〉 |φa〉 , (10)

∣∣2pb
0(i)

〉 |vac〉 −−−−−→ |1sb(i)〉 |φb〉 , (11)

∣∣2pa
−1(i)

〉 |vac〉 −−−−−→ |1sa(i)〉 |ρa〉 , (12)

∣∣2pb
−1(i)

〉 |vac〉 −−−−−→ |1sb(i)〉 |ρb〉 , (13)

where |vac〉 is the vacuum state of the photon field. The ket
vectors |1sa(i)〉 and |1sb(i)〉 are the 1s states of a hydrogen
atom, where the electron i (i = 1, 2) is bound by the nucleus
a and b, respectively. The ket vectors |γ 〉, |φ〉, and |ρ〉 are
states of a single photon emitted by a hydrogen atom through
the 2p → 1s transitions of �m = −1, 0, 1, respectively. For
example, |γa〉 is a state of a Lyman-α photon emitted by a

hydrogen atom through the transition |2pa
+1(1)〉 → |1sa(1)〉

or |2pa
+1(2)〉 → |1sa(2)〉. It is a good approximation that the

spin-orbit coupling is neglected in the radiative transition in
a hydrogen atom and the spin eigenstates of electrons conse-
quently remain unaltered. It is found from Eqs. (5)–(7) and
(8)–(13) that the |1�u; η, R → ∞〉 |χ e

0 0〉 |vac〉 state is evolved
in time as follows:

|1�u; η, R → ∞〉 ∣∣χ e
0 0

〉 |vac〉
t→∞−−−→ (1/2)[(|γa〉 |φb〉 − |φa〉 |γb〉)

+ eiη(|ρa〉 |φb〉 − |φa〉 |ρb〉)]

⊗ (1/

√
2)[|1sa(1)〉 |1sb(2)〉 + |1sa(2)〉 |1sb(1)〉] ∣∣χ e

0 0

〉
.

(14)

Equation (14) is rewritten in a simpler form as shown below:

|1�u; η, R → ∞〉 ∣∣χ e
0 0

〉 ∣∣vac
〉

t→∞−−−→ |�; 1�u, η〉 |X 1�+
g ; R → ∞〉 ∣∣χ e

0 0

〉
, (15)

where the photon-pair state |�; 1�u, η〉 is

|�; 1�u, η〉 = (1/2)[(|γa〉 |φb〉 − |φa〉 |γb〉)

+ eiη(|ρa〉 |φb〉 − |φa〉 |ρb〉)], (16)

and the spatial part of the final atom-pair state
|X 1�+

g ; R → ∞〉 is

|X 1�+
g ; R → ∞〉 = (1/

√
2)[|1sa(1)〉 |1sb(2)〉

+ |1sa(2)〉 |1sb(1)〉]. (17)

We thereby obtain the photon-pair state |�; 1�u, η〉 emit-
ted by the atom pairs in the |1�u; η, R → ∞〉 |χ e

0 0〉 state in
Eq. (5) and calculate the two-photon correlation function for
the photon-pair state |�; 1�u, η〉 to obtain the ACF of a pair
of Lyman-α photons emitted by the 2p atom pairs in the
|1�u; η, R → ∞〉 |χ e

0 0〉 state. In Ref. [4], they calculated only
the ACF for the |1�u; π, R → ∞〉 |χ e

0 0〉 state. The calculated
ACF for the 2p atom-pair state |1�u; η, R → ∞〉 |χ e

0 0〉 (0 �
η � 2π ) is averaged with the distribution of the dissociation
direction, [3/(8π )] sin2 θ [see Eq. (26)], and the resulting
ACF, F (�c,�c,�d ,�d ; 1�u, η), has the form of

F (�c,�c,�d ,�d ; 1�u, η) = f (�c,�c,�d ,�d ) + (2 cos η)g(�c,�c,�d ,�d ), (18)

f (�c,�c,�d ,�d ) = 9

143 360π2
{1008 − 56[cos 2(�c − �d ) + cos 2(�c + �d )]

