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Detuning-induced robustness of a three-state Landau-Zener model against dissipation

Benedetto Militello
Università degli Studi di Palermo, Dipartimento di Fisica e Chimica—Emilio Segrè, Via Archirafi 36, 90123 Palermo, Italy

and INFN Sezione di Catania, Via Santa Sofia 64, 95123 Catania, Italy

(Received 7 March 2019; revised manuscript received 19 April 2019; published 17 June 2019)

A three-state system subjected to a time-dependent Hamiltonian whose bare energies undergo one or more
crossings, depending on the relevant parameters, is considered, also taking into account the role of dissipation
in the adiabatic following of the Hamiltonian eigenstates. Depending on whether or not the bare energies are
equidistant, the relevant population transfer turns out to be very sensitive to the environmental interaction or
relatively robust. The physical mechanisms on the basis of this behavior are discussed in detail.
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I. INTRODUCTION

The Landau-Zener-Majorana-Stueckelberg (LZMS) model
[1–4] is an important solvable model with a time-dependent
Hamiltonian. Dynamical problems for nonstationary systems
are usually hard to solve unless particular conditions are
satisfied [5–10]. For very slowly changing Hamiltonians the
adiabatic approximation is applicable [11,12], and in the
case of the LZSM model, deviations from adiabaticity can
be evaluated through the remarkable formula derived in
Refs. [1–4]. The LZMS model describes a two-state system
with linearly time-dependent bare (diabatic) energies and a
stationary coupling between the bare eigenstates, which is
responsible for avoiding the crossing that would occur at
some instant of time, leading to dressed (adiabatic) energies
which remain well separated. In the original mathematical
formulation the experiment is assumed to have an infinite
duration. The implications of the inevitably finite duration of a
real experiment have been considered [13,14]. The hypothesis
of a linear time dependence of the bare energies has also
been relaxed [15]. Systems governed by nonlinear equations
[16,17] and non-Hermitian Hamiltonian models [18] have
been considered. The case where neither the bare energies nor
the dressed ones cross (the hidden-crossing model) has been
thoroughly studied [19,20], as well as the opposite situation
(the total-crossing model) where, because of a suitable time
dependence of the coupling constant, both the bare and the
dressed energies cross [21].

In his seminal work [3], Majorana considered a spin j
immersed in a magnetic field with a linearly changing z
component, therefore studying the dynamics of a system in
the presence of a multilevel crossing. In this scheme, due to
the presence of a static transverse component of the field,
each level is coupled to the immediately upper one. Other
important multilevel-crossing models are the so-called equal-
slope model and the bow-tie model. In the first one, introduced
by Demkov and Osherov [22], a single time-varying level
intercepts a series of static energies, producing a sequence of
two-state crossings, which allows one to study the relevant dy-
namics through the so-called independent-crossing approxi-
mation [23]. In contrast, the bow-tie model consists of N states

having bare energies which cross at the same time, hence real-
izing a proper multistate crossing. Moreover, in this model one
state is coupled to the remaining N − 1, which on the other
hand do not couple each other. The N = 3 situation has been
introduced and studied in depth by Carroll and Hioe [24,25],
but it is the case to observe that the Majorana model for a spin
1 is a special case of the N = 3 bow-tie model. The scenario
with N − 2 decoupled states crossing at the same time and
two states interacting with the remaining N − 2 has also been
considered as a possible generalization of the Carroll-Hioe
model [26]. The degenerate Landau-Zener model, consisting
of two degenerate levels which cross [27], and a hybrid model
between LZSM and stimulated Raman adiabatic passage with
time-dependent coupling constants [28] have also been intro-
duced. Other specific models with a fixed number of states
and particular coupling configurations have been considered
[29–32]. The time-dependent Rabi Hamiltonian [33] and the
Tavis-Cummings model [34,35] exhibit dynamical behaviors
that can be traced back to multilevel LZMS transitions.

There are several studies on the effects of dissipation and
decoherence on adiabatic evolutions in general [36–39] and
on two-state LZMS processes in particular [40–46]. In spite
of this, environmental effects on adiabatic evolutions in the
presence of crossings involving more than two states have
been studied only rarely. Recently, Ashhab [47] analyzed
the multilevel LZMS problem in the presence of an inter-
action with the environment, focusing on dephasing. More
recently, a dissipative three-state LZMS problem has been
considered [48].

