
PHYSICAL REVIEW A 99, 063408 (2019)

High-order harmonic generation in imperfect crystals

Chuan Yu, Kenneth K. Hansen, and Lars Bojer Madsen
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark

(Received 6 March 2019; published 13 June 2019)

High-order harmonic generation (HHG) in imperfect crystals, where the disorder is modeled by random
shifts of the ionic positions, is studied using time-dependent density-functional theory. When irradiated by
midinfrared laser pulses, the disorder-free system produces HHG spectra with two plateaus. Compared with
the disorder-free system, disordered systems are found to emit suppressed harmonics in the first plateau region
and enhanced harmonics in the second plateau region. The suppression of harmonics in the first plateau becomes
less pronounced when decreasing the displacement of the nuclei, while the enhancement in the second plateau
region is insensitive to the range of the ionic displacement. We have confirmed these findings for many different
disordered sample systems and for different laser field strengths. The increase of the HHG signals in the second
plateau region is proposed to stem from a change of the dynamics in the system, evidenced by the transition
matrix elements between the field-free Kohn-Sham orbitals. In addition, a time-frequency profile of HHG spectra
shows that the emission of harmonics is less regular in the time domain for a disordered system than for the
disorder-free system.
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I. INTRODUCTION

High-order harmonic generation (HHG) in gases [1,2] is
one of the fundamental strong-field phenomena in laser-matter
interactions. It allows for production of subfemtosecond laser
pulses, with which ultrafast dynamics in matter can be ex-
plored on femto- and attosecond timescales [3]. Recently,
HHG in solids was demonstrated [4–9] with potential ap-
plications as a novel XUV light source and for probing
ultrafast dynamics in condensed-matter systems [10]. High-
order harmonic generation and ultrafast processes in bulk
and nanostructured materials attract considerable theoretical
interest in this new research area where strong-field laser
physics meets condensed matter. It has been demonstrated
that some strong-field concepts, such as the three-step model
for HHG [11], can be generalized to describe laser-induced
processes in solids when the band structure is taken into
account [12,13].

In most of the theoretical studies so far, the solid-state
system interacting with the laser field is treated as a perfect
crystal with a periodic lattice structure. Theoretical models
for HHG in a solid with some form of disorder have only
been considered very recently, e.g., for investigating effects of
doping-type impurities [14,15] and for simulating a two-band
tight-binding model of Anderson disorder [16]. Recent exper-
iments have demonstrated HHG in amorphous solids [17,18]
and liquids [19], implying that a perfect periodic lattice is
not a stringent requirement for HHG in condensed-matter
systems. Consequently, theoretical research on HHG in an
imperfect crystal is becoming very relevant. It is natural to ask
how the HHG spectral features will be modified by breaking
the lattice periodicity. A complete answer to this question,
however, is not yet available. As will be shown in this paper,
disorder has an impact on the harmonic yield not only in the

first plateau region, but also in the higher-order region beyond
the first cutoff, which cannot be described by the two-band
model used previously [16]. To further explore the spectral
features of HHG in an imperfect crystal, in this work we per-
form self-consistent simulations of HHG in disordered model
systems, which could be relevant also to HHG in amorphous
materials. Since very little has been done in this direction,
we find it interesting and relevant to investigate how disorder
affects the HHG spectra in a general setting. So in this work
we study the effects of deviation away from perfect lattice
order by introducing random shifts of the nuclear positions
instead of modeling a particular type of lattice defects such as
impurities or vacancies.

Note that breaking the lattice periodicity increases the the-
oretical complexity, since Bloch’s theorem becomes inappli-
cable and one cannot simply use periodic boundary conditions
in calculations. Previous theoretical investigations on HHG in
solids are typically based on the semiconductor Bloch equa-
tions [12,20–23] or the time-dependent Schrödinger equation
in single-active-electron (SAE) models [24–31]. In pursuit
of going beyond the SAE models, there are also theoretical
works that employ many-electron approaches such as the
time-dependent density-functional theory (TDDFT) [32–37]
and the time-dependent Hartree-Fock theory [38]. In this work
we use a TDDFT model as in Refs. [15,35–37,39,40], which
accounts for many interacting electrons, at least on a mean-
field level. As will be shown below, this approach allows us
to model an imperfect crystal in a straightforward manner,
without making additional assumptions.