− 84 cos(�c − �d )[cos 2(�c − �d ) − cos 2(�c + �d )]

− 28 cos 2(�c − �d )[2 − 2 cos 2�c − 2 cos 2�d + cos 2(�c − �d ) + cos 2(�c + �d )]}, (19)

g(�c,�c,�d ,�d ) = 9

143360π2
{84 + 140(cos 2�c + cos 2�d ) + 42[cos 2(�c − �d ) + cos 2(�c + �d )]

+ 28 cos(�c − �d )[cos 2(�c − �d ) − cos 2(�c + �d )]

− 14 cos 2(�c − �d )[2 − 2 cos 2�c − 2 cos 2�d + cos 2(�c − �d ) + cos 2(�c + �d )]}. (20)
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FIG. 7. Comparison between the experimental ACFs for H2 (©) and D2 (♦) in Fig. 5 and those calculated for the 2p atom pairs in
the Q2

1�u(1) state at infinite internuclear distance (lines). The left panel shows the experimental and theoretical ACFs for the opposite
arrangement (a) in Fig. 3, and the right panel shows those for the nonopposite arrangements (b) and (c) because the theoretical ACFs for the
arrangement (b) are the same as those for the arrangement (c). The relation between the calculated ACFs [Eq. (18) or (24)] and the values of
2 cos η or ξ is indicated in the figure, for example, the ACF calculated for 2 cos η = −2 or ξ = −2 is drawn with the black solid line. The
ACF drawn with the black solid line has been convoluted with the present angular resolution and the convoluted ACF is shown with the black
dot-dashed line. Shown with the gray solid line is the ACF calculated by Jänkälä et al. [5] for the 2p atom pairs in the Q2

1�u(1) state at
infinite internuclear distance.

The ACF in Eq. (18) has been normalized to unity as follows:∫
F (�c,�c,�d ,�d ; 1�u, η)d�cd�d = 1. (21)

Shown in Fig. 7 are the ACFs, F (�c,�c,�d ,�d ; 1�u, η),
for some values of η together with the experimental ACFs for
H2 (©) and D2 (♦). The left panel in the figure shows the
experimental and theoretical ACFs for the opposite arrange-
ment (a) in Fig. 3, and the right panel shows those for the
nonopposite arrangements (b) and (c) because the theoretical
ACFs, F (�c,�c,�d ,�d ; 1�u, η), for the arrangement (b)
are the same as those for the arrangement (c). The calcu-
lated ACF for η = π (2 cos η = −2), black solid line, has
been convoluted with the angular resolution in the present
experiment and the convoluted ACF is also shown in Fig. 7,
black dot-dashed line, so that we may see the effect of the
angular resolution on the calculated ACFs for other values
of η. It is obvious that no theoretical ACF for the 2p atom-
pair state |1�u; η, R → ∞〉 |χ e

0 0〉 is in agreement with the
experimental ACFs of H2 (©) and D2 (♦) even if we consider
the uncertainty of the constant multiple in the absolute values
of the experimental ACFs mentioned in Sec. III and the effect
of the angular resolution.

In the above discussion only the pure ensemble of the atom
pairs in the Q2

1�u(1) state is considered. The ensemble of
the atom pairs, however, is likely to be the mixed ensemble
expressed by the following density operator:

ρa[1�u; ω(η)]

=
∫ η=2π

η=0
dηω(η)

× | 1�u; η, R → ∞〉 ∣∣χ e
0 0

〉 〈
χ e

0 0

∣∣ 〈1�u; η, R → ∞| , (22)

where ω(η) expresses the population function to the
|1�u; η, R → ∞〉 |χ e

0 0〉 state with the molecular frame held

fixed in reference to the space-fixed frame, i.e., with the Euler
angles (φ, θ , χ = 0) held fixed, and is calculated later. The
population function ω(η) satisfies the following relation:∫ η=2π

η=0
ω(η)dη = 1. (23)

