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Propagation of ultrashort resonant ionizing laser pulses in rubidium vapor
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We investigate the propagation of ultrashort laser pulses in atomic rubidium vapor. The pulses are intensive
enough to ionize the atoms and are directly resonant with the 780-nm D2 line. We derive a relatively simple
theory for computing the nonlinear optical response of atoms and investigate the competing effects of strong
resonant nonlinearity and ionization in the medium using computer simulations. A nonlinear self-channeling of
pulse energy is found to produce a continuous plasma channel with complete ionization. We evaluate the length,
width, and homogeneity of the resulting plasma channel for various values of pulse energy and initial focusing
to identify regimes optimal for applications in plasma-wave accelerator devices such as that being built by the
AWAKE collaboration at CERN. Similarities and differences with laser pulse filamentation in atmospheric gases
are discussed.
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I. INTRODUCTION

The propagation of femtosecond laser pulses in various op-
tical media is an active field of study with many applications.
In particular, pulses powerful enough to ionize atoms and
molecules of gases they propagate through have been studied
intensely in the past two to three decades. Their propagation
is governed by the dynamical competition between optical
nonlinearities of various orders, intensity clamping due to
multiphoton ionization and refractive index changes due to
plasma generation. The competition between self-focusing
and de-focusing effects lead to the formation of filaments, i.e.,
long, extended domains along the pulse propagation direction
with strong localization in the transverse plane where gas is
ionized. The precise mechanisms through which these plasma
channels are created and light filaments maintained have been
investigated extensively both theoretically and experimentally
[1–5].

A very similar problem arose recently in the context of
the Advanced Proton Driven Plasma Wakefield Acceleration
Experiment (AWAKE) at CERN. AWAKE is a proton-driven
plasma wakefield acceleration experiment, the first of its kind,
which uses high-energy proton bunches to drive wakefields
in a plasma for electron acceleration [6–8]. Central to the
device is a 10-m-long rubidium vapor cell where the proton
bunch interacts with the plasma serving as an energy exchange
medium between the protons and the injected electrons. Under
appropriate conditions, the self-modulation instability breaks
up the proton bunch which then resonantly drives the plasma
wakefields. Important factors for success are high plasma
homogeneity as well as a quasi-instantaneous plasma creation
for seeding the instability during the time the proton bunch is
in the cell. This is achieved by ionizing the rubidium vapor
in the temperature controlled cell by a powerful femtosecond
laser pulse propagating simultaneously with the proton bunch.
The problem is at first sight almost identical to filamentation
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studies in atmospheric gases as the formation of a long plasma
channel is required by a powerful, ultrashort laser pulse.

But there are also some fundamental differences. First of
all, the 780-nm AWAKE laser is directly resonant with the
D2 line of rubidium, the transition between the 5S1/2 ground
state to the 5P3/2 excited state and very close to resonance with
the 776-nm 5P3/2 → 5D5/2, 5D3/2 transitions. This means that
there is very strong nonlinear optical interaction between the
pulse and the vapor at arbitrarily low intensities. Because this
nonlinearity is much stronger than the ones given by the usual
nonresonant nonlinear optical coefficients, we get a sizable
response from the medium even though the initial vapor
density is 1014–1015 1/cm3, orders of magnitude less dense
than atmospheric gases. The effect of such a single-photon
resonance is completely missing from usual filamentation
studies, though the effects of resonant two- and three-photon
transitions on the process have been investigated recently
[9,10]. Second, high plasma homogeneity is required which
must be achieved through 100% ionization of the initially
homogeneous vapor—this means that plasma density gradi-
ents will absent everywhere but the boundary of the plasma
channel. Third, contrary to usual cases of laser filamentation
where the medium is effectively transparent until the intensity
is high enough to ionize the gas, here we have a resonantly
absorbing medium until all the atoms have been completely
ionized. At this point, however, the medium is rendered almost
transparent. All this means that we have a hybrid system—
around the pulse edge, where intensity is small, we may
expect phenomena familiar from resonant nonlinear optics
[11–14]. On the other hand, around the pulse center where
intensity is large we may expect processes similar to the ones
encountered in filamentation studies [2,3,5,15].

In order to investigate the propagation of ultrashort, ion-
izing laser pulses resonant with a transition from the atomic
ground state in rubidium vapor, we develop a relatively sim-
ple model for the nonlinear optical response of the atoms
and perform computer simulations to investigate propagation
phenomena. We analyze the competing dynamics of self-
focusing, nonlinear absorption and diffraction that govern the
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reshaping of the pulse in the medium and the geometry of
the plasma channel left behind after the interaction. Our aim
is to identify the requirements for the formation of a clean,
continuous plasma channel with constant plasma density
whose transverse dimensions are sufficient for use in plasma
wakefield acceleration devices.

