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Reduction of frequency-dependent light shifts in light-narrowing regimes:
A study using effective master equations
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Alkali-metal-vapor magnetometers, using coherent precession of polarized atomic spins for magnetic-field
measurement, have become one of the most sensitive magnetic-field detectors. Their application areas range from
practical uses such as NMR signal detection to fundamental physics research such as searches for permanent
electric dipole moments. One of the main noise sources of atomic magnetometers comes from the light shift
that depends on the frequency of the pump laser. In this work, we theoretically study the light shift, taking
into account the relaxation due to the optical pumping and the collision between alkali-metal atoms and between
alkali-metal atoms and the buffer gas. Starting from a full master equation containing both the ground and excited
states, we adiabatically eliminate the excited states and obtain an effective master equation in the ground-state
subspace that shows an intuitive picture and dramatically accelerates the numerical simulation. Solving this
effective master equation, we find that in the light-narrowing regime, where the linewidth is reduced while the
coherent precession signal is enhanced, the frequency dependence of the light shift is largely reduced, which
agrees with experimental observations in cesium magnetometers. Since this effective master equation is general
and is easily solved, it can be applied to an extensive parameter regime, and also to study other physical problems

in alkali-metal-vapor magnetometers, such as heading errors.
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I. INTRODUCTION

Alkali-metal-vapor atomic magnetometers [1-3], which
have become one of the most sensitive devices for magnetic-
field detection, find applications in various areas ranging
from practical uses such as NMR signal detection [3-6] to
fundamental physics research such as searches for permanent
electric dipole moments [7-9]. The physics behind atomic
magnetometers is as follows: polarized atomic spins precess
along the magnetic field to be measured, and its precession an-
gle, or the so-called Larmor frequency that can be measured,
is proportional to the magnitude of the magnetic field. To have
a collective spin precession for measurement, the electronic
spins are polarized by optical pumping [10-13]. However,
in the measurement of the Larmor frequency, the light shift,
resulting from the interaction of light (the pump beam here)
and matter, behaves as an effective magnetic field to the
atomic spins, and subsequently shifts its precession frequency
[14-18]. This light shift is dependent on the intensity and
frequency of the pump laser. Therefore, it will decrease the
measurement accuracy if the pump beam’s frequency has
fluctuations. One way to reduce this frequency dependence
of the light shift is to decrease the pump beam’s intensity,
or to increase the line broadenings of the alkali-metal atoms’
excited states, but both will lower the atomic polarization,
which reduces the precession signal.
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Recently, we have found that in cesium vapor magnetome-
ters with buffer gas N, [19], without tuning the pump beam’s
intensity or the excited states’ lifetimes, the light shift’s de-
pendence on the laser frequency can be greatly reduced in the
light-narrowing regime [20,21], in which the linewidth of the
spin precession signal is narrowed, and the fundamental sen-
sitivity [21,22], which is inversely proportional to the square
root of the spin’s transverse relaxation time, is improved,
which further improves the measurement accuracy.

In the experimental setup shown in Fig. 1(a), an atomic
cell containing cesium atoms and nitrogen gas (buffer gas) is
illuminated by a circularly polarized pump laser propagating
along the z direction. The magnetic field By to be measured is
also in the z direction, and an oscillating magnetic field along
the x direction is generated by two rf coils to induce atomic
spin polarizations in the x direction, which are reconstructed
by measuring the optical rotation of a linearly polarized probe
laser propagating in the x direction. The energy levels of an
alkali-metal atom are shown in Fig. 1(b), where the electrons’
fine-structure energy levels are denoted by 25} for the ground
states and 2P, 2 for the excited states. These fine-structure
levels are further split by hyperfine interaction, with Ag (Ap)
the splitting between the two multiplets F = a =1 + 1/2 and
F =b=1—1/2 states in the ground (first-excited) states.
Here, only the D; transition [23] is under consideration,
since the pump laser is nearly resonant with the transition
frequency between the ground states and first excited states
[the definition of the detuning A is shown in Fig. 1(b)], and
the probe laser is not taken into account in the optical pumping
process since it is far detuned from both the D; and D,
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FIG. 1. (a) Experimental setup of the alkali-metal-vapor magne-
tometer. The magnetic field By to be measured is in the z direction,
and a pump laser (the red arrow), also propagating in the z direction
with circular polarization, is applied to polarize the atomic spins to
the z direction. An oscillating magnetic field along the x direction
is produced by two RF coils, and the resultant x-directional atomic
spin polarization is probed by a linearly polarized laser (the green
arrow) along the x-direction using its optical rotation. Note that the
frequency of the probe laser is about 80 GHz blue detuned from
the D, transition, with the laser power around 10 mW, so it is a
good approximation that the probe laser is not taken into account
in the optical pumping process. (b) Schematic of the alkali-metal
atoms’ D transition in the optical pumping process. Here, S,
and %P, 2 represent ground and first excited states, respectively, in
the fine structure, and through the hyperfine interaction between
the electrons and the nuclei, these levels are further split, with the
splitting Ag (Ap) for the 31, (*P12) states. The pump laser (the
red arrow) with Rabi frequency 2 and detuning A (with respect
to the frequency difference between the b =1 — 1/2 ground and
a =1+ 1/2 excited states) induces transitions between the ground
and first excited states. (¢) Ground-state Zeeman sublevels for cesium
(I =5/2), with magnetic numbers marked above or below each
level. The energy difference between two adjacent sublevels in the
same multiplet is the Larmor frequency w .