In this paper we consider a three-state LZMS problem
similar to the one considered in Ref. [48], with two time-
dependent bare energies, a time-independent one, and a
cyclic coupling scheme. Different from the model previously
considered, the bare energies are not equidistant, since the
middle level presents a static energy offset, i.e., a nonzero
bare energy, which determines the occurrence of a series of
binary crossings. The system is considered in the absence
and in the presence of environmental interaction, bringing to
light the positive role of the detuning in a certain range of
values. Experiments have been developed in the context of
artificial atoms where a multistate system undergoes several
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independent crossings in the presence of environment-induced
effects [49]. Though our model does not perfectly match
that situation, our analysis constitutes an advancement in the
comprehension of the role of environmental interaction in
multistate Landau-Zener processes. In the next section we
introduce the Hamiltonian model and analyze the population
transfer process in the absence of any dissipation, singling out
the role of the detuning in the way the level crossings occur.
In Sec. III we add the role of the environment, analyzing the
competition between the detrimental action of the decays and
the positive effect of the detuning. In Sec. IV we summarize
and give some concluding remarks.

II. IDEAL SYSTEM

A. Model

We consider a three-state system with a time-independent
cyclic coupling scheme and two linearly time-dependent bare
energies (h̄ = 1)

H (t ) =
⎛
⎝−κt �12 �13

�12 � �23

�13 �23 κt

⎞
⎠, (1)

where, for the sake of simplicity, only real coupling strengths
are considered. We will refer to the energy offset � as
detuning, independently of its physical origin. This model
can be easily obtained in superconducting qutrits subjected
to cyclic couplings [50,51]. Moreover, it can describe the
dynamics in a two-qubit triplet subspace in the presence of
an external magnetic field (with a linearly time-dependent
z component) and an exchange interaction [52–54]. In this
second scenario, in addition to the interaction terms de-
scribed in Ref. [48], where �12 = �23 has been stud-
ied, a longitudinal interaction has to be considered, lead-
ing to H = κt (σ A

z + σ B
z ) + �12(σ A

x + σ B
x ) + �13/2(σ A

x σ B
x −

σ A
y σ B

y ) − �/2σ A
z σ B

z , whose restriction in the invariant sub-

space {|↑↑〉, (|↑↓〉 + |↓↑〉)/
√

2, |↓↓〉} ≡ {|1〉, |2〉, |3〉} coin-
cides with the Hamiltonian in (1) up to a global shift.

When t spans the time interval [−T, T ], with T very
large, we have that the highest instantaneous eigenvalue of the
Hamiltonian (almost perfectly) corresponds to |1〉 for t = −T
and (almost perfectly) to |3〉 for t = T . Therefore, if the
adiabatic approximation is valid in the whole time interval, the
adiabatic following of this eigenstate determines a complete
|1〉 → |3〉 population transfer.

B. Independent-crossing approximation

The detuning contributes to determine the pattern of the
level crossings occurring in the time interval [−T, T ], which
in turn can affect the population transfer. In fact, in the � = 0
case the three bare (diabatic) energies simultaneously touch
and cross at t = 0. In contrast, a nonvanishing detuning makes
the bare energies cross in pairs at three different times. For
example, for � < 0 state |3〉 with bare energy κt intercepts the
second bare level � at t = �/κ , then bare energies of states
|1〉 and |3〉 cross at t = 0, and finally bare energies of states
|1〉 and |2〉 cross for t = −�/κ . For � > 0 the bare energy
crossings occur in the reverse order. The three situations are
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FIG. 1. Level-crossing schemes for different values of �: (a) the
three bare levels for � = 0, (b) the corresponding dressed energies
when �12 = �23 and �13 = 0, and the bare energies for (c) � < 0
and (d) � > 0.

illustrated in Figs. 1(a), 1(c), and 1(d). Figure 1(b) shows an
example of dressed (adiabatic) energies for � = 0.