II. THEORY

A. Basic approach

We set out to calculate the long-range (∼10 m) propagation
of 780 nm wavelength, ∼100-fs laser pulses in Rb vapor. The
pulses are intense enough to ionize via multiphoton or tunnel
ionization directly from the ground state (I ∼ TW/cm2),
but are also resonant with the transition from the atomic
ground state to the first excited state. The vapor density is
∼1014–1015 1/cm3, far below the atmospheric densities usu-
ally considered in filamentation studies. In order to calculate
pulse propagation, we need a wave equation for the light
field and couple it with the atomic response functions. The
transient atomic response is expected to be dominated by the
single photon resonances, so the traditional approach of using
nonlinear susceptibility functions with various powers of the
intensity does not work. The classical formulas for anomalous
dispersion in the vicinity of an absorption line are also useless
at these timescales; we expect that Rabi-like oscillations will
yield the atomic response, augmented by ionization losses. Ab
initio methods that calculate the evolution of the electron wave
function in space from a bound state to continuum states are
theoretically sound and can treat this situation naturally, but
are computationally too costly for using to calculate long-
range propagation and parameter scans. To make extended
calculations feasible, we consider an axially symmetric sys-
tem; physical quantities are assumed to depend only on the r
coordinate in the transverse plane.

B. Model equations

We assume that the laser field is linearly polarized and
employ an envelope description of both the electric
field E and material response P of the rubidium
vapor, separating the central frequency of the laser:
E (�r, z, t ) = 1

2E (�r, z, t ) exp(ik0z − iω0t ) + c.c. and P(�r, z, t )
= 1

2P (�r, z, t ) exp(ik0z − iω0t ) + c.c.. Here z is the pro-
pagation direction, �r is the position in the plane transverse
to it, and ω0 = k0c the central frequency of the laser. The
medium response is entirely contained in the polarization
function P(�r, z, t ); linear and nonlinear parts are not
separated explicitly. Using the standard transformation to
a moving reference frame ξ = z, τ = t − z/c, employing the
paraxial approximation for propagation along z, rewriting
the wave equation for the envelopes in frequency space
Ẽ (�r, ξ , ω) = F{E (�r, ξ , τ )}, P̃ (�r, ξ , ω) = F{P (�r, ξ , τ )}
(where F{.} denotes the time-Fourier transform), and finally
employing the slowly evolving wave approximation (SEWA)
[16,17] we arrive at the wave equation:

∇2
⊥Ẽ (�r, ξ , ω) + i2(k0 + k)∂ξ Ẽ (�r, ξ , ω)

= −(k0 + k)2P̃ (�r, ξ , ω)/ε0. (1)
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FIG. 1. Electronic levels of the Rb atom that are included in
the model and their numbering. Three excited states are resonantly
accessible from the ground state; ionization leads to level loss from
each of the levels.

Here k, ω are the wave vector and the angular frequency of
the various components offset from k0 and ω0, k = ω/c, and
ε0 is the vacuum permittivity. The SEWA approximation that
we use for deriving a first-order wave equation has been de-
veloped for treating the propagation of ultrashort (few-cycle)
pulses and is much less restrictive than the slowly varying
envelope approximation (SVEA) widely used in resonant
nonlinear optics. In particular, it is still valid if the pulse
develops a sharp leading edge during propagation.

Atomic rubidium has a single valence electron outside a
closed shell and an atomic transition from the 5S1/2 ground
state to the 5P3/2 first excited state at 780 nm (the D2 line),
precisely the same as the central wavelength of the Ti:sapphire
laser used at the AWAKE experiment [7]. Furthermore, there
are two transitions from the first excited state to higher
atomic states still well within the bandwidth of the laser: the
5P3/2 → 5D3/2 transition at 775.9 nm and the 5P3/2 → 5D5/2

one at 775.8 nm [18,19] (see Fig. 1). The transition from the
ground state to 5P1/2 at 794.8 nm is well out of resonance
for this setup, so there are three excited states resonantly
accessible from the ground state because of the coupling to the
laser light. A “minimal” model of the atom used to calculate
the optical response that is lightweight enough to be employed
in extended propagation calculations must therefore include
these four states as well as the process of photoionization from
theses states.