transitions (about 80 GHz blue detuned from the D, transition,
with the laser power around 10 mW). With the magnetic field,
the magnetic levels for cesium atoms are shown in Fig. 1(c),
with the Larmor frequency ;. Note that all the frequencies
in this paper are the regular frequencies and not the angular
ones.

For the mechanism of this frequency-dependent light-shift
reduction, an intuitive picture is as follows. In the light-
narrowing regime with A = 0, the b ground states are pumped
strongly and the alkali-metal atoms mainly populate the a
ground state, where most of the magnetic resonance is gen-
erated and probed. Considering the Lorentzian form of the ac
Stark shift [24] for a single state, one might conclude that the
dependence of the light shift on the pump beam’s frequency
is reduced because of the large hyperfine splitting Ag in the
ground state (compared with the linewidth of the excited
states). Note that we do not choose the probe laser’s frequency
so that it only measures the magnetic resonance from the a
multiplet. Actually, the only function of the probe laser is
to measure the response of the atomic spin to the oscillating
magnetic field. The fact that the states being pumped differ
from the states where most of the spin precession signal is
generated arises naturally in the light-narrowing regime with
properly tuned pump laser powers.

However, the atomic ground states are incoherently cou-
pled to each other by the light-matter interaction and atomic
collisions, so that the light shift cannot be simply written as a
Lorentzian or a sum of Lorentzians. Thus we use the master
equation to study the light shift in a general alkali-metal-vapor
atomic magnetometer, taking into account the light-matter
interaction and the relaxation due to collisions between alkali-
metal atoms and between alkali-metal atoms and buffer gas
[16]. The interaction between the pump light and the alkali-
metal atoms is modeled using the dipole approximation and
the rotating-wave approximation [25,26]. This master equa-
tion appeared in some early textbooks and papers [10,12], but
it is not easily solved because of its nonlinearity (caused by the
mean-field approximation for the spin-exchange interaction)
and its large superspace [10,12,26]. (The full master equation
is in a Hilbert space consisting of all the ground and first ex-
cited states.) Thus we adiabatically eliminate the excited states
in the weak-driving limit, where the Rabi frequency—the
coupling strength between the ground and excited states—is
much smaller than the excited states’ decay rates, to acquire an
effective master equation in a subspace consisting of only the
ground states. This can dramatically decrease the calculation
power and time needed to solve the nonlinear master equation,
and it explicitly shows the intuitive picture of the reduction
of the light-shift dependence on the frequency, as well as the
light-narrowing effect [20]. With little cost of calculation, the
light shift and linewidth obtained by solving this effective
master equation and using linear-response theory [27] agree
well with the experimental data.

The rest of this paper is organized as follows. In Sec. II,
we model the system by a full master equation for the density
matrix evolution of the alkali-metal atoms, including all the
ground states and the first-excited states. Starting from this
full master equation, in Sec. III, we adiabatically eliminate
the excited states in the weak-driving limit and obtain an
effective master equation in only the ground-state subspace.
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It is shown that this effective master equation can give the
rate equations [28] used in many contexts. And when the
energy-level broadening of the excited states is much larger
than the hyperfine splittings Ap and Ag, the light-matter
interaction is reduced to a dissipation term that consists of
only the electronic spin operators [16], leading to the spin
temperature distribution. In Sec. IV, we study the linear
response of the alkali-metal atoms to the small transverse
oscillating magnetic field, both analytically and numerically,
showing good agreement between the theoretical predictions
and experimental data on both the light shift and linewidth in
a wide frequency regime of the pump laser. Finally, in Sec. V,
we summarize our work and show other possible applications
of the effective master equation.