Figure 2 shows the way the bare energy crossings occur
and the couplings between the relevant states influence the
efficiency of the population transfer. Figure 2(a) shows the
population of state |3〉 at t = T as a function of �, for different
values of �12, assuming �13 = 0 and |1〉 as the initial state.
The population transfer turns out to be very efficient for
� > 0, while for � < 0 the efficiency becomes lower and
lower as �12 assumes smaller values. This behavior can be
well understood in terms of the crossing pattern. In fact,
for � < 0 bare energies of states |3〉 and |2〉 cross first and
nothing happens since all the population is present in state |1〉
at this stage. Then, at t = 0, bare energies of states |1〉 and |3〉
cross and a certain amount of population is transferred from
|1〉 to |3〉. Whether the transfer is complete or not depends on
the coupling strength �13, which is zero in our case. Finally,
the crossing between |1〉 and |2〉 occurs, with no influence
on the population of state |3〉. For � > 0 the |1〉-|2〉 crossing
occurs first, transferring population to state |2〉, provided �12

is large enough. The subsequent |1〉-|3〉 crossing is irrelevant if
all the population has been transferred to state |2〉; moreover,
in our case �13 = 0, so nothing happens at this stage even if
the transfer during the first crossing was imperfect. Finally,
in the last crossing involving the |2〉-|3〉 states the population
previously transferred to |2〉 moves toward |3〉. Of course, if
the coupling strengths �12 and �23 are not large enough the
two population transfers are incomplete or even absent. This is
why for small or vanishing values of �12 the final population
of |3〉 is small even for positively large �, which is clearly
visible in Fig. 2.

Figure 2(c) considers the case where �13/�23 = 0.5,
which implies that during the |1〉-|3〉 crossing a population
transfer can occur. For this reason, when � < 0 the total
process is very efficient. In fact, the first and third crossings
do not have significant implications, since the involved states
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FIG. 2. Final population of state |3〉 (obtained through a numerically exact resolution of the relevant Schrödinger equation) when the system
starts with |1〉 as a function of � (in units of �23), and relevant minimum energy gap between the two highest instantaneous eigenvalues of the
Hamiltonian (in units of �23) for the cases (a) and (b) �13/�23 = 0 and (c) and (d) �13/�23 = 0.5. The other parameters are κ/�2

23 = 0.1 and
κT/�23 = 100 for all the curves. In all figures, the four curves correspond to �12/�23 = 1 (solid black line), �12/�23 = 0.5 (bold long-dashed
blue line), �12/�23 = 0.1 (dashed red line), and �12/�23 = 0 (dotted green line).

are not populated when they occur: Only state |1〉 is populated
when |2〉 and |3〉 cross, and provided a complete transfer
has occurred during the |1〉-|3〉 crossing, the interception of
bare energies of states |1〉 and |2〉 is irrelevant as well. The
whole process is efficient as long as the population transfer
during the second crossing is complete. For � > 0, assuming
�12 large enough, at the first crossing all the population is
transferred to state |2〉 and then nothing happens during the
second crossing involving |1〉 and |3〉 since both states are
“empty.” Finally, during the third crossing, the population is
transferred from |2〉 to |3〉, provided �23 is adequate. If �12

is too small, the transfer in the first crossing is compromised
and so is the entire process.

C. Adiabatic eigenstates

The treatment based on the independent-crossing approx-
imation turns out to be good enough for (negatively or pos-
itively) large �, since in such a case the three crossings are
well separated. In contrast, when � is of the same order as
the coupling strengths, the proper way to analyze the system
is to consider the dressed (adiabatic) energies. Of course, this
approach is valid in every regime.

Figures 2(b) and 2(d) report the minimum energy gap
between the two highest eigenvalues of the Hamiltonian in
the time interval [−T, T ]. More precisely, given a set of pa-
rameters which define H (t ), we have three functions ε1(t ) �
ε2(t ) � ε3(t ) that correspond to the three instantaneous eigen-
values of the Hamiltonian; consider that ε1(±T ) ≈ κT and
that the corresponding eigenstate, satisfying |ε1(−T )〉 ≈ |1〉

and |ε1(T )〉 ≈ |3〉, is the one which is expected to carry
population from |1〉 to |3〉. On this basis we define

G = min
t∈[−T,T ]

{ε1(t ) − ε2(t )}. (2)

According to the general theory of the adiabatic approxi-
mation [11,12], diabatic transitions can occur when the square
of an energy gap turns out to be not much larger than the
relevant matrix element of Ḣ , which in our case linearly
depends on κ . Therefore, if G is smaller than or comparable
to

√
κ , then the adiabatic approximation fails at some instant

of time, which jeopardizes the transportation of population
from |1〉 to |3〉 through the eigenstate corresponding to ε1(t ).
In contrast, a high value of G guarantees the validity of the
adiabatic approximation in the whole time interval and, as a
consequence, a complete population transfer. Figure 2 clearly
illustrates this connection.