The ACF calculated for the photon pairs in the |�; 1�u, η〉
state in Eq. (16) is averaged with the population function ω(η)
according to Eq. (22) and then the resulting ACF is further
averaged with the distribution of the dissociation direction,
[3/(8π )] sin2 θ [see Eq. (26)]. The ACF obtained in this way
for the density operator of the atom pairs ρa[1�u; ω(η)] in
Eq. (22) has the form of

F (�c,�c,�d ,�d ; 1�u)

= f (�c,�c,�d ,�d ) + ξg(�c,�c,�d ,�d ), (24)

ξ =
∫ η=2π

η=0
2ω(η) cos ηdη. (25)

The value of ξ depends on the population function ω(η), and
it is readily seen that −2 � ξ � 2, whose range is the same
as that of 2 cos η in Eq. (18). The ACF in Eq. (24) is thus
equivalent to Eq. (18) and it is hence sufficient to simply show
the ACFs given by Eq. (18) in Fig. 7 considering 2 cos η as ξ .

The population function ω(η) to the
|1�u; η, R → ∞〉 |χ e

0 0〉 state at given Euler angles (φ,
θ , χ = 0), which determine the molecular frame against
the space-fixed frame, is obtained through calculating
the probability density for the excitation from the
|X 1�+

g ; R〉 |χ e
0 0〉 state to the |1�u; η, R〉 |χ e

0 0〉 state at the
Euler angles (φ, θ , χ = 0) and at the equilibrium internuclear
distance in the X 1�+

g state of H2 and D2. The excitation
probability density has been calculated to be

(1/π ) sin2 (η/2)[3/(8π )] sin2 θ, (26)
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and ω(η) is hence obtained as

ω(η) = (1/π ) sin2 (η/2). (27)

The distribution of the dissociation direction for � states
[3/(8π )] sin2 θ mentioned in the present subsection and
Sec. IV A is derived from the excitation probability density in
Eq. (26) considering the axial recoil approximation. Substitut-
ing Eq. (27) into Eq. (25) we obtain ξ = −1. The ACF for ξ =
−1 (the blue solid line in Fig. 7) is not in agreement with the
experimental ACFs, and the calculated ACFs for other values
of ξ are also not in agreement with the experimental ones.
It hence turns out from Fig. 7 that any atom-pair ensemble
expressed by ρa[1�u; ω(η)] in Eq. (22) does not reproduce
the experimental ACFs for H2 and D2.

Jänkälä et al. [5] calculated the angle-differential cross
section for the emission of a pair of fluorescence photons
in photodissociation of a diatomic molecule, which gives
the ACF of a pair of fluorescence photons. They calculated
the three transition dipole moments for the absorption of a
linearly polarized incident photon, the emission of the first
fluorescence photon by a pair of fragment atoms, and the
emission of the second fluorescence photon. The products
of the three dipole moments were summed over the possible
excitation and emission pathways. The absolute square of the
summation gives the angle-differential cross section. They
applied their method to the calculation of the ACF of a pair
of Lyman-α photons in process (1), and the ACF is shown
in Fig. 7 with the gray solid line, which again dose not
reproduce the experimental ACFs for H2 and D2 if their ACF
is convoluted with the present angular resolution [11].

In the end we conclude that the 2p atom pairs in process
(1) are not in the Q2

1�u(1) state at infinite internuclear
distance, while the H∗∗

2 (D∗∗
2 ) molecules in process (1) are

in the Q2
1�u(1) state around the Franck-Condon region as

mentioned in Sec. I.