II. FULL MASTER EQUATION DESCRIPTION

In this section, we give the full master equation depicting
the time evolution of the density matrix p(¢) of the alkali-
metal atoms. This master equation involves all the energy
levels in the ground state and the first-excited states [10,12],
which can be written as a sum of four Lindblad operators,

4
o= L, (1
n=1

each coming from a different interaction. The first Lindblad
term describes the light-matter interaction. Without lost of
generality, we assume the pump laser is propagating parallel
to the magnetic field’s direction, which defines the magnetic
numbers of the hyperfine states, and is left-handed circularly
polarized. But this can be easily generalized to the opposite
case, i.e., a parallel propagating laser with right-handed cir-
cular polarization. This will not change the conclusion of this
paper. With the left-handed circularly polarized pump laser,
the light-matter interaction contributes to the master equation
as

LDp = —i[Hym, p]

+Ta Y (|s (pilplpi) <s|——{p |p1><p,|})

1=0,+1
2)

where 'y is the spontaneous decay rate resulting from the
interaction between the alkali-metal atoms and light in the
free space; |s) and |p;) are the electron’s orbital states ls
and 2p, respectively; and [/ in |p;) is its quantum magnetic
number. The Hamiltonian H),, depicting the coupling between
the pump beam and the alkali-metal atoms is written in the
rotating frame with respect to the laser’s frequency as

Hyn = Q'(Is)(p1] + [p1)(sD), 3)

where Q' is the Rabi frequency, and the dipole and rotating-
wave approximations [25,26] are used. The radiation trapping
[29] effect is not included, since the quenching [17] gas can
largely remove it.

The second Lindblad operator depicts the alkali-metal
atoms’ energy levels and their Zeeman splitting due to the

static magnetic field By = B.é.:

L®p = —i[Hyt + Hzee, pl, “)
where
Hyr = ) AdlsaM)(saM| — Ayl poM)(puM|
M
+A D IpeM){peM| 5)
F=a,b

gives the hyperfine structures and

Hzee =Y > Mog|seM)(seM| 6)

F=ab M

gives the Zeeman splitting. Here, |sg/prM) is the hyperfine
state in the 1s (JsgM)) or 1p (|peM), whose energies have been
shifted with respect to the pump beam’s frequency) orbital,
with the total angular momentum F = a, b and its projection
in the z direction M. In Hzee, w, = —wp = YeB; /21 + 1) =
wy, is the Larmor frequency of the atom, where y, is the
gyromagnetic ratio of the electron. Note that only the linear
Zeeman splitting in the ground states has been considered,
since other interactions with the magnetic field, such as the
nonlinear Zeeman interaction for B, = 0.1 G and the Zeeman
splitting in the excited states, are too small to affect the result.

Since there are many alkali-metal atoms and there is much
buffer gas (nitrogen in the experiment) in the heated atomic
cell, collisions between atoms must be taken into account,
resulting in dissipation in the master equation as

1
L = V(S pS=3ip.S- S})

1
+ EVse(Sz>(S+/05— - S_pS+ + {p, Sz})
! 1
+ EVse(SH(SpSZ —S:p5-+ o, S}) + Hec.
|
I i
+Tpb Z AnpA; — z{p,AmAm}, (7

m=0,£1

where S is the electronic spin operator in the ground state,
S+ =S¢ £ iS, is the spin raising or lowering operator, Y is
the spin exchange rate coming from collisions between alkali-
metal atoms, and ¥ = s + Y44 1S the total relaxation rate with
the spin destruction rate ysq coming from collisions between
alkali-metal atoms and nitrogen molecules. In addition to spin
relaxation, the collisions also cause line broadening of the
excited states, with I'y, being the pressure broadening of the
P, ,2 states due to collisions of the alkali-metal atoms with
the nitrogen molecules. During such a collision, the alkali-
metal atom in excited states decays to the ground states by
transferring its momentum to the nitrogen molecule’s angular
momentum, rather than emitting photons. In £®, the jump
operators A,, are defined as

Av= Y ISip.m)(Pipp,ml, ®)
m==%1/2

Ay =1 : ’p :I:l 9)

+1 = 1/2,432 1/2: 51
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It can be shown straightforwardly from £ p that the spin
exchange interaction does not change the mean values of the
spins, i.e., 37 (S) = 0 if we set y,q = 0 and [, = 0, while
the spin destruction interaction exponentially decreases the
spin’s mean values, i.e., 8;3)(S) = —¥a(S) if we set y,e =0
and I'p, = 0. Here, the time derivative 8;3) means we con-
sider only £® p in the time evolution of the density matrix:
33p =LOp.

