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Revisiting photon-statistics effects on multiphoton ionization. II. Connection to realistic systems
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In this paper, we extend the results of an earlier paper [G. Mouloudakis and P. Lambropoulos, Phys. Rev.
A 97, 053413 (2018)] in which we had demonstrated the limitations of the notion of nonresonant multiphoton
ionization, in the exploration of photon statistics effects in nonlinear processes. Through the quantitative analysis
of specific realistic processes, we provide the connection to conditions of intensity and pulse duration necessary
in relevant experiments, including a recent seminal experiment demonstrating the effect of superbunching
found in squeezed radiation. The outlook for a future era of studies on the interplay between stochasticity and
nonlinearity in transitions driven by electromagnetic radiation is also discussed.
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I. INTRODUCTION

In a recent paper [1] we examined the effect of field
fluctuations on near-resonant two- and three-photon ioniza-
tion. Through a quantitative analysis of the role of inten-
sity, we found that the enhancement of the process due
to bunching, more often than not, will be reduced owing
to the onset of Rabi oscillations, even at seemingly large
detuning from resonance. This makes the notion of nonres-
onant ionization rather tenuous and possibly misleading in
the planning of an experiment. For processes of order higher
than 3, it is practically inevitable that near resonances will
modify the enhancement, even at moderate intensities, simply
because the level spacing decreases with increasing level
excitation.

That paper came at an auspicious time as it practically
coincided with an experimental breakthrough by Spasibko
et al. [2], in which enhancement in processes of order up
to 4 due to superbunched light was reported. This rep-
resents a break in the rather long period of experimental
drought in this field because, despite the rather extensive
relevant theoretical literature over the past 50 years [3–25],
experimental results have been quite sparse [26–32]. Most
significantly because photon statistics enhancement due to
squeezed (superbunched) light has been observed for the
first time, a development that creates an opportunity for the
experimental investigation of a number of challenging open
problems.

It may be useful to clarify at the outset the relevance of the
term superbunched to this work, in relation to other properties
of squeezed light. Following standard terminology [33–35],
bunched light implies that the N th-order intensity correlation
function is larger than unity. For chaotic (thermal) light the
normalized intensity correlation function gN (0) is equal to N!,
which is what is usually implied by bunched light. If a state
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of light exhibits a value of the N th-order intensity correlation
function larger than N!, it is referred to as superbunched,
which is the case with squeezed light. However, squeezed
light has many other features, notable among them being that
it is nonclassical. Those other properties, interesting as they
may be, are of no relevance to the effects discussed in this
paper. Actually, any source of light, classical or otherwise,
that can exhibit intensity fluctuations stronger than those of a
coherent state will lead to the same effects, which result from
an interplay between nonlinearity and fluctuations. That is
why, in earlier work on the theory of bound-bound transitions
driven by stochastic fields [20,21], the fields were modeled as
random Gaussian variables, producing the same effects that
quantized fields would. Further discussion of that aspect is
deferred to Sec. IV.

Owing to computational demands, the numerical results
in [1], illustrating the involvement of near resonances and
the ensuing modification of the bunching effect with in-
creasing intensity, were obtained with scaled intensity and
atomic parameters such as Rabi frequencies and ionization
cross sections. The need for scaling arose from the necessity
of formulating the problem in terms of a quantized field,
which then led to summations over the photon-number dis-
tributions of the various states of the field we examined.
The concomitant drawback of that approach is the difficulty
in translating photon numbers to the intensity of a pulsed
source, which is what occurs in an experiment [2]. Our
purpose in this article is to provide a bridge between the
two, through a sample of realistic calculations in atomic
systems.

For that purpose, we have chosen the cases of two-
photon ionization in cesium in the vicinity of the inter-
mediate 7p state and three-photon ionization in sodium in
the vicinity of two-photon intermediate resonance with the
4d (3/2) and 4d (5/2) states. It is common knowledge that,
for a nonresonant N-photon process, the ionization yield
as a function of laser intensity, in a log-log plot, will
be a straight line of slope N [3]. When, with increasing
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intensity, an intermediate state near resonance begins play-
ing a role, the slope begins diminishing. The intensity at
which this change of slope becomes noticeable is the in-
tensity at which the bunching enhancement will also begin
decreasing.