Figure 3 shows the efficiency of the population transfer as
a function of the |1〉-|3〉 coupling strength and the detuning,
for two different values of the changing rate of the bare
energies κ . Figure 3(c) shows the behavior of G in the same
parameter region. (In this case we observe that the value of
the minimum gap does not depend on the value of κ when
t goes from −∞ to +∞ or when the time interval [−T, T ]
is κ dependent in such a way that κT is always the same,
which is our case for Figs. 3(a) and 3(b)). It is clearly visible
that in the zone where the minimum energy gap becomes
very small the efficiency gets quite low for both κ/�2

23 = 0.1
and κ/�2

23 = 1. Moreover, since we have to compare the gap
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FIG. 3. Final population of state |3〉 (obtained through a numerically exact resolution of the relevant Schrödinger equation) when the
system starts in |1〉 as a function of �13 and � (both in units of �23) for (a) κ/�2

23 = 0.1 and (b) κ/�2
23 = 1; in both cases �12 = �23 and

κT/�23 = 100. (c) Relevant minimum energy gap between the two highest instantaneous eigenvalues of the Hamiltonian as a function of �13

and � (all in units of �23).

with
√

κ , for larger values of this parameter the zone of low
efficiency is wider.

D. Role of possible phases

At first glance, the model in (1) can be considered as
a generalization of the model in Ref. [48], because of the
nonzero detuning and the independence of the three coupling
strengths �i j (in Ref. [48] we have �12 = �23). Nevertheless,
the latter model includes the possibility of complex coupling
strengths, which are not considered in the former. Therefore,
the two models are to be considered as different, neither of
them being the generalization of the other. It is nevertheless
interesting to briefly comment on what happens if we include
the phases. In fact, by the replacement �i j → �i je−iφi j , the
secular equation to determine the eigenvalues of the Hamilto-
nian in (1) assumes the form

λ3 − �λ2 − (
�2

12 + �2
23 + �2

13 + κ2t2
)
λ

− 2�12�23�13 cos(φ12 + φ23 − φ13)

+ (
�2

12 − �2
23

)
κt + (

κ2t2 + �2
13

)
�.

We immediately note that, in spite of having three indepen-
dent phases, they appear in the equation only once and as
a precise combination. Moreover, several calculations of the
parameter G spanning the relevant parameters have shown that
the degeneration jeopardizing the population transfer occurs
only when φ12 + φ23 − φ13 ≈ π . This means that, for our
purposes, considering the three coupling strengths as complex
numbers with independent phases or as real numbers spanning
positive and negative values is essentially the same. Therefore,
for the sake of simplicity, we have omitted the complex
phases.

III. ROLE OF DISSIPATION

Since the environment plays a certain role in experiments
involving Landau-Zener transitions [55–57], even multistate
ones [49], we want to analyze the effects of dissipation and
decoherence on the population transfer. Following the same

approach as in Ref. [48], we consider external decays, i.e.,
decays toward states which are orthogonal to the “main”
subspace (generated by |1〉, |2〉, and |3〉) we are focusing on.
In such a case, a possible way to describe the zero-temperature
evolution of the system is by using an appropriate mas-
ter equation where the bare states are incoherently coupled
(through the environment) to the external states [58,59]

ρ̇ = −i[H (t ), ρ]

+
3∑

j=1

∑
k

γk j

(
|Ek〉〈 j|ρ| j〉〈Ek| − 1

2
{| j〉〈 j|, ρ}

)
, (3)

where |Ek〉 is the kth external state, | j〉 refers to the main sub-
space, and γi j is the relevant decay rate. Restricting the master
equation to the main subspace is equivalent to considering
the dynamics induced by a non-Hermitian Hamiltonian (see,
for example, Refs. [60–62]) where the diagonal terms have
imaginary parts given by the decay rates −i� j = −i

∑
k γk j

to be added to the jth diagonal term of H (t ). It is worth
mentioning that we have also assumed the absence of a direct
coherent coupling between every two states | j〉 and |Ek〉;
otherwise, an additional term in the commutator would be
required. The Hamiltonian we obtain is

HD(t ) =

⎛
⎜⎝

−κt − i�1 �12 �13

�12 � − i�2 �23

�13 �23 κt − i�3

⎞
⎟⎠. (4)

Following the same reasoning as in Ref. [48], the presence
of decays for state |1〉 or |3〉 dramatically compromises the
efficiency of the population transfer, because the adiabatic
state |ε1(t )〉 almost coincides with |1〉 for a long time from
−T to a time close to t = 0, and is close to |3〉 in the
mirror interval, from a time near t = 0 to T . In both cases
a significant loss of population is experienced. We then focus
on the nontrivial effects of a decaying state |2〉, then always
assuming in the following �1 = �3 = 0 and redefining the
second decay as � ≡ �2.