We start by separating the material response into parts
describing atomic polarization due to resonant transitions
between bound states and an absorption term due to ionization
processes: P = Patomic + Pionization. We write the Schrödinger
equation for the probability amplitudes of the four quan-
tum states in the spirit of resonant nonlinear optics. We
take the quantization axis of the atomic angular momentum
parallel to the direction of polarization, so the magnetic
quantum number m is conserved. Assuming the initial state
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of the atom to be in the ground state, without any con-
straint on generality we may use the set of atomic quantum
states {|1〉 = |5S1/2, m = 1/2〉, |2〉 = |5P3/2, m = 1/2〉, |3〉 =
|5D3/2, m = 1/2〉, |4〉 = |5S5/2, m = 1/2〉} as an expansion
basis for the atomic wave function with time-dependent ex-
pansion coefficients α j (t ) (the other linkage pattern with m =
−1/2 is symmetrical to this one). Note that this separation is
possible because radiative transitions that could yield transi-
tions between states of different m are completely negligible
on the ∼100-fs timescale. The wave function is thus written
as

|ψ (t )〉 =
4∑

j=1

α j (t )| j〉. (2)

Next we introduce the transformed probability amplitudes
a j (t ) by applying the phase transformation with respect to ω0

and ω2 as

a1(t ) = α1(t )ei(ω2−ω0 )t ,

a2(t ) = α2(t )eiω2t ,

a3(t ) = α3(t )ei(ω2+ω0 )t ,

a4(t ) = α4(t )ei(ω2+ω0 )t . (3)

Here ω2 is the energy of the first excited state |2〉 divided by
h̄ and the transformation amounts choosing this energy as a
reference and transforming to a reference frame rotating with
the optical field. Using the Hamiltonian,

Ĥ =
4∑

j=1

h̄ω j | j〉〈 j| − d̂E , (4)

we obtain the equations for the probability amplitudes in the
moving frame:

∂τ a1 = −i	21a1 + i

2

∗D21a2 − �1

2
a1,

∂τ a2 = i

2

(

D21a1 + 
∗D32a3 + 
∗D42a4

) − �2

2
a2,

∂τ a3 = i	32a3 + i

2

D32a2 − �3

2
a3,

∂τ a4 = i	42a4 + i

2

D42a2 − �4

2
a4. (5)

Here we have introduced the notation 	kl = ω0 − (ωk − ωl )
for the detuning of the central laser frequency from the
relevant atomic transitions and used the rotating wave approx-
imation (RWA). We have also introduced the Rabi frequency
for a unit dipole 
(τ ) = E (τ )ea0/h̄ (e is the elementary
charge and a0 the Bohr radius) and written the dipole matrix
elements in units of ea0 as well, 〈k|d̂|l〉 = Dklea0. �k are
phenomenological loss terms for the level probabilities that
describe photoionization and we have suppressed the explicit
space and time dependence of ak, �k , and 
 for brevity.
The material parameters ωk and Dkl are obtained from the
literature [18–20]; their numerical values are quoted in the
Appendix. The intensity-dependent photoionization rates �k

for the two lower atomic levels |1〉 and |2〉are obtained from
the so-called PPT formulas [21–23] that describe both mul-
tiphoton ionization and tunnel ionization in a unified way.

For the two higher lying states |3〉, |4〉 an experimentally
measured photoionization cross section is used as detailed in
the Appendix. Solving Eq. (5) at any point in space allows
us to calculate the atomic part of the polarization Patomic =
〈ψ |d̂|ψ〉 for insertion into the wave equation.

The wave equation in frequency space Eq. (1) is written in
terms of 
̃(�r, ξ , ω):

∂ξ 
̃ = i

2

c

ω0 + ω
∇2

⊥
̃ + iκ1
ω0 + ω

c
p̃ − κ2Q̃. (6)

Here the first term describes diffraction, and the second term
is due to atomic polarization due to transitions between bound
states:

p̃ = F{p(�r, ξ , τ )} = F{D21a∗
1a2 + D23a∗

2a3 + D24a∗
2a4}. (7)

The third term corresponds to Pionization and is purely an energy
loss term derived from the requirement that the laser pulse
should lose an appropriate number times the energy of a
photon each time an atom is ionized:

Q̃ = F{Q(�r, ξ , τ )} = F

⎧⎨
⎩

∑
j

n j
� j |a j |2


∗

⎫⎬
⎭. (8)

The numbers n j are the photon numbers associated with the
ionization process from each of the atomic states. Note that
they can be intensity-dependent nonintegers as the ionization
rates may contain contributions from higher photon-number
processes [see Eq. (A4)], though they are practically always
close to the minimal number of required photons in our case.
The constants appearing in Eq. (6) are given by

κ1 = N e2a2
0

h̄ε0
, κ2 = η0ω0N e2a2

0

h̄
, (9)

where N is the vapor density and η0 is the impedance of
vacuum. Equations (5) and (6) together with the relations (7)
and (8) constitute the set of equations we have to solve for the
investigation of our problem.