The most convenient formal tool for the calculation of
the dependence of ion yields on intensity is the time-
dependent density matrix of the atomic system, driven by
a classical electromagnetic (em) field. This formulation, in
addition to allowing for realistic calculations which include
the source temporal pulse shape, also allows for the incor-
poration of the laser bandwidth, an experimentally impor-
tant aspect not accessible in the formalism of [1]. Eval-
uating the role of the bandwidth addresses the possibil-
ity that, even with the carrier frequency tuned far from
resonance, the wings of the spectral shape of the pulse
may involve real excitation of a near-resonant state, thereby
altering the slope and therefore the enhancement due to
bunching.

A short clarification of the issue of bandwidth is needed
at this point. The bandwidth of a pulsed source involves two
separate contributions. One is due to the finite duration of
the pulse and is referred to as the Fourier bandwidth. The
second is due to stochastic phase and/or amplitude fluctu-
ations of the field, the latter being the cause of bunching.
Depending on the duration of the pulse, the stochastic band-
width may become important and therefore would have to be
included in the formulation. For the sake of completeness, we
have included the effects of the stochastic bandwidth in our
calculations.

For pulses of extremely short duration of the order of a
few femtoseconds, it is the Fourier bandwidth that dominates.
For longer pulses of hundreds of femtoseconds or longer, it
is the stochastic bandwidth that dominates, which is in fact
the case with sources in which bunching is significant [2].
In the examples discussed in this paper, the pulses we have
chosen are of relatively long duration, so it is the stochastic
bandwidth that dominates. Nevertheless, the Fourier band-
width is inherently included in the calculation, through the
solution of the time-dependent density-matrix differential
equations.

In order to avoid repetition of formal aspects and deriva-
tions readily available in the literature [36], we have chosen
to simply provide the basic differential equations governing
the time evolution of the density matrix for the three-photon
process, as a special case of which the two-photon process
can be obtained. After a brief discussion and explanation
of the basic equations in Sec. II, a collection of illustrative
examples with discussion and conclusions are presented in
Sec. III.

II. THEORY

Consider the atom to be initially in its ground state, denoted
by |1〉, in the presence of an external electric field of the
form E (t ) = E (t )eiωt + c.c., where ω is the frequency of the
field and E (t ) its complex amplitude. The field amplitude can
be expressed as E (t ) = |E (t )| exp[iϕ(t )], where both |E (t )|
and ϕ(t ) can in general be stochastic quantities, owing to
fluctuations of the field. The absorption of two photons excites

the atom to the vicinity of an intermediate state |2〉, whose
energy is denoted by ω2(h̄ = 1). In addition to the coherent
coupling between the ground and excited states induced by the
external field, the state |2〉 can either decay spontaneously or
be ionized by a single-photon absorption, with a rate denoted
by �(t ). When state |2〉 is connected to the initial state by
a two-photon transition, spontaneous decay back to |1〉 is
allowed only through a cascade. For the sake of completeness,
we include in our equations that rate in the sense of an effec-
tive rate denoted by γ . In any case, for the type of experiments
pertaining to our problem, that rate is too small to be of
relevance. The excited state |2〉, in addition to its coupling to
the initial state and to the continuum, also undergoes a Stark
shift through virtual transitions to all dipole-allowed bound
and continuum states. It is denoted here by S(t ), where the
time dependence is due to the fact that the shift is proportional
to the instantaneous intensity. Since in this case the two-
photon Rabi frequency and the ionization rate are also pro-
portional to the intensity, the shift needs to be included in the
formalism.