To measure the precession frequency, a small oscillating
magnetic field B.é, coswt along the x direction, with am-
plitude B, and frequency w, is applied, leading to a time-
dependent term in the master equation,

LY p = —iy.B, cos wt[S, pl. (10)

Note that the dimension of the superspace [10,12,26] of the
full master equation is 4(41 + 2)?, i.e., there are 4(4I + 2)?
coupled nonlinear equations to be solved, hence the numerical
simulation consumes much time and power. In any case, the
physics cannot be revealed in such a big set of nonlinear
equations. Therefore, we will simplify this master equation
by adiabatically eliminating the excited states.

III. EFFECTIVE MASTER EQUATION IN THE
GROUND-STATE SUBSPACE

To gain physical insights and accelerate the calculations,
we will adiabatically eliminate the excited states in the weak-
driving limit in the master equation, where the coupling
strength between the ground and excited states is much
smaller than the energy-level broadening of the corresponding
excited state, i.e., Q = /2/3Q" <« I'sq/2 + Ty, which has
been shown in many experiments. Furthermore, when y.B, <
y, we can apply linear-response theory [27] and consider the
effect of the transverse field at the very end. Therefore, in
this case we will drop the Lindblad term £® p in the master
equation.

Adiabatic elimination in the master equation is common in
quantum optics when working with open systems [26,30,31].
There are several ways to accomplish adiabatic elimination.
For example, one can utilize a generating function, as is
commonly done in the Frohlich transformation [32], but in
the superspace, adiabatic elimination is usually performed in
the motion equations [26,30,31]. Here, we apply the latter to
the alkali-metal-vapor atomic systems. Following the standard
procedure, we first define two projection operators P and
Q =1—"P, where P projects any given operators in the
Hilbert space or vectors in the superspace to the ground-
state subspace. For instance, when performing in the density
matrix, Pp gives

Po= D (seMlplspM)|seM)(sp M. (1)
FMF'M’

Next, we write the full master equation (1) in the P and Q
spaces and adiabatically eliminate the Q space, acquiring an
effective master equation in the P space. For this purpose, we
separate the Lindblad operators in the full master equation (1)
into two parts,

op = (Lo+ L1)p, (12)

where
Lip = —i[Hm, p] (13)

is the perturbation that couples the P space to the Q space and
Lop = (Zi:] L™ — L)p is the zeroth-order term. Noting
that P+ Q =1, QLyP =0, and PLyP = 0, we can write
the density matrix’s evolution in the P and Q spaces, respec-
tively, as

0,9Qp = QLyOQp + QL Pp+ Q L,Qp. (15)

To adiabatically eliminate the Q space, we solve Qp from
Eq. (15) and substitute it in Eq. (14). The solution for Qp in
Eq. (15) is

t
Qp(t) = / eQEFLEN=D G £ Pp(rdr, (16)
0

where we assume an initial condition Qp(0) = 0. This as-
sumption shows that the system is initially in the P space,
which is reasonable, since before the interaction with the
pump laser, the steady state of the system is in the P space.
Then, substituting this solution of Qp(¢) in Eq. (14), for the
second order of L£;, we acquire the density matrix in the
ground-state subspace,

t
3, Po(t) ~ PLoPp(t) + PL / 29 Po)dt
0

'
+P£of e2Lolt=1)
0

t—t'
X (H—/ dt”e_gﬁ‘)’”QﬁleQE"’”>Q,Cl??p(t)dt/,
0

a7

where we have applied the Born-Markov approximation
[25,26] to replace p(t') by p(t) in the integral and extend the
upper limit ¢ in the integration to 4+-co. The Born-Markov ap-
proximation has been verified in many quantum open systems
[25,26], given that the exponent ¢“*" decays on a time scale
much smaller than that of Pp(¢), which is the case in our
system.

After straightforward calculations using the concrete ex-
pressions of Ly and £, the effective master equation in the
ground-state subspace is

1
O pg = _i[th + Hzee, pg] + )/(S - pg S— E{’Og’ S. S})

1
+ 5Vse<Sz>(S+pgS— —S_pgSy + {pg, S:1)

1 1
+ 5VSC<S+> <S—pgSz - Sz:ogS— + E{pg7 S—}) + H.c.

3
(n) (n) (n)¥
+Z Z [FFMF/M’JFF/MIOZZ‘IFF/M’]
n=1 FMFI/M'

— > Crm + Ty e pelim (18)
FMM'
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where p, = Pp(t) is the density matrix in the ground-state
subspace, the jump operators J. f,’}),M are

IO =F' M+ 1)(FM]|, 19)
JE = F'M)(FM|, (20)
I = F M +2)(FM|, 1)

the operator Jgy; is
Jrm = |[FM)(FM]|, (22)
and the pump-laser-induced relaxation rates are

(1) F bQZ

FMEM' = Arr |282 FMFM 1P M1 M+l (23)

r® Q2T pp
FMFM — = 82:FMFM'82;F' MF'M' = ~.