III. PROPAGATION CALCULATIONS

The equations were solved numerically assuming an ax-
ially symmetric system, i.e., all quantities were taken to
depend on the propagation direction z and the transverse
radial coordinate r. The incident pulse was assumed to be a
Gaussian beam with the waist located at z = 0 at the start
of the interaction, the initial beam diameter d [intensity full
width at half maximum (FWHM) width] and pulse energy
E0 being the two parameters varied during the parameter
scans. The temporal shape of the incident pulse envelope was
a hyperbolic secant sech(t/τp) with τp = 85.0944 fs which
translates to a pulse duration of 150 fs. N = 2 × 1014/cm3

vapor density was used in all calculations. Equation (5) were
solved with a fourth-order Dormand-Prince algorithm at each
step of the numerical integration of Eq. (6). A split-step
operator scheme was used for the latter equation.

A. Pulse self-focusing and self-channeling

Pulse interaction with the rubidium vapor was first inves-
tigated for low energy pulses. With a beam waist diameter
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FIG. 2. On-axis radiant fluence F0(z) in mJ/cm2 as a function of
propagation distance z for six values of the initial pulse energy E0.

d = 1.5 mm and pulse energies of E0 = 10−3–10−2 mJ, the
initial on-axis peak intensity is I ≈ 109 W/cm2, too small
to ionize the atoms during the pulse. The spatial evolution
of the on-axis radiant fluence F0(z) = ∫

I (r = 0, z, t )dt with
propagation distance z has been plotted for several values of
E0 in Fig. 2. Traces of self-focusing are visible even for E0 =
0.003 mJ as a marked deviation from an exponentially de-
creasing absorption curve [Fig. 2(a), blue curve]—absorption
clearly still dominates though. However, for E0 = 0.006 mJ,
we already have a pulse focused around z ≈ 0.15 m with the
peak on-axis fluence over an order of magnitude greater than
its initial (z = 0) value, despite absorption [Fig. 2(b), blue
curve]. The overall behavior is very similar to that found for
laser propagation in a medium of resonant two-level atoms
[11], where the nonlinear refractive index and saturable ab-
sorption were both found to contribute to self-focusing. (Note,
however, that those results were derived for CW beams and
ionization completely absent).

The onset of self-focusing here is considerably different
from that caused by the classical intensity-dependent refrac-
tive index n2I in transparent media [24,25]. First, the required
pulse power is orders of magnitude smaller as the 0.006-mJ
pulse plotted in Fig. 2(b) corresponds to P = 40 MW. Com-
pared with the GW power required in atmospheric density
gases [2] and noting that vapor density in our case is five
orders of magnitude smaller, it is clear that the nonlinearity
in this system is about 107 times larger. Second, the location
of the nonlinear focus increases with increasing pulse energy
(or power) which is different from the scalings (P/Pcr )−1/2

and (P/Pcr )−1 observed for nonresonant pulses in various
power domains [26]. Third, not only the overall pulse power,
but also peak intensity and radiant fluence (and hence beam
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FIG. 3. The propagation of a laser pulse with E0 = 3.5 mJ in Rb
vapor. The horizontal axis of all four panels is z, the propagation
distance, with identical scaling. (a) Contour plot of F (r, z) [mJ/cm2].
(b) On-axis fluence F0(z). (c) Contour plot of the final ionization
probability. (d) Dotted blue line, half-energy radius R1/2(z) of the
beam; solid red line, the boundary of 98% ionization probability.

waist diameter) are important parameters in this system as the
nonlinearity competes with both diffraction and absorption
and it is easily saturated as atoms are lost from interaction
via ionization. Indeed, for the E0 = 0.01 mJ green curve in
Fig. 2(b), ionization probability is already close to 80% at the
center of the nonlinear focus.

Calculations for higher pulse energies yield interesting
solutions that at first sight bear considerable resemblance to
filamentation phenomena in air when self-focusing leads to
plasma generation. A typical scenario is shown in Fig. 3. The
spatial evolution of the radiant fluence is shown in Fig. 3(a),
and its on-axis value vs propagation distance in Fig. 3(b).
The plots clearly show that as the pulse propagates in the
medium, the energy is focused periodically around the axis.
The peaks decrease in amplitude and radial extension as the
pulse progresses and energy is lost. The vapor is ionized
completely close to the axis, the boundary of the plasma
channel expanding and contracting repeatedly with the radial
extension of the laser pulse. [Figure 3(c) displays the spatial
distribution of the final ionization probability. Note that in this
case the pulse is already intense enough to ionize the atoms at
z = 0, without self-focusing.] As the pulse energy is depleted,
the plasma channel narrows and eventually ends as the pulse is
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no longer able to ionize the atoms. Clearly, there is a dynamic
competition between nonlinear polarization, absorption, and
diffraction that yields an irregular, quasiperiodic plasma
channel.