If ρi j , i, j = 1, 2, are the matrix elements of the density
matrix of our effective two-level model of the three-photon
process, in the rotating-wave approximation, then the differ-
ential equations governing the time evolution of the respective
slowly varying matrix elements, defined by ρii(t ) = σii(t ),
i = 1, 2, and ρ12(t ) = σ12(t )eiωt , are [1]

∂

∂t
σ11(t ) = γ σ22(t ) + 2 Im[	∗

12(t )σ12(t )], (1)

∂

∂t
σ22(t ) = −[γ + �(t )]σ22(t ) − 2 Im[	∗

12(t )σ12(t )], (2)

∂

∂t
σ12(t ) = {i[
 − S(t )] − γ12(t )}σ12(t )

+i	12(t )[σ22(t ) − σ11(t )], (3)

where 
 = 2ω − (ω2 − ω1) is the detuning from the inter-
mediate resonance, γ12(t ) = 1

2 [γ + �(t )] is the off-diagonal
relaxation, and 	12(t ) = h̄−2μ12E2(t ) is the effective two-
photon Rabi frequency of the |1〉 ↔ |2〉 transition, given by
the product of the effective two-photon matrix element μ12

of the dipole operator and the square of the electric-field
amplitude. All parameters depending on the applied em field,
namely, the ionization rate, the Stark shift, and the Rabi
frequency, are in general stochastic quantities, as they are
subjected to the fluctuations of the field. As a result, the
equations of motion of the density operator’s matrix elements
are also stochastic. The next step is to average the differential
equations (1)–(3) over the field fluctuations, denoting such
averaged quantities by angular brackets. In the process of
averaging the above set of differential equations, we encounter
atom-field products of the form 〈�(t )σi j (t )〉, 〈	12(t )σi j (t )〉,
etc., i, j = 1, 2. The rigorous evaluation of such products re-
quires the exact model of the stochastic properties of the field,
entailing considerable mathematical complexity, which is be-
yond the scope of this paper. However, a detailed treatment of
how this can be accomplished can be found in Refs. [20,36].
Since our purpose in this paper is to simply assess the effect
of the laser bandwidth, in an approximate fashion, we adopt
the decorrelation approximation, which amounts to replacing
the stochastic averages of products such as those above by the
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products of their averages. Assuming that the deterministic
real field amplitude is constant and equal to E0 (square pulse

shape), the resulting differential equations governing the time
evolution of the averaged density-matrix elements are

∂

∂t
〈σ11(t )〉 = γ 〈σ22(t )〉 + 2 Im

{
i	̄2

12

∫ t

0
dt ′ei[
−〈S〉−〈γ̃12〉](t−t ′ )[〈σ22(t ′)〉 − 〈σ11(t ′)〉]

}
, (4)

∂

∂t
〈σ22(t )〉 = −[γ + 〈�〉]〈σ22(t )〉 − 2 Im

{
i	̄2

12

∫ t

0
dt ′ei[
−〈S〉−〈γ̃12〉](t−t ′ )[〈σ22(t ′)〉 − 〈σ11(t ′)〉]

}
, (5)

where 〈γ̃12〉 ≡ 〈γ12〉 + γL = 1
2 (γ + 〈�〉 + 2γL ) and 	̄12 ≡

h̄−1μ12E2
0 is the average Rabi frequency of the |1〉 ↔ |2〉

transition.
Note that 〈�(t )〉 and 〈S(t )〉 have been replaced by 〈�〉

and 〈S〉, respectively, since we assumed that the deterministic
field amplitude is constant. The above averaged equations
contain the additional term γL in the off-diagonal relaxation,
which represents the bandwidth of the radiation source. This
result is the consequence of relations [33–35] that connect
higher-order field correlation functions to the second-order
field correlation function

〈E (t1)E∗(t2)〉 = 〈E2〉 exp
[− 1

2γL|t1 − t2|
]
, (6)

where 〈E2〉 is the variance of the electric field. Such field
correlation functions appear in the process of averaging over
the field’s stochastic fluctuations and introduce the laser band-
width in our model. The solution of the equations of motion of
the averaged density-matrix elements provide the probability
of ionization through the expression

P(t ) = 1 − 〈σ11(t )〉 − 〈σ22(t )〉, (7)

which can be obtained either numerically or analytically with
the use of Laplace transform, if the field amplitude is not
pulsed but can be assumed constant.