C. Role of the nonadiabatic coupling

The conclusion in the preceding subsection suggests that
the inclusion of the nonadiabatic couplings between the pre-
cursor Q2

1�u(1) state in process (1) and any state in Table I
may lead to discovering the calculated ACF in agreement
with the experimental ACFs in Fig. 5. As for nonadiabatic
transitions from the Q2

1�u(1) state to any state in Table I,
only the nonadiabatic transition to the Q2

1�u(2) state occurs
under the framework mentioned at the beginning of Sec. IV.
The nonadiabatic transition to the Q2

1�−
u (1) state from the

Q2
1�u(1) state, for example, is unlikely to occur because

the transition is brought about by the rotational coupling
neglected in the present framework and the potential-energy
curve of the Q2

1�u(1) state does not cross that of the
Q2

1�−
u (1) state [24,25]. The consideration of the nonadia-

batic transition from the Q2
1�u(1) state to the Q2

1�u(2)
state, a transition which was found to occur at ∼5.6a0 through
the radial coupling [15,16,30], does not change the calculated
ACFs in Fig. 7 because the Q2

1�u(2) state correlates with the
2s + 2p dissociation limit as shown in Table I. The inclusion
of the nonadiabatic transition does not lead to the identifica-
tion of the 2p atom-pair states in process (1).

We then discuss the superposition of the Q2
1�u(1) state

and Q2
1�u(2) state as in the singly excited states of H2

[31–33]. The superposition state, if any, emits the pair of the
Lyman-α photons in the |�; 1�u, η〉 state in Eq. (16) and
does not hence reproduce the experimental ACFs in Fig. 5.
The superpositions of the Q2

1�u(1) state with other singlet-
ungerade states in Table I, the Q2

1�−
u (1) state and Q2

1�+
u (1)

state, are unlikely to occur under the present framework
where the nonadiabatic rotational coupling is neglected. In
conclusion of this subsection the inclusion of the nonadiabatic
couplings does not lead to the identification of the 2p atom-
pair states in process (1).

D. Superposition of the Q2
1�u(1) state with a triplet

state due to the spin-orbit coupling

We reconsider item (3) in the framework mentioned at
the beginning of Sec. IV based on the discussion in Secs.
IV B and IV C. It is a good approximation to neglect the
spin-orbit coupling around the Franck-Condon region for H2

and D2 because the matrix elements of the coupling are
smaller than 1 cm−1 = 0.124 meV, as seen on p. 245 of
Ref. [13] and in Ref. [34], and the difference between the
potential-energy curves is, in general, in the order of eV. The
transition between a singlet state and a triplet state in Table I
is unlikely around the Franck-Condon region as a result. The
situation is, however, much different at infinite internuclear
distance as seen below. All the potential-energy curves of
the 22 states in Table I are degenerate at infinite internuclear
distance, and it hence becomes not a good approximation to
neglect the spin-orbit coupling there even for H2 and D2. We
consequently use the revised framework where the items (1)
and (2) remain unaltered but the item (3) is replaced with the
item (3)′ below:

(3)′ The spin-orbit coupling is taken into account at infinite
internuclear distance while it still remains neglected around
the Franck-Condon region.

The precursor Q2
1�u(1) state in process (1) is a Lz eigen-

state and is simultaneously a 1u state as a Jz eigenstate, where
Jz is the projection of the electron total-angular momentum
on the z axis in the unit of h̄. There are nine 1u states arising
from the n = 2 + n = 2 limit in total based on the building-up
principle mentioned on pp. 315–322 in Ref. [21]. In Table I,
the 1u states resulting from separate Lz eigenstates are shown
right to the corresponding Lz eigenstates, being enclosed by
angled brackets. Those 1u states in Table I are eigenstates of
Ĥ ele around the Franck-Condon region to a good approxima-
tion, where Ĥ ele is the electronic Hamiltonian of H2 or D2

including the spin-orbit coupling ĤSO, since ĤSO is neglected
around the Franck-Condon region as mentioned above. They
are not, however, eigenstates of Ĥ ele at infinite internuclear
distance as they are since, as mentioned, it becomes not a good
approximation to neglect the spin-orbit coupling there. The
proper 1u states at infinite internuclear distance are expressed
as the superpositions of the nine 1u states in Table I, and
the nine-state problem has to be solved to obtain the nine
superpositions, a problem which is difficult to solve. We hence
solve a two-state problem as an approximation of the nine-
state problem as mentioned below.
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FIG. 8. Potential-energy curves of the Q2
3�+