Figure 4 shows the efficiency of the population transfer in
the same parameter region considered in Fig. 3(a), but in the
presence of dissipation. Three different values of � are taken
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FIG. 4. Final population of state |3〉 (obtained through a numerically exact resolution of the relevant Schrödinger equation) when the system
starts in |1〉 as a function of �13 and � (both in units of �23). The relevant parameters are �12/�23 = 1, κ/�2

23 = 0.1, and κT/�23 = 100.
Concerning the decay rate, the following values have been considered: (a) �/�23 = 0.001, (b) �/�23 = 0.005, and (c) �/�23 = 0.025.

into account: �/�23 = 0.001, �/�23 = 0.005, and �/�23 =
0.025. The three plots provide a suggestive view which re-
sembles three photograms taken while a wave advances from
right to left. This clearly illustrates that the parameter region
corresponding to negative � is less affected by the presence
of the decay and that a negatively higher value of � implies a
greater robustness against dissipation. This fact can be under-
stood in terms of the transfer mechanism process described in
Sec. II. When � is negatively large, nothing happens during
the first and third crossings depicted in Fig. 1(c) and the
complete transition occurs during the second crossing, which
does not involve state |2〉. This means that the population of
the decaying diabatic state |2〉 is always zero or negligible, so
the system does not undergo any loss of probability. Of course,
for this analysis to work, it is necessary that the coupling
strength �13 is not negligible; otherwise no transition will
occur around the second crossing (see the Appendix for a
more detailed analysis). In contrast, for positively high values
of �, a |1〉 → |2〉 transition occurs at the first crossing,
followed by a |2〉 → |3〉 transition concomitant to the third
crossing. Therefore, state |2〉 is populated between the first

and third crossings, which determines a loss of probability
during the relevant time interval.

Figure 5 plots the efficiency of the population transfer
in the presence of dissipation as a function of � and �,
for different values of �13. Figure 5(a) shows clearly that
for �13 = 0 there is no robustness for � < 0, while even a
small �13 [Fig. 5(b)] is sufficient to have a higher efficiency.
The situation improves for even higher values of �13, as in
Fig. 5(c).

It is worth mentioning that, as in the � = 0 case analyzed
in Ref. [48], for very large decay rates and in the presence of
a non-negligible �13 there is a revival of efficiency due to a
Hilbert space partitioning [63–67].

IV. CONCLUSION

We have analyzed a three-state LZMS model characterized
by the presence of a detuning (energy offset) in the state with
static energy (|2〉). We have shown that since the presence of
the detuning changes the way the bare energies cross, it also
influences the efficiency of the population transfer between
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FIG. 5. Final population of state |3〉 (obtained through a numerically exact resolution of the relevant Schrödinger equation) as a function
of � (in units of �23) and � (in units of �23 and in logarithmic scale), when the system starts being in the state |1〉. The relevant parameters
are �12/�23 = 1, κ/�2

23 = 0.1, κT/�23 = 100, and (a) �13 = 0, (b) �13/�23 = 0.2, and (c) �13/�23 = 0.5.
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the two states different from the detuned one. In a different
context, the detuning contributes to the determination of the
minimum gap between the eigenvalues of the Hamiltonian,
which is fundamental for establishing the validity of the adia-
batic approximation and then the efficiency of the population
transfer. In particular, we have seen through several plots that
a very low value of the gap, even at a single instant of time, is
responsible for a dramatic diminishing of the efficiency.

We have also considered the effects of an interaction with
the environment, which mainly has a negative influence on the
transfer process. In the presence of decays involving the initial
or target state of the process (|1〉 and |3〉, respectively), the
diminishing of the efficiency is easily predicted as significant.
If the decaying state is |2〉, then the situation is more compli-
cated because, depending on the value of �, such a state can
be more or less involved in the dynamics. In the case of limited
(or negligible) involvement, the efficiency remains quite high
in spite of the decaying process. This is the case for � < 0.