A closer look reveals some fundamental differences to
laser filamentation in air and other gases. In those scenarios
the gas is essentially transparent, there is little or no loss
when pulse intensity is not high enough to ionize the atoms
or molecules. Self-focusing increases intensity until it is
stopped (or rather dynamically balanced) by a combination
of diffraction, plasma defocusing, strong energy losses due to
multiphoton ionization, a saturation of n2, or the emergence
of higher order defocusing nonlinearities [2,27–29]. Because
a large portion of the pulse energy can propagate outside the
highly intense domain, the filament may regenerate even if its
central, most intense portion is blocked [30–32]. Conversely,
in our case there is absorption for arbitrarily small intensities,
but the absorber is easily saturable, the medium becomes
transparent when it is fully ionized. Figure 2(d) displays two
curves, the boundary of 98% ionization (red line) which is a
measure of the extent of the plasma channel and the “half-
energy width” R1/2(z) of the laser beam (dotted blue line).
This latter is defined such that∫ R1/2

0
2πrF (r, z)dr = E (z)

2
, (10)

i.e., exactly half of the overall energy of the pulse at any given
propagation distance z is contained within the domain r �
R1/2(z). (A beam width parameter like the FWHM in intensity
or fluence would not be very representative as the beam cross
section does not remain a Gaussian and at certain positions
it does not peak at r = 0 but may have a hollow beam
structure.) The figure shows that most of the pulse energy
propagates within the plasma channel where absorption and
nonlinear refraction are saturated. There is a self-channeling
of the energy, self-focusing by the nonlinear medium is halted
by the completion of the channel with full ionization where
the laser field travels through a homogeneous, transparent
plasma medium. There is no further absorption because the
ionization potential of the second electron of rubidium is so
much higher than that of the first one. Plasma defocusing
within the channel is also absent as there is no gradient of
plasma density within the channel core. Diffraction is the only
mechanism that makes the beam expand repeatedly. Naturally,
energy is constantly lost from the front part of the pulse as the
plasma channel is created and eventually energy is depleted
beyond a threshold that complete ionization ceases. This is
marked by the crossing of the R1/2 curve with the plasma
channel boundary; the channel ends very close to the crossing.
There may be one or two short “revivals” of plasma formation
as remnants of the pulse refocus to ionize again, but compared
to the length of the primary plasma channel, this distance is
short; the propagation ends promptly after the plasma channel
is interrupted for the first time.

These general features are valid for pulses of higher energy
as demonstrated by Fig. 4, which depicts the same plot (ion
channel radius and R1/2 vs propagation distance) for three
different initial pulse energies E0. The fact that the trailing
part of the pulse propagates in the transparent plasma channel
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FIG. 4. Boundary of 98% ionization (solid red lines) and R1/2(z)
of the laser beam (dotted blue lines) vs propagation distance z for
three values of the incident pulse energy E0. The horizontal axis has
the same scale on all three panels.

almost unchanged can be seen in Fig. 5 where the temporal
evolution of the pulse power (spatially integrated intensity)
at several values of the propagation distance is plotted for two
values of the initial pulse energy. The pulses are not attenuated
homogeneously; energy is absorbed mostly around the leading
edge (until full ionization is achieved). The leading edge
steepens, while the trailing edge remains almost unchanged.

B. Plasma channel properties

For the purposes of wakefield accelerator devices, the
longitudinal and transverse extent of the plasma channel is
of great importance, as is plasma homogeneity—the channel
must be continuous and sufficiently wide with very close
to 100% ionization. It can be seen in Fig. 4 that while the
channel radius fluctuates considerably as the pulse propagates,
there is also a clear tendency of gradual narrowing until the
pulse “crashes,” i.e., the plasma channel radius becomes zero
and the pulse intensity decreases below the level required for
close to full ionization. Almost until this point the channel is
uninterrupted, continuous, and has a radius of ∼1 mm.