u (2), Q2
3�u(2),

Q2
1�u(1), Q2

3�u(1), Q2
3�+

u (3), Q2
3�u(1), Q2

1�u(2),
Q2

3�+
u (1), and Q2

3�+
u (4) states of H2 in Table I in the van

der Waals regime [28], with each state having one 1u component.
The spin-orbit coupling was not considered in the calculation. Green
curves: 3�+

u states; orange curves: 3�u states; blue curves: 1�u

states; black curves: 3�u states. The leading terms in the 1�u(1)
and 3�+

u (2) states are proportional to 1/R6, those in the 3�u(2) and
3�u(1) states are proportional to 1/R5, and those in other states are
proportional to 1/R3 as shown in the figure, where R is internuclear
distance.

In Fig. 8 are shown the potential-energy curves of the nine
Lz eigenstates having the 1u components in Table I in the van
der Waals regime without considering the spin-orbit coupling
[28]. We seek a 1u state whose potential-energy curve is
much closer to that of the Q2

1�u(1) state among the nine
Lz eigenstates because it is expected from the context of the
perturbation theory that states far away from the Q2

1�u(1)
state are not superposed with the Q2

1�u(1) state quite as
much. It is clearly seen that only the Q2

3�+
u (2) state is

such a state. It hence seems to be a good approximation to
solve the two-state problem between the Q2

1�u(1) [1u] state
and the Q2

3�+
u (2) [1u] state instead of solving the nine-state

problem (those 1u states satisfy the selection rules for matrix
elements of ĤSO [35]). In fact we solve the two-state problems
between the Jz = ±1 component of the Q2

1�u(1) state and
the Jz = ±1 component of the Q2

3�+
u (2) state (double-sign

corresponds). The low-energy solution is taken in each two-
state problem because the Q2

1�u(1) curve is lower than the
Q2

3�+
u (2) curve as seen in Fig. 8. In solving the two-state

problem, a strong-coupling approximation is used for simplic-
ity, in which approximation the magnitude of the difference
of the diagonal matrix elements in the 2 × 2 matrix of Ĥ ele

is neglected against the magnitude of the off-diagonal matrix
elements. We then take a pair of superpositions of the low-
energy solution with Jz = 1 and that with Jz = −1 with the
relative phase η (0 � η � 2π ) to obtain a pair of 1u states;
one is symmetric and the other is antisymmetric with respect
to the permutation operator of the two identical nuclei a and
b:

|1u; η, ηSO, R → ∞〉 = (1/
√

2) |3�+
u ; R → ∞〉 [

(1/
√

2)
(∣∣χ e

1 1

〉 − eiη
∣∣χ e

1 −1

〉)] − (1/
√

2)e−iηSO |1�u; η, R → ∞〉 ∣∣χ e
0 0

〉
, (28)

|3�+
u ; R → ∞〉 = (1/

√
6)

{ − [ ∣∣2pa
0(1)

〉 ∣∣2pb
0(2)

〉 − ∣∣2pa
0(2)

〉 ∣∣2pb
0(1)

〉 ] + [ ∣∣2pa
+1(1)

〉 ∣∣2pb
−1(2)

〉 − ∣∣2pa
+1(2)

〉 ∣∣2pb
−1(1)

〉
+ ∣∣2pa

−1(1)
〉 ∣∣2pb

+1(2)
〉 − ∣∣2pa

−1(2)
〉 ∣∣2pb

+1(1)
〉 ]}

, (29)

∣∣χ e
1 1

〉 = |α(1)〉 |α(2)〉 , (30)