* gzl;F1M+l,F2M’+l’
FF AFFI AFFZ

(24)

(3)
FFMF/M’ = 82:FMFM' 81;F' M+2,F'M'+2

XZ QT

Arr A SLAMA+LRM +182F M+1,BEM'+1,
rE “FRSFR

(25)
4 Q?
T = ——82rMFMELFMAL M1, (26)
7 Arp
with the coefficients
gnrmrm = CGr(n, M)CGp (n, M") 27)
and
Arp = Appr — iTpp. (28)

Here, CGr(n, M), n =1, 2, are the Clebsch-Gordan coeffi-
cients, defined as

(_)n—l . 1 (_)n—l
2 727 2
and Ay =A—-A;, A =A—-Ag— A, Apo=A, and
Ap, = A — A, are the energy differences. These energy dif-
ferences App are the detunings between the pump laser’s fre-
quency and the transition frequency between the ground state
in the F' multiplet and the excited state in the F’ multiplet. We
also define the corresponding effective detunings Ay, given
that each excited state “gains” an imaginary energy —il",, Tep-
resenting its energy level broadening. Note that we simplify
the derivation of Eq. (18) by assuming the hyperfine splitting
Ag is much larger than the (effective) decay rates, which is the
case for most alkali-metal-vapor atomic magnetometers, such
that the coherence between the a and b multiplets, as well
as the contribution to the effective detuning App from the
electronic spin relaxation and the Zeeman splitting, can be ne-
glected. Moreover, we assume that the spontaneous decay rate
is much smaller than the pressure broadening, I'yy/2 < I' =
I" pb, Which occurs in atomic vapors with high-pressure buffer
gas. Thus the spontaneous decay term can be neglected in the
master equation. When the condition I'yq /2 < T'py, is not met,

CGr(n,M) = <I,M—

FM>, (29)

we can obtain a similar effective master equation in which the
effective decay rates Fgmlwif) and T'} Fy are slightly different.

The effective master equation (18) is valid in an extensive
parameter regime. In particular, when the energy splittings
Ag and A, are both much smaller than the excited states’
energy broadening I', the master equation can be written in

the compact form [16]
dhpg = (LD + LP)p,

1 3
+Lop |:S+pgS + 8045 + E{Sz» Pgt — Zpgi|

—iALs[Sz, pgl, (30)
where
Fop = L 31
24 A2
is the optical pumping rate and
Ms= 1A (32)
24 A?

is the light shift. This master equation (30) gives the Bloch
equations and the spin temperature distribution [6,16], where
populations in states with the same magnetic number M are
the same.

In an extensive parameter regime, including when the con-
dition A, < I'pp is not met, one can use the general master
equation (18) we have derived. It can be shown in (18) that
when the coherence between the two multiplets a and b in the
spin relaxation term are ignored, the diagonal elements of the
density matrix p, are decoupled from the diagonal ones. As
a result, we obtain the rate equations [28], i.e., the evolution
of the diagonal elements of the density matrix. In this case,
only the diagonal terms are nonvanishing in the steady-state
solution to the master equation, i.e., the polarization is along
the z direction and the mean values (Si) in £ are zero.
This reduces the number of coupled nonlinear equations from
4(4I + 2)° to 41 4 2, and speeds up the numerical calculation.

In the experiment [19] with cesium atoms, whose nuclear
spin is 7/2 and energy splittings are Ag = 9.193 GHz and
Ap = 1.168 GHz, the atomic cell is cubic, with inner size 4 X
4 x 4 mm?, and is heated to 90 °C. The power of the pump
beam is 700 uW, with right-handed circular polarization. The
magnetic field By = 0.1 G along the z direction. Thus the
atoms are mostly pumped to states with negative magnetic
numbers, and the polarization is negative. This is equivalent
to a left-handed circularly polarized pump laser propagating
antiparallel to the direction of the magnetic field. In this case,
we only need to change By to —By in the effective master
equation (18), while keeping the definition of the z direction
that defines the magnetic states. With the Rabi frequency
@ = 4.1 MHz, spin exchange rate y;. = 1.31 KHz, total spin
relaxation rate y = 1.53 KHz, and excited states’ energy
broadening I' = 0.6 GHz for the 100 torr nitrogen case, while
y = 1.65 vKHz, I' = 4.2 GHz for the 700 torr nitrogen case,
we numerically solve the master equation (18) for p, in the
long term limit.