To make a more quantitative comparison, the evolution of
the plasma channel has been calculated for a large number of
initial pulse energies and the channel radius (radius of 98%
ionization probability) plotted as a function of the energy
E (z) still left in the pulse after propagating a distance z.
Some plots can be seen in Fig. 6(a). (The x axis of the plot
has been reversed so that the pulses “propagate” from left
to right similar to the rest of the figures in the paper.) It is
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FIG. 5. Time evolution of the pulse power at several positions
along the propagation for two values of the initial energy: (a) E0 =
3.5 mJ and (b) E0 = 35 mJ.

clear that the average radius of the plasma channel as well as
the magnitude of the fluctuations around it are the same for
pulses that possess the same energy during their propagation
at their respective propagation distances. Only the “phase” of
these quasiperiodic oscillations differ. The channels end rather
abruptly close to E (z) = 0 in a very similar manner in all three
cases.

The same quantity (98% ionization probability radius) is
plotted in Fig. 6(b) as a function of log10(E (z)/Eref ) where we
have taken Eref = 10 mJ as a reference. This shows that the av-
erage channel radius is linear in this quantity, all three curves
oscillate around the same line to a very good approximation.
In fact, a linear fit to the curves r(x) = mx + r0 (where
x stands for log10(E/Eref ) yields very similar values: m =
0.298 ± 0.005 mm and r0 = 1.062 ± 0.003 mm when aver-
aged over nine calculations with E0 values between 16–70 mJ.
This suggests that there is a global attractor to the behavior of
the propagating pulse that is independent of the initial pulse
energy in the domain investigated. Repeating the calculations
with a different beam waist parameter (d = 2 mm initial
beam diameter) we obtain a similar behavior, but different
parameters for the line of best fit for the r vs log10(E (z)/Eref )
curves, namely m = 0.350 ± 0.007 mm. This indicates that
though there is a globally attracting behavior also in this
case, this is quantitatively different from the one for d =
1.5 mm, i.e., initial beam focusing has a long-term effect on
the propagation.

For our purposes, we will now define the length of the
plasma channel L as the propagation distance at which the
on-axis ionization probability drops below 98% for the first
time. With this definition, the channel length is strictly zero
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FIG. 6. (a) Plasma channel radius (boundary of 98% ionization
probability) as a function of the energy still contained in the pulse for
three different values of initial pulse energy E0: 35 mJ, 50 mJ, and
70 mJ. (b) Plasma channel radius as a function of log10(E (z)/Eref ).
The reference energy is Eref = 10 mJ.

for pulses that fail to ionize 98% of the atoms at z = 0, even
if self-focusing increases on-axis intensity to create a channel
after some propagation length. Clearly, L will depend on the
initial pulse energy and focusing (among other parameters)
and, due to the nature of the radius curve with quasiperiodic
oscillations, this quantity, too, will oscillate somewhat. Plot-
ting L as a function of the initial pulse energy for two different
values of the initial laser beam diameter (Fig. 7) shows that
there is indeed a long-term effect of the initial focusing on the
propagation. The difference between the two curves increases
with E0 which would not be the expected behavior if, after
some initial transient the pulse propagation tended to the same
attractor solution for both beam diameters.

C. Effects of initial focusing

To investigate the effect of initial beam focusing, a set
of calculations with constant E0 but different d was per-
formed. Figure 8 depicts a curve of the plasma channel
length for E0 = 8 mJ pulses as a function of d (red line).
The curve is not strictly monotonous, because the plasma
channel length as defined above may change abruptly when,
for certain parameters, there is a small dip in the on-axis
ionization probability close to the end of the pulse propaga-
tion before a revival of the ionization probability. However,
there is a clear maximum at d = 0.8 mm and the channel
length is a fraction of the maximum value when d is much
smaller or much larger than optimal. Two insets in Fig. 8
depict a contour plot of the ionization probability for two

063423-6



PROPAGATION OF ULTRASHORT RESONANT IONIZING … PHYSICAL REVIEW A 99, 063423 (2019)

0 20 40 60
0

10

20

30

40

50

60

70

E  (mJ)

L 
(m

)

d = 1.5 mm
d = 2 mm

FIG. 7. Plasma channel length as a function of initial pulse
energy L(E0) for two values of the initial beam diameter.

sub-optimal values of the initial beam diameter and reveal the
reason for this behavior. When the initial focusing is too tight
[Fig. 8(a)], the Rayleigh range is small and diffraction causes
the beam to expand and ionize in a larger radius around the
axis, depleting the energy severely. When the initial spot size
is too large on the other hand [Fig. 8(b)], the initial channel
radius is large and a lot of energy is lost before the beam
contracts to a more modest size. An additional feature visible
on the plots are the “holes” in the ionization profile, small
localized domains where ionization is not perfect; plasma
density is inhomogeneous within the channel. Therefore a
good choice of initial focusing also proves to be important
for realizing homogeneous, long plasma channels for plasma
wave acceleration.
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FIG. 8. (Main plot) Plasma channel length as a function of initial
beam diameter L(d ) for a E0 = 8 mJ pulse. Inset (a) Contour plot
of ionization probability as a function of radial distance r and
propagation distance z for d = 0.4 mm. Inset (b) Contour plot of
ionization probability for d = 3 mm.