This paper is organized as follows. In Sec. II we describe
the theoretical model and methods used in this work. The
results of the calculations are presented and discussed in
Sec. III. We conclude with a brief summary. Atomic units
(a.u.) are used throughout unless stated otherwise.
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II. THEORETICAL MODEL AND METHODS

In order to study the generic effects of disorder in HHG
processes, the first step is to set up a model that can qual-
itatively represent a condensed-matter system with typical
band structures. Following previous works [15,35–37], we
consider a finite system so large that it behaves like a solid.
Let us first introduce the model for a perfect crystal with
one of the crystal directions along the linear polarization
of the laser field. This model will be used for comparison
with the disordered systems in our discussion in Sec. III.
To model a disorder-free crystal, we consider a linear chain
of N equally charged nuclei with a separation a and located
at x j = [ j − (N + 1)/2]a ( j = 1, . . . , N). The ionic potential
reads

vion(x) = −
N∑

j=1

Z√
(x − x j )2 + ε

, (1)

where Z is the charge of each ion and ε is a softening
parameter which smoothens the Coulomb singularity in a
one-dimensional (1D) treatment. In this work we set N =
200, Z = 2, ε = 2, and a = 4. This model, similar to the
system A in Ref. [35], can qualitatively represent a crystal
with a fully occupied valence band, and we will return to the
corresponding band structures below.

The disorder of an imperfect crystal considered in our
model is described by random shifts of the ionic locations,

x j → x̃ j = x j + r jδ, (2)

where r j ( j = 1, . . . , N) are random numbers uniformly dis-
tributed within [−1, 1] and δ (<a/2) is a parameter for
specifying the range of the random shifts. All the considered
systems (with and without disorder) are charge and spin
neutral. Thus the number of electrons with opposite spin is
N↓ = N↑ = N for the present case with Z = 2.

We treat the field-free electronic states for our model sys-
tems with density-functional theory (DFT). In the Kohn-Sham
(KS) scheme, we find a set of KS orbitals determined by{

−1

2

∂2

∂x2
+ vKS[{nσ }](x)

}
ϕ j,σ (x) = ε j,σ ϕ j,σ (x), (3)

with the static KS potential

vKS[{nσ }](x) = vion(x) + vH[n](x) + vxc[{nσ }](x). (4)

The Hartree potential reads

vH[n](x) =
∫

dx′ n(x′)√
(x − x′)2 + ε

(5)

and the exchange-correlation potential is treated in a local
spin-density approximation (LSDA)

vxc[nσ ](x) � vx[nσ ](x) = −
[

6

π
nσ (x)

]1/3

. (6)

The spin densities are nσ (x) = ∑Nσ

j=1 |ϕ j,σ (x)|2 for spin σ =
↓,↑ and the total density is n(x) = ∑

σ=↓,↑ nσ (x). Here we
use the LSDA exchange potential for the 3D electron gas
because our model aims to simulate HHG from a 3D system

driven by linearly polarized laser rather than to solve an exact
1D system. A previous study [35] showed that this approach
captures the main features of HHG in bulk solids.

For the driving laser pulse linearly polarized along the x
axis, we use the vector potential

A(t ) = A0 sin2

(
ω0t

2Nc

)
sin(ω0t ) (0 � t � 2πNc/ω0), (7)

with ω0 the angular frequency (photon energy) and Nc the
number of cycles. The laser-driven many-electron system is
governed by the time-dependent KS equations

i
∂

∂t
ϕ j,σ (x, t )

=
{
−1

2

∂2

∂x2
− iA(t )

∂

∂x
+ ṽKS[{nσ }](x, t )

}
ϕ j,σ (x, t ), (8)

where the KS potential

ṽKS[{nσ }](x, t ) = vion(x) + vH[n](x, t ) + vxc[{nσ }](x, t ) (9)

is time dependent due to the time dependence of n(x, t ) and
nσ (x, t ).

We propagate the time-dependent KS orbitals using the
Crank-Nicolson approach with a predictor-corrector step for
updating the KS potential [41,42]. The initial conditions for
the TDDFT calculations, i.e., the field-free ground-state KS
orbitals, are found via imaginary-time propagation with or-
thogonalization in each time step [41]. Using the ground-state
occupied KS orbitals as the initial state, we perform TDDFT
calculations for the systems interacting with an eight-cycle
laser pulse of frequency ω0 = 0.015 corresponding to a wave-
length of approximately 3 μm. The numerical calculations are
performed on an equidistant grid with spacing 
x = 0.1 and
24 000 grid points, covering the spatial range [−1200, 1200].
For the results presented below, we use a fixed step size

t = 0.05 for time propagation and perform a convergence
check by using 
t = 0.025. We compute the time-dependent
current