With the steady-state solution p{”, where p{” satisfies

the effective master equation (18) and 9, ,02,0) = 0, the elec-
tronic spin polarization (S;) as a function of the detuning
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FIG. 2. Electron polarizations for cesium atoms in the steady-
state solution to the effective master equation in the ground-state
subspace, as functions of the pump beam’s detuning A. For a smaller
decay rate (100 torr, blue line) of the excited state such that I' <
Ag, there are two peaks in the electron’s polarization, around two
resonant frequencies A = 0 [point (a)] and A,, = 0 [point (c)]. In
the 700 torr case (red line), the decay rate I" is comparable to Ag.
Therefore, the two polarization peaks around the two frequencies
[(b) and (d)] cannot be distinguished. The populations in the ground
states at these four points (a)—(d) are plotted in Fig. 3.

A is plotted in Fig. 2. For the 100 torr nitrogen case, two
peaks, corresponding to A ~ 0 [marked by circle (a)] and
Ayq = 0 [marked by circle (c)], are shown in the polarization
curve, corresponding to two pump frequencies resonant with
the transition frequencies between the a/b multiplets and
the excited states. However, for the 700 torr nitrogen case,
these two peaks [marked by circles (b) and (d)] cannot be
distinguished because of the large energy level broadening
I of the excited states. Comparing the polarizations at these
four circles in Fig. 2, we see that the polarization in (a) is
larger than in (b), while the polarization in (c) is smaller than
in (d). This is because the effective optical pumping rates
I‘I(,JM;SV)I, are inversely proportional to I". [We note that the
optical pumping process is generally complicated, as shown
in Eq. (18), and there does not exist a simple optical pumping
rate, as shown in Eq. (31).] In (a) and (b), A =0 and the
ground state with F =3 are more efficiently pumped and
depleted, leaving the atoms mostly in the F' = 4 states, which
contribute more to the electrons’ polarization. Thus the larger
the energy level broadening I", the smaller is the polarization.
However, in (c) and (d), A,, = 0 and the F = 4 ground states
are more efficiently pumped, leaving the atoms populating
the F = 4 states less than in cases (a) and (b). Therefore, the
larger I causes more polarization. To verify this, we plotted
the ground-state populations, i.e., the diagonal terms of the
density matrix in Fig. 3, for the four resonant cases (a)—(d)
marked in Fig. 2. Figure 3 shows that the populations in the
F =4 ground states are larger in (a) and (d) compared with
those in (b) and (c), respectively. Moreover, in each case, the
populations in states |4, m) and |3, m) are different, especially
when m = 3, which is shown explicitly in the figures. Thus the
spin temperature distribution [6,16] is not valid.

Having solved the steady-state solution pé(,o), we will study
the light shift and linewidth acquired from the linear re-
sponse [27] of the atoms to an oscillating transverse magnetic
field.

(a) 100Torr, A=0 (b) 700Torr, A=0

1 1
| r=1 |
0 - 0 =

M=-432101234| M=-4-3-2-101234
1 1
F=3

F=3

0
M= 3210123 M= -32-10123

(c) 100Torr, A__=0
aa

1 1
e o
0 0 =

M=-432101234 M=-432-101234

1 1
F=3 F=3
0 0

-3-2-10123 M= 3210123

(d) 700Torr, A =

M =

FIG. 3. Population distribution in the hyperfine states at two
resonant frequencies A =0 [(a) and (b)] and A,, =0 [(c) and
(d)], for different energy level broadening I' of the excited state,
corresponding to the four points in Fig. 2. When the lower ground
states with F' = 3 are pumped (A = 0), the smaller the decay rate I"
is, the smaller is the population in the F' = 3 states. However, when
the upper states with F' = 4 are pumped (A, = 0), a smaller I" gives
a larger population in the F' = 3 states. Note that the populations in
states |4, m) and |3, m) are different, especially when m = 3. Thus
the spin temperature distribution is not valid.