IV. SOME FURTHER COMMENTS

The model for the optical response of the atoms presented
in this paper contains numerous approximations, trying to
capture resonant interaction and ionization simultaneously,
and, at the same time, to be lightweight enough for ex-
tended propagation calculations in two spatial dimensions.
In experiments and calculations of laser pulse filamentation
in atmospheric gases it was observed that for sufficiently
large values of the pulse power (several times the critical
power Pcr required for the onset of self-focusing and fila-
mentation), a transverse instability breaks axial symmetry,
and the beam breaks up into multiple filaments [33–38]. Our
axially symmetric description naturally excludes obtaining
such solutions. While not immediately obvious whether multi-
filamentation can appear in a resonant system, this means that
our model may overestimate the plasma channel length for a
given vapor density and laser focusing.

The fact that the laser can resonantly transfer atoms to
excited states has an effect on the ionization process as well.
Analysis of the numerical solution shows that the onset of ion-
ization is less abrupt; it starts at lower intensities than without
resonance. The reason is that apart from three-photon ioniza-
tion from the ground state, a process of resonant excitation
followed by two-photon ionization, and a process of resonant
excitation twice followed by single-photon ionization is also
possible. In fact during the initial part of the propagation,
before the pulse leading edge steepens too much, the dominant
route to ionization is the one by two-photon absorption from
the first excited state.

Initial derivation of the theory included an electron current
term ∼∂J/∂t that describes plasma absorption and dispersion.
However, after verifying that this term has very little effect in
calculations presented in the paper, the term was neglected
while performing extended parameter scans. This might be
surprising at first because, in general, plasma density gradients
are a major source of defocusing processes in laser pulse
filamentation. However, in our case, the following is true: (i)
Because of full ionization the existence of plasma density
gradients is limited to a narrow boundary region around
the channel core (in the center the plasma is completely
homogeneous) and most of the energy carried by the pulse
is channeled in the transparent central part. (ii) The vapor
density is so low that even with full ionization, plasma is
orders of magnitude less dense than in normal filamentation
scenarios. Thus the fact that this term should have a negligible
effect on the shape and extension of the plasma channel is
understandable. Under different conditions (e.g., much higher
vapor densities or possibly much longer propagation lengths)
the effects of the plasma term would be non-negligible.

Interaction of the laser pulse with the ionic core of the
singly ionized rubidium has also been neglected completely
in the present description. This is justified by the fact that the
vapor is too rare for the usual, nonresonant optical coefficients
to be effective and that the ionization potential is an order
of magnitude greater than that for the valence electron of
rubidium.

The phenomena discussed in this paper should not be
termed “filamentation” as it is understood in the usual sense.
Filamentation in that sense occurs when there is an (almost)
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lossless Kerr medium to self-focus the beam and an abrupt on-
set of absorption due to multiphoton ionization. An ionization
potential much larger than the photon energy (Ei � h̄ω) is
required for this [2] and the beam collapses to a transverse size
∼100 μm. In the present case absorption is always present
except when the medium is saturated and the transverse size
of the beam remains about an order of magnitude larger
as the focusing nonlinearity is also saturable. This width is
already sufficient for application in accelerator devices such
as AWAKE.

V. SUMMARY

We have investigated the propagation of ultrashort, ioniz-
ing laser pulses in rubidium vapor under conditions of direct
single-photon resonance with an atomic transition from the
ground state. To make the problem tractable for numerical
solution in two spatial dimensions, we developed a relatively
lightweight theory that includes the nonlinear response of
atoms to resonant fields to all orders. Ionization was inserted
in the theory as a phenomenological probability loss from the
atomic levels. A split-step quasispectral method was used to
solve a first-order propagation equation in frequency space in
the slowly evolving wave approximation.