We are particularly interested in the behavior of the ion-
ization probability as a function of the intensity for various
detunings from the intermediate resonance. In order to provide
results pertaining to a realistic model, we apply our theory to
the 3s → 4d → continuum process in Na, as described in the
next section.

The above theoretical model, with minor modifications,
reduces to the case of two-photon near-resonant ionization.
The form of the density-matrix equations is the same. Since
the coupling between the initial and excited states is mediated
by a single-photon transition, the Rabi frequency now is pro-
portional to the field amplitude and not the intensity. For the
same reason, the relaxation constant of the off-diagonal matrix
element is now given by γ̃12 = 1

2 [γ + �(t ) + γL], where the
laser bandwidth γL is not multiplied by 2, as it was in the
previous three-photon case. As discussed in the next section,
the model is applied to the realistic two-photon process 6s →
7p → continuum process in Cs.

III. RESULTS AND DISCUSSION

In this section we present quantitative results from the ap-
plication of our theoretical model to the two realistic processes
described above, namely, the 3s → 4d → continuum transi-
tion in Na and the 6s → 7p → continuum transition in Cs.

The atomic parameters [36,37] obtained through quantum-
defect theory are, for the Na transition, ω21 = 4.2845 eV,
� = 9.4I , 	 = 1.46 × 103I , and S = 179I , while for the Cs
transition, ω21 = 2.665 eV, � = 11I , and 	 = 0.75 × 107

√
I ,

where I is the field intensity, in units of W/cm2, and �,
	, and S are in units of Hz. Note that the Stark shift for a
(1 + 1)-photon process, such as the 6s → 7p → continuum
transition, and the spontaneous decay rates for both transitions
in the range of intensities considered are negligible and can
be neglected. The laser bandwidth used in our calculations is
γL = 2 × 1013 Hz.

The illustrative results are summarized in Figs. 1–4. It
should first be noted that the pulse duration is an additional
parameter affecting the slope of the ionization signal as a
function of intensity. Obviously, for any peak intensity, if the
pulse duration is sufficiently long, complete ionization will
occur. In that limit, the slope will become zero, which will
eventually be reached through a gradual decrease of the slope
with increasing intensity, as shown in Figs. 1 and 2. A similar
behavior is shown in Figs. 3 and 4, with the difference that
the slope becomes zero for intensities below the complete
ionization regime. This indicates that higher-order processes
are more prone to depart from the nonresonant condition as
we increase the intensity, compared to lower-order ones.

Aside from this difference, the feature shared by all cases
is that for larger detuning (dotted as compared to solid lines)
from the intermediate resonance, the unperturbed slope re-
flecting the overall order of the process persists for higher
intensities. This behavior reflects the onset of the effect of the
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FIG. 1. Ionization probability of Cs as a function of the intensity
for various detunings from the intermediate resonance and T =
100 fs. The solid line shows 
/ω2 = 0.01, the dashed line 
/ω2 =
0.05, and the dotted line 
/ω2 = 0.1.
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FIG. 2. Ionization probability of Cs as a function of the intensity
for various detunings from the intermediate resonance and T = 1 ps.
The solid line shows 
/ω2 = 0.01, the dashed line 
/ω2 = 0.05,
and the dotted line 
/ω2 = 0.1.

increasing Rabi frequency, signaling the onset of departure
from the notion of a nonresonant process. It is precisely the
effect which in Ref. [1] was shown to herald the distortion
of the photon statistics enhancement, although the process
nominally is nonresonant. Therefore, the message emerging
from these results is that up to 1010 W/cm2 or so, it can be
assumed that the nonresonant behavior will persist. This is
the type of assessment that served as the motivation for this
paper.