IV. FREQUENCY-DEPENDENT LIGHT-SHIFT
REDUCTION AND LIGHT NARROWING

In the presence of the oscillating magnetic field B,.é, cos wt

in the x direction, where B, (B, = 3 nT i %n the experiment)
l’l

is much smaller than the decay rate y or I" FyFae the master
equation can be written as
3 pg = Lopg + Lipy, (33)
where
Lopg = —ilHnt + Hzee, pgl

1
+V(S-pgS— z{pg,S-S}>

1
+ 5Vse<Sz)(S+pgS— —S_peSt +{pg. S:})

3
(n) (n) (n)¥
+ Z Z FFMF/M’JFF/M gJFF/M’]
n=1 FMF/M'

— Y Trm + Cpy ) e peliar (34)
FMM'

is the zero-order term, and

1 1
Eyse(s-i-) (S—pgsz - Sz:ogS— + E{pg’ S—}>

+He. + LYp, (35)

leg =
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is the first-order perturbation. Here, the zero-order Lindblad
operator L is different from the right side of Eq. (18) re-
garding the terms containing (S ), since (S) is zero from the
zero-order solution ,020). That is, the polarization in directions
other than the z direction is induced by the magnetic field
B.é, coswt. As a result, the terms with (S) are perturbations
and it is in £; rather than in .

To the first order of £, pPg in the long-term limit has three
parts:

pe=py" + pgDe + pDe (36)

where p{” was obtained above by solving the equation

Lop® = 0; p{P is the positive-frequency part of p, that
fulfills

(Lo — iw)p? + L0 =0, (37)

with its positive-frequency Lindblad operator £—(1+> defined as
~ i 1
;CTL),O;O) = _EVeBx[Sx’ Pé(,o)] + EyseTr[S-&-péJr)]

1
(52005 -0+ 1o

+Hec., (38)

and the negative-frequency part pg(,’) = pé*” to ensure the
Hermitian of the density matrix p,. Note that £_(1+> is depen-
dent on p{*) through the mean value (S+_ ). Therefor?, Eiﬂpgo)
can be decomposed to two parts: £{p® = L{F p{") +
L_Z'I(H pg’), where

£/ 0

1 Iog _LVEBX [SXa /08(,0)]7

2

and E_E)’H contains ,oéo) but not ,o(é“. As aresult, the solution of
pé-t-) is

Pt = —(Lo+ L§ — i) LT p0. (39)
Consequently, the electrons’ polarization in the x direction can
be written as

(Sc(1)) = Re(Sj) cos wt — Im(Sj) sin wt, 40)
where (S7) = 2 Tr[S,p{"]. Here, (S is a function of . In
the experiment, the measured Larmor frequency wy, is deter-
mined by the zero-crossing wy of Re(S;), and the linewidth
w is defined as half the difference between frequencies corre-
sponding to the maximum and minimum of Re(S}").

As shown in Sec. III, there are only diagonal terms in the
steady-state pg,o). Thus, in the superspace [10,12,26], Z/l(+) péo)
is a column vector in the subspace {|FM)(FM =+ 1|}, and
Lo+ L§P is a matrix that does not couple this subspace
{|IFM)(FM =+ 1|} to the others. In general, the zero-crossing
wp and the linewidth w are obtained by diagonalizing the
matrix Loy + /:'(()“, which can only be done numerically. But
to acquire an intuitive picture, we can analyze the diagonal
terms of Lo + E_(()+).

When the Larmor frequency @i, is much larger than the dis-
sipation rates that contribute to the real parts of the eigenval-
ues of £y + E_(+), the zeros crossing wy will be around +awy,
the eigenvalues of i£® in the subspace {|FM)(FM % 1|}.
Here, we focus on w around the positive frequency w, corre-
sponding to the subspace {|aM){a, M + 1|, |bM){b, M — 1|}
(the coherence between states with different F° has been
ignored, for the same reason as in Sec. III). Especially,
when the atoms mainly populate the state |aa), the most
weighted diagonal element of £y + E_B’H is i@ — y in the basis
|a, a — 1){aa|, where the frequency

3 N 1 QAL a1
w = w _—_
P4 1T 4 A2
and the line broadening
. @ r . I+l
TN § O T L
1 21
Yex(S2). (42)

T+ T a1

In the light-narrowing regime with A ~ 0, & can be approxi-
mated in the vicinity of this resonant frequency as

> = LA (43)
ROV b SNy L
where
1 QA
(44)

YT It A?

is the frequency-dependent light shift that leads to measure-
ment inaccuracy if the pump laser’s frequency fluctuates.
Because of the large hyperfine splitting As, the frequency-
dependent light shift o can be strongly reduced. Further-
more, for fully polarized atoms, i.e., (S;) = 1/2, the linewidth

Q? r
21+ 1T2 + A2

aa

N I+1
2 +1

v = Ysds 45
and the spin-exchange relaxation does not contribute to
the linewidth, which makes perfect line narrowing [20,21]
possible.