The dynamics of self-focusing, plasma channel formation,
and pulse collapse due to energy depletion were studied using
parameter scans of computer simulations. We have shown that
given sufficient pulse energy, a competition between nonlinear
self-focusing and diffraction results in the pulse energy being
confined in a narrow region around the propagation axis.
The front part of the propagating pulse ionizes atoms close
to the axis and so a plasma channel is formed with almost
complete ionization of the rubidium vapor. The energy of the
trailing part of the pulse is guided along the channel which is
essentially transparent for the field. The radius of the plasma
channel exhibits quasiperiodic oscillations around an average
value which in turn is determined by the energy remaining
in the pulse at the given propagation distance. Initial pulse
focusing has a long-term effect on propagation; the average
channel radius is different for pulses with different initial
beam widths even at large propagation distances. The depen-
dence of the plasma channel length on initial pulse energy
and beam diameter has been studied. The calculations are
expected to be useful for considerations in wakefield accel-
erator devices where the creation of homogeneous, spatially
extended, dense plasmas are necessary, such as at the AWAKE
project at CERN.
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APPENDIX: MATERIAL PARAMETERS
OF THE THEORY

We use the following notation to identify atomic states in
the equations:

|5S1/2, m = 1/2〉 → |1〉,
|5P3/2, m = 1/2〉 → |2〉,
|5D3/2, m = 1/2〉 → |3〉,
|5D5/2, m = 1/2〉 → |4〉.

The energy levels of the excited states relative to the
|1〉 ground state are [19]: h̄ω2 = 1.589049 eV, h̄ω3 =
3.1864603 eV, h̄ω4 = 3.1868276 eV. Given that the photon
energy for 780-nm light is 1.5895 eV, three photons are
required for ionization from |1〉, two photons from |2〉, and
a single photon from |3〉 and |4〉. The dipole matrix elements
between the states are obtained from [18] and [20] and trans-
formed to the conventions used in [40]:

〈1|d̂|2〉 = 5.9786 e a0

√
1/4

√
2/3,

〈2|d̂|3〉 = 0.787 e a0

√
1/4

√
1/15,

〈2|d̂|4〉 = 2.334 e a0

√
1/6

√
3/5.

For the (intensity-dependent) multiphoton ionization rates
�1, �2 from the ground and first excited states we use the
well-known PPT formulas [21–23]. They are written using
the notations of [41], and are reproduced below from Eqs.
(1.25)– (1.30) on pages 19–21 of [41] for reference. The full
formula for the ionization rate of any atom from a quantum
state characterized by l and ml is

W (ω0, γ ) = ωa.u.

√
6

π
|Cn∗,l∗ |2 f (l, ml )

Ui

2UH
Aml (ω0, γ )

×
(

2E0

E
√

1 + γ 2

)2n−|ml |−3/2

exp

[
−2E0

3E
g(γ )

]
.

(A1)

In this formula γ is the famous Keldysh parameter,

ω0

√
2meUi

|eEmax| , (A2)

with Ui being the ionization energy, Ui = 4.177128 eV for the
5S1/2 state, and Ui = 2.588079 eV for the 5P3/2 state. me is
the electron mass and Emax is the maximum field amplitude.
In (A1) UH is the ionization energy of hydrogen, ωa.u. =
eEH/

√
2meUH  4.1 × 1016 s−1, EH = e5m2

e/(64h̄4π3ε3
0 ) 

501.4 GV/m, E0 = EH (Ui/UH )3/2. The factor,

|Cn∗,l∗ |2 = 22n∗

n∗�(n∗ + l∗ + 1)�(n∗ − l∗)
, (A3)
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contains the effective quantum numbers n∗ which is n∗ = √
UH/Ui for Z = 1, and l∗ = n∗ − 1, �() is the gamma function here.

The rest of the factors in (A1) are

f (l, ml ) = (2l + 1)(l + |ml |)!
2|ml |(|ml |)!(l − |ml |)! , Aml (ω0, γ ) = 4γ 2

√
3π |ml |!(1 + γ 2)

∞∑
K�ν

e−α(K−ν)�ml (
√

β(K − ν)),

�ml (x) = e−x2
∫ x

0
(x2 − y2)|ml |ey2

dy, β(γ ) = 2γ√
1 + γ 2

, α(γ ) = 2sinh−1(γ ) − β(γ ),

g(γ ) = 3

2γ

[(
1 + 1

2γ 2

)
sinh−1(γ ) −

√
1 + γ 2

2γ

]
, ν0 = Ui

h̄ω0
, ν = ν0

(
1 + 1

2γ 2

)
. (A4)

The ionization rates calculated from Eq. (A1) are used as �1 and �2 in Eqs. (5) and (8). The single-photon ionization rate �4

was calculated using the experimental cross section σ = 10.9 Mb from [42], which has been measured for λ = 788 nm light.
The same value was used for �3.
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