It could be argued that the results may be of limited useful-
ness as they pertain to specific atomic transitions. However,
they may not be as limited as they might seem at first sight. For
one thing, parameters such as matrix elements in nonlinear
transitions do not differ by orders of magnitude. Cognizant of
the specificity of our results, we do not claim exact limiting
values of the intensities, but only a range of intensities. The
validity of that range is further underscored by comparison
with the results of the recent data by Spasibko et al. [2], who
observed nonresonant slopes in harmonic generation up to
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FIG. 3. Ionization probability of Na as a function of the intensity
for various detunings from the intermediate resonance and T =
100 fs. The solid line shows 
/ω2 = 0.01, the dashed line 
/ω2 =
0.05, and the dotted line 
/ω2 = 0.1.
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FIG. 4. Ionization probability of Na as a function of the intensity
for various detunings from the intermediate resonance and T = 1 ps.
The solid line shows 
/ω2 = 0.01, the dashed line 
/ω2 = 0.05,
and the dotted line 
/ω2 = 0.1.

order 4, for intensities in the above range, in a completely
different material.

In view of the above estimates, in combination with the
results in [2], and the dramatic progress in the potential
for observation of nonlinear processes induced by squeezed
light, it appears that novel effects may be observed under
intensities in the range of 109–1010 W/cm2, as it is intensities
in that range that are needed for the observation of such pro-
cesses and are luckily becoming available even for squeezed
radiation.

IV. CLOSING REMARKS AND OUTLOOK

As explained in Sec. I, the chief motivation for this paper
was to provide a quantitative assessment of the intensities
needed for the observation of a nonlinear process such as
few-photon ionization or harmonic generation, which would
enable the exploration of the interplay between stochasticity
and nonlinearity. To the extent that such a process is basically
nonresonant, with nearby resonances causing only modest
modification of the dependence of the yield on light intensity,
the yield is proportional to the intensity correlation function
reflecting the order of the process. Further, in the presence
of bunching due to intensity fluctuations, the yield is in that
case enhanced. In contrast, the behavior of two discrete states
driven by a stochastic field depends on correlation functions
of all orders, which entails a much more complex and occa-
sionally counterintuitive behavior [20].

As long as the process depends on a single intensity
correlation function, it does not matter whether the source
is treated classically or quantum mechanically. The exper-
imental observation of nonlinear processes, such as those
discussed in this paper, demand sufficiently high intensity.
The surprising achievement of the experiment by Spasibko
et al. [2] is that their source of squeezed light did muster
the intensity necessary for the observation of even fourth
harmonic. Recent developments [38–41] have led to the
production of superbunched radiation, exhibiting values of
intensity correlation functions larger than those of thermal
light; however, the intensity available in those sources does
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not seem to be sufficiently high for the driving of nonlinear
transitions. It is possible that future developments may remove
that barrier.

Still, at much lower intensities, the strong driving of
bound-bound transitions may be feasible, provided bunched
or superbunched radiation at the appropriate wavelength were
available, which may be the stumbling block for the moment.
Near infrared to optical is the desired range of wavelengths.
As already mentioned above, a much richer variety of effects
is to be expected in that context. For example, a number
of hitherto unanticipated effects can be expected in a two-
photon bound-bound transition driven by superbunched radi-
ation, still an open theoretical problem. A glimpse of possible
surprises can be speculated in the light of theoretical results
for thermal as well as squeezed light [20,42], which have
been in print for about 30 to 35 years now. The development

of new sources may finally make their observation feasible,
thus presenting the opportunity for the exploration of hitherto
unknown territory in stochastic processes.

Having stated above that near infrared to optical is the
desirable wavelength range for the study of field stochastic
effects on nonlinear photon-atom processes, we should not
fail to mention another possibility, amenable through short-
wavelength free-electron lasers, which are known to exhibit
strong intensity fluctuations, akin to those of chaotic radi-
ation [43–46]. Although for many applications such fluc-
tuations may be a nuisance, still they offer a hitherto ex-
perimentally unexplored territory for the interplay between
nonlinearity and stochasticity, at short wavelengths extending
to x rays. A glimpse of expected effects, in the context of
a strongly driven and hence nonlinear Auger transition, has
been given in [46].
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