J (t ) =
∑
j,σ

∫
dx Re

[
ϕ∗

j,σ (x, t )

(
−i

∂

∂x
+ A(t )

)
ϕ j,σ (x, t )

]

(10)

and evaluate the HHG spectral intensity as the modulus square
of the Fourier-transformed current, i.e.,

S(ω) ∝
∣∣∣∣
∫

dt J (t ) exp(−iωt )

∣∣∣∣
2

. (11)

Here we do not account for macroscopic propagation ef-
fects, which may modify the HHG spectra via absorption
and phase mismatch. Such propagation effects, however, can
be mitigated by controlling the thickness of target materials
[9]. Therefore, we expect our discussion to be valid for
a thin target material. Furthermore, note that the coherent
radiation would propagate perpendicular to the linear chain
and hence nondipole effects resulting from the consideration
of the dot product between the propagation vector and the
position vector would not be present along the chain due to
the orthogonality of these vectors.
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FIG. 1. (a) Comparison of the field-free KS potentials between the model system without disorder (solid black line) and a disordered
system with δ = 0.4 [see Eq. (2)] (dotted red line). The inset shows a zoomed-in view of the potentials over 20 unit cells in the center of the
model system. Also shown are band structures, which are obtained from the k-space distribution of the KS orbitals, for (b) the disorder-free
system and (c) the disordered system considered in (a). The first Brillouin zone boundary is at k = ±π/a = ±0.7854.

III. RESULTS AND DISCUSSION

A. Disorder-induced changes of field-free properties

We first examine the disorder-induced changes of the field-
free properties in the DFT language. Figure 1(a) shows the
static KS potentials of the model systems with and without
disorder. Remember that our models are large enough to
mimic condensed-matter systems [35–37]. Basically, each
local minimum of the KS potential corresponds to the position
of a nucleus. One can therefore observe the change of the
ionic locations from the effective KS potential. For the model
system without disorder, the static KS potential shows a
periodic multiwell structure, except for the region near the
system boundary. One can see that random shifts of the ionic
locations disturb the multiwell structure in terms of not only
shifting the positions of local extrema, but also resulting in
peaks (valleys) of different heights (depths) in the effective
potential.

With the static KS potential at hand, one can find the
occupied and unoccupied KS orbitals together with their
corresponding energies [Eq. (3)] and then use the Fourier-
transformed orbitals (in k space) to construct the band struc-
tures, as done in Refs. [15,35,36]. The finiteness of the simula-
tion box can lead to the appearance of the free-space parabola
k2/2 [35], which does not play any noticeable role for
HHG in solids [36]. In the present work we exclude the
free-space dispersion from the band structures by introducing
a mask function

M(x) =
⎧⎨
⎩

1, |x| � R1

cos2
[

π (|x|−R1 )
2(R2−R1 )

]
, R1 < |x| < R2

0, |x| � R2

(12)

multiplied by the real-space KS orbitals before Fourier trans-
forming to k space. The two parameters R1 and R2 in Eq. (12)
are chosen such that

∫ −R1

−∞ dx n(x) + ∫ ∞
R1

dx n(x)∫ ∞
−∞ dx n(x)

≈ 10−6, (13a)

∫ −R2

−∞ dx n(x) + ∫ ∞
R2

dx n(x)∫ ∞
−∞ dx n(x)

≈ 10−8, (13b)

which approximately define the finite system size according
to the electron density, and in the present calculations R1 =
402.5 and R2 = 404.5 are used.

The band structures for the model system without disor-
der and for the disordered system are shown in Figs. 1(b)
and 1(c), respectively. The energy range includes the fully
occupied valence band and two conduction bands. For both
systems, the band gap (BG) between the valence band and
the first conduction band is ∼0.3 (at k = ±π/a), and similar
signatures of band structures are clearly observed in the two
systems. Meanwhile, we find that the plot in Fig. 1(c) displays
more structures than the plot in Fig. 1(b), i.e., a specific energy
corresponds to more k values in addition to the band-structure
curves, which indicates that the KS orbitals for the disordered
model are less localized in k space than those for the system
without disorder. This can be understood in view of the fact
that in the disordered case, the valleys of different depths in
the KS potential [Fig. 1(a)] lead to more localized KS orbitals
in real space. We note that the present type of disorder does
not introduce any states within the band gap, which is different
from the case with disorder introduced in terms of doping-type
impurities [15].
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FIG. 2. (a) HHG spectra of representative disordered model sys-
tems with δ = 0.4 