We conclude by commenting on what happens if we swap
the roles of the initial and target states. In this case, the
instantaneous eigenstate which must be used as a popula-
tion carrier is the one corresponding to lowest energy, i.e.,
ε3(t ), according to the notation introduced before (2). The
quantity that must be analyzed is then the minimum gap
between the two lowest eigenvalues, which can be obtained
as the minimum gap between the two highest eigenvalues of
−H (t ), which is H (t ) associated with −κ , −�, and {−�k j}.
Moreover, the minimum gap for −H (t ) is independent of
the sign of κ , since the minimum is evaluated for t (and
then κt) spanning symmetrically positive and negative values.
Therefore, in order to check the validity of the adiabatic
approximation when we want to have a |3〉 → |1〉 transition,
we have to evaluate G for κ , −�, and {−�k j}.

APPENDIX: ANALYSIS OF THE � < 0
DISSIPATIVE CASE

In this Appendix we try to better support the independent-
crossing treatment and the consequent results in the � < 0
dissipative case. Depending on the time instant, we can
consider the Hamiltonian as the sum of different terms to
be treated according to the perturbation theory, which will
give us the possibility to predict the system behavior. We
assume a negatively large � (� < 0 and |�| � |�i j | ∀i, j),
a non-negligible �13, and a pretty small �. The state |ψ (t )〉 =∑

k ck (t )|k〉 is assumed to start in the condition a1(−T ) = 1
and a2(−T ) = a3(−T ) = 0.

For |κt | � |�| (negatively large values of t) we have the
diagonal terms as the “gross” part of the Hamiltonian and all

the couplings as a perturbation:

HD(t ) =
⎛
⎝−κt 0 0

0 � − i� 0
0 0 κt

⎞
⎠ +

⎛
⎝ 0 �12 �13

�12 0 �23

�13 �23 0

⎞
⎠.

(A1)

The gross part leaves the initial state unchanged, while
the perturbation induces small deviations. Introducing ξ =
(max |�i j |)/|�| (�1), we can say that they are o(ξ ), getting
|ψ (t )〉 = |1〉 + o(ξ ).

When it happens that κt ∼ � (negative values of t), the
correct way to separate the terms is

HD(t ) =
⎛
⎝−κt 0 0

0 � − i� �23

0 �23 κt

⎞
⎠ +

⎛
⎝ 0 �12 �13

�12 0 0
�13 0 0

⎞
⎠.

(A2)

Also in this case, the state essentially given by |ψ (t )〉 =
|1〉 + o(ξ ) is left unchanged, up to additional deviations o(ξ ).
During the period when |�13| � κt � |�| (positive and neg-
ative values around t = 0) the appropriate separation is

HD(t ) =
⎛
⎝−κt 0 �13

0 � − i� 0
�13 0 κt

⎞
⎠ +

⎛
⎝ 0 �12 0

�12 0 �23

0 �23 0

⎞
⎠

(A3)

and a proper two-state Landau-Zener transition occurs up
to terms of o(ξ ) due to the perturbation. Therefore, after
this time interval one has |ψ (t )〉 = e−π�2

13/κ |1〉 + e−iφ(t )(1 −
e−π�2

13/κ )|3〉 + o(ξ ), with φ(t ) an appropriate dynamical
phase.

In the subsequent time interval where −κt ∼ � (positive
values of t), the Hamiltonian can be rearranged as

HD(t ) =
⎛
⎝−κt �12 0

�12 � − i� 0
0 0 κt

⎞
⎠ +

⎛
⎝ 0 0 �13

0 0 �23

�13 �23 0

⎞
⎠,

(A4)

which only slightly affects the state describing the system
at this stage essentially transforming |1〉 into a normalized
linear combination of |1〉 and |2〉, up to o(ξ ) terms: |ψ (t )〉 =
e−π�2

13/κ (α|1〉 + β|2〉) + e−iφ(t )(1 − e−π�2
13/κ )|3〉 + o(ξ ). Fi-

nally, we consider |κt | � |�| (positive values of t) and
we get again the arrangement in (A1), which essen-
tially leaves the state unchanged. The final state is
then roughly given by |ψ (t )〉 = e−π�2

13/κ (α|1〉 + β|2〉) +
e−iφ(t )(1 − e−π�2

13/κ )|3〉 + o(ξ ), with |α|2 + |β|2 = 1.
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