∣∣χ e
1 −1

〉 = |β(1)〉 |β(2)〉 , (31)

where ηSO (0 � ηSO � 2π ) is the phase of the matrix element,

〈3�+
u ; R → ∞| 〈χ e

1 1

∣∣ ĤSO(R → ∞)
∣∣1�

Lz=+1
u ; R → ∞〉 ∣∣χ e

0 0

〉
, (32)

and the |1�u; η, R → ∞〉 |χ e
0 0〉 state is given in Eqs. (5)–(7). We also use the result of Ref. [28] in addition to our calculation

to obtain the expression of the |3�+
u ; R → ∞〉 state in Eq. (29). The |1u; η, ηSO, R → ∞〉 and |1u; η + π, ηSO, R → ∞〉 states

compose a set of eigenstates for the permutation operator of the two identical nuclei a and b, and it is hence sufficient to simply
calculate the ACF for the atom pairs in the |1u; η, ηSO, R → ∞〉 state in Eq. (28) (0 � η � 2π ).

It is found from Eqs. (28)–(31) and Eqs. (8)–(13) that the |1u; η, ηSO, R → ∞〉 |vac〉 state is evolved in time as follows:

|1u; η, ηSO, R → ∞〉 |vac〉 t→∞−−−→ |�; η, ηSO〉 = (1/
√

2) |�; 3�+
u 〉 |b3�+

u ; R → ∞〉 [
(1/

√
2)

( ∣∣χ e
1 1

〉 − eiη
∣∣χ e

1 −1

〉 )]
− (1/

√
2)e−iηSO |�; 1�u, η〉 |X 1�+

g ; R → ∞〉 ∣∣χ e
0 0

〉
, (33)

where the photon-pair state |�; 3�+
u 〉 is

|�; 3�+
u 〉 = (1/

√
3)(− |φa〉 |φb〉 + |γa〉 |ρb〉 + |ρa〉 |γb〉),

(34)

and the spatial part of the final atom-pair state
|b3�+

u ; R → ∞〉 is

|b3�+
u ; R → ∞〉

= (1/

√
2)[|1sa(1)〉 |1sb(2)〉 − |1sa(2)〉 |1sb(1)〉]. (35)
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FIG. 9. Comparison between the experimental ACFs of a pair of Lyman-α photons for H2 (©) and D2 (♦) in Fig. 5 and the calculated
ACF of a pair of Lyman-α photons emitted by the 2p atom pairs in the superposition of the Q2

1�u(1) state and the Q2
3�+

u (2) state at infinite
internuclear distance (see Sec. IV D for details). The experimental ACFs in Fig. 5 multiplied by 1.15 are shown here since, as mentioned
in Sec. III, those values in Fig. 5 have a small uncertainty of a constant multiple in the range 1–1.2. The left panel shows the experimental
and theoretical ACFs for the opposite arrangement (a) in Fig. 3, and the right panel shows those for the nonopposite arrangements (b) and
(c) because the theoretical ACF for the arrangement (b) is the same as that for the arrangement (c).

The photon-pair state |�; 1�u, η〉, the spatial part of the other
final atom-pair state |X 1�+

g ; R → ∞〉, and its spin part |χ e
0 0〉

are given in Eqs. (16), (17), and (6), respectively. In Eq. (33),
the state of the total system |�; η, ηSO〉 is not separated to the
state of the atom pair and that of the photon pair, and we
consequently calculate the two-photon correlation function
G(2)(rc, tc, rd , td ) for the state |�; η, ηSO〉 to obtain the ACF
for the atom pairs in the |1u; η, ηSO, R → ∞〉 state in Eq. (28).

The ensemble of the atom pairs is, in fact, likely to be a
mixed ensemble expressed by the density operator,

ρa(1u; ηSO) =
∫ η=2π

η=0
dηω(η)

× | 1u; η, ηSO, R → ∞〉 〈1u; η, ηSO, R → ∞| ,
(36)

where the population function ω(η) to the
|1�u; η, R → ∞〉 |χ e

0 0〉 state given by Eq. (27) is used as
is for the population function to the |1u; η, ηSO, R → ∞〉 state
since the precursor state of the 2p atom pairs in process (1)
is the Q2