The Lorentzian light shift w in Eq. (44) is actually the
ac Stark shift. It gives an intuitive picture of why the light
shift is reduced in the light-narrowing regime. But, as shown
in £y + E_(()H in Eq. (39), each pair of adjacent magnetic levels
has its own precession frequency (the imaginary part of the
diagonal terms of £y + ﬁ_f)+)), and they are all coupled (the
nonzero off-diagonal terms of £y + L_B’H). Thus the total light
shift is generally not a single Lorentzian or a sum of several
Lorentzians. To obtain the exact result, we numerically solve
Eq. (39) and search for the zero-crossing wy and the linewidth
w. The numerical results, which are shown in Fig. 4, with the
same parameters as in Fig. 2, agree well with the experimental
data. For the light shift shown in Fig. 4(a), in both the 100
and 700 torr cases, in the vicinity of the frequency A = Ag
(A4 = 0), where the F = a ground states are pumped, the
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0.05

—Theo (100Torr)
° Exp (100Torr)
—Theo (700Torr)
| Exp (700Torr)

(wo — wr) /wr,

-5 0 5 10 15
A(GHz)

-5 0 5 10 15

FIG. 4. Light shift (a) and linewidth (b) for the 100 and 700 torr
nitrogen cases as functions of the pump beam’s detuning A [the
legend in (b) is the same as in (a)]. The theoretical results are shown
by the lines, and the experimental data are shown by circles with
corresponding colors (the experimental data have been calibrated so
that the light shift at infinite detuning is zero). Both the theoretical
and experimental results show that the light shift’s dependence on
the pump laser’s frequency is largely reduced around the resonant
point A, especially compared to the light shift around A,, = 0. In
this light-shift-reduced regime, the linewidth is narrowed, as shown
in (b).

blue lines have two (100 torr) or one (700 torr) zero crossing,
corresponding to the resonant frequencies, and the light shift
changes much while the frequency varies. However, when A
is around O, i.e., when the F' = b ground states are pumped,
no zero-crossing appears in the blue lines and the frequency-
dependent light shift is highly reduced. The linewidth shown
in Fig. 4(b) has a dip around the frequency A = 0. This is the
light-narrowing effect. Note that at a large detuning limit (=5
and 15 GHz, for instance), the light’s effect tends to vanish.
As a result, at infinite detunings, the light shift goes to zero
and the linewidth tends to be a constant, independent of the
pump beam’s Rabi frequency €2, its detuning A, or the excited
states’ decay rate I' [33].

V. CONCLUSIONS AND OUTLOOK

We have studied in detail the mechanism of the light
shift and light-narrowing effects in alkali-metal-vapor mag-
netometers. Starting from the full master equation for the
alkali-metal atom’s density matrix, we acquire the effective
master equation in the ground-state subspace by adiabatically

-3
x10 ‘ 500
o | —light shift
A —line width
i 1l *400/\
5 =
| 0 1300 \5
3,4
1200
) ‘ ‘ ‘
-5 0 5 10 15

A(GHz)

FIG. 5. Light shift (black line) and linewidth (red line) for I' =
0.2 GHz and ©Q = 0.5 MHz, with other parameters the same as the
100 torr nitrogen case in the cesium vapor experiment. With smaller
I" and €2, more peaks and zero crossings are shown in both the light
shift and the linewidth.

eliminating the excited states in the weak-driving limit. This
effective master equation can not only save power and time
for the numerical calculations, but it can reveal the intuitive
picture of the frequency-dependent light-shift reduction: in
the light-narrowing regime, the F = b ground states are de-
pleted by the pump laser, and the atoms mostly populate the
F = a states. As a result, the light shift is reduced since the
pump beam’s frequency is largely detuned from the transition
frequency between the most populated ground states (F = a)
and the excited states. We compare the theoretical results to
the experimental data, and we find they agree for both the light
shift and the linewidth.

We note that the effective master equation we have ob-
tained is general and is valid in an extensive parameter
regime for alkali-metal-vapor magnetometers. Particularly, it
can lead to the spin temperature distribution in the limit that
the hyperfine splittings in both the ground and excited states
can be ignored when the broadening of the excited states
is much larger than them. Since it consumes little time and
power to solve this effective master equation, one can use
it to quickly explore a large parameter regime to optimize
the physical properties. For example, with a smaller decay
rate I' = 0.2 GHz and Rabi frequency 2 = 0.5 MHz, while
other parameters are the same as in Fig. 2 for the 100 torr
nitrogen case, the light shift and linewidth are acquired and
shown in Fig. 5. Here, more peaks and zero crossings can
be distinguished, corresponding to four resonant frequencies
App/ ZOWithF,F/ =3,4

In addition to the application shown in this paper, the
effective master equation is also applicable to many other
topics, such as the study of heading errors [34,35] and light
propagation in an atomic vapor.
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