1�u(1) state and the contribution of the Q2
3�+

u (2)
state is negligible in the Franck-Condon region. The ACF
for the atom pairs in the |1u; η, ηSO, R → ∞〉 state is thus
averaged with the population function, (1/π ) sin2 (η/2),
as well as the distribution of the dissociation direction,
[3/(8π )] sin2 θ , which is again based on the fact that the
precursor state of the 2p atom pairs in process (1) is the
Q2

1�u(1) state and the contribution of the Q2
3�+

u (2) state is
negligible in the Franck-Condon region. The ACF obtained in
this way for the density operator of the atom pairs, ρa(1u; ηSO)
in Eq. (36), turns out to be

F (�c,�c,�d ,�d ; 1u) = 9

143 360π2

[
2926

3
− 70

3
(cos 2�c + cos 2�d ) + 21[cos 2(�c − �d ) + cos 2(�c + �d )]

+ 112

3
cos(�c − �d )[cos 2(�c − �d ) − cos 2(�c + �d )]

+ 49

3
cos 2(�c − �d )[2 − 2 cos 2�c − 2 cos 2�d + cos 2(�c − �d ) + cos 2(�c + �d )]

]
, (37)

and this ACF is compared with the experimental ACFs of H2

(©) and D2 (♦) in Fig. 9 without being convoluted with the
present angular resolution. The reason not to be convoluted
is that the anisotropy in the theoretical ACF is so weak that
the influence of the convolution seems just a little. The left

panel in the figure shows the experimental and theoretical
ACFs for the opposite arrangement (a) in Fig. 3, and the right
panel shows those for the nonopposite arrangements (b) and
(c) because the theoretical ACF, F (�c,�c,�d ,�d ; 1u), for
the arrangement (b) is the same as that for the arrangement
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(c). The ACF in Eq. (37) is independent of the phase ηSO,
and it is not hence necessary to calculate the matrix element
in Eq. (32). We note that the ACF in Eq. (37) has been
normalized according to Eq. (21) and involves no fitting
parameter. The experimental ACFs in Fig. 5 are multiplied
by 1.15 and the resulting ACFs are shown in Fig. 9 since, as
mentioned in Sec. III, the absolute values of the experimental

ACFs have small uncertainty of a constant multiple in the
range 1–1.2. It turns out from Fig. 9 that the calculated ACF
(the solid line) well reproduces the experimental ACFs of H2

and D2 multiplied by 1.15. In conclusion the 2p atom pairs
in process (1) are approximately expressed by the density
operator ρa(1u; ηSO) in Eq. (36), which is explicitly written
below,

ρa(1u; ηSO) =
∫ η=2π

η=0
dη(1/π ) sin2 (η/2) |1u; η, ηSO, R → ∞〉 〈1u; η, ηSO, R → ∞| , (38)

|1u; η, ηSO, R → ∞〉 = (1/
√

2)
(
(1/

√
6)

{−[ ∣∣2pa
0(1)

〉 ∣∣2pb
0(2)

〉 − ∣∣2pa
0(2)

〉 ∣∣2pb
0(1)

〉 ]

+ [ ∣∣2pa
+1(1)

〉 ∣∣2pb
−1(2)

〉 − ∣∣2pa
+1(2)

〉 ∣∣2pb
−1(1)

〉 + ∣∣2pa
−1(1)

〉 ∣∣2pb
+1(2)

〉 − ∣∣2pa
−1(2)

〉 ∣∣2pb
+1(1)

〉 ]}

⊗ {(1/
√

2)[|α(1)〉 |α(2)〉 − eiη |β(1)〉 |β(2)〉]})

−(1/
√

2)e−iηSO
(
[1/(2

√
2)]

× {[ ∣∣2pa
+1(1)

〉 ∣∣2pb
0(2)

〉 + ∣∣2pa
+1(2)

〉 ∣∣2pb
0(1)

〉 − ∣∣2pa
0(1)

〉 ∣∣2pb
+1(2)

〉 − ∣∣2pa
0(2)

〉 ∣∣2pb
+1(1)

〉 ]
+ eiη

[ ∣∣2pa
−1(1)

〉 ∣∣2pb
0(2)

〉 + ∣∣2pa
−1(2)

〉 ∣∣2pb
0(1)

〉 − ∣∣2pa
0(1)

〉 ∣∣2pb
−1(2)

〉 − ∣∣2pa
0(2)

〉 ∣∣2pb
−1(1)

〉 ]}
⊗{(1/

√
2)[|α(1)〉 |β(2)〉 − |β(1)〉 |α(2)〉]}), (39)

and the atom-pair state |1u; η, ηSO, R → ∞〉 is entangled be-
cause the state of the electron 1 is not definite and the state
of the electron 2 is not definite as well, e.g., the projection of
the orbital-angular momentum of the electron 1 on the z axis
is not definite and that of the electron 2 is not definite as well.
We stress that the entanglement in the 2p atom pairs originates
from the 1u symmetry properties, which are invariant during
the dissociation, and the important role of the 1u symmetry
properties in generating the entanglement is due to the spin-
orbit coupling around infinite internuclear distance. An entan-
gled pair of two hydrogen atoms is spontaneously produced
through the breakup of a hydrogen molecule because of the
invariant symmetry properties.

V. CONCLUSION

We have measured the angular correlation functions
(ACFs) of a pair of Lyman-α photons following the photoex-
citation to the Q2

1�u(1) state of H2 and D2 with linearly
polarized incident light at a 33.66-eV photon energy [see
process (1)]. The two photon detectors are placed on the plane
perpendicular to the incident light beam. The ACFs for H2

and D2 are the same, which shows that the electronic state
dominates the state of a pair of two Lyman-α photons and the
nuclear motion gives just a small effect. We have identified the
electronic state of a pair of 2p atoms produced in process (1)
in a way that we search for the state of a pair of 2p atoms
that is reasonably accessed from the precursor Q2

1�u(1)
state in process (1) and gives the ACF in agreement with the
experimental ACFs.

The Q2
1�u(1) state at infinite internuclear distance

has turned out not to reproduce the experimental ACFs.
We then take account of the nonadiabatic couplings of
the Q2

1�u(1) state with the Q2 states correlating with

the n = 2 + n = 2 dissociation limit, but the consider-
ation of the nonadiabatic couplings does not lead to
the identification of the 2p atom-pair state in process
(1).

It has been found that the spin-orbit coupling plays a
significant role at infinite internuclear distance even for H2

and D2. Taking the spin-orbit coupling into account and
using the two-state approximation and the strong-coupling
approximation, we have found out that the 1u state shown
in Eqs. (28) and (39), which is the superposition of the
Q2

1�u(1) state and the Q2
3�+

u (2) state due to the spin-orbit
coupling, well reproduces the experimental ACFs, and have
hence concluded that the 2p atom pairs in process (1) are
expressed by the density operator in Eqs. (38) and (39) and
the 2p atom pairs are entangled. We also draw a picture of
process (1) that hydrogen molecules are photoexcited to the
Q2

1�u(1) state in the Franck-Condon region and then the
Q2

1�u(1) state comes to superpose with the Q2
3�+

u (2) state
as the internuclear distance increases to infinity. The super-
position is brought about by the spin-orbit coupling, which
is effective around infinite internuclear distance because the
potential-energy curves of those states approach each other
(see Fig. 8), but is negligibly small around the Franck-Condon
region because the curves are apart from each other [24].
The entanglement in the 2p atom pairs originates from the
1u symmetry properties of the two-electron system bound by
two nuclei, which symmetry properties are invariant during
the dissociation, and the important role of the 1u symmetry
properties in generating the entanglement is due to the spin-
orbit coupling effective around infinite internuclear distance.
In general a breakup of a composite quantum system is likely
to result in the spontaneous production of the entangled sys-
tem of constituents when the composite system has invariant
symmetry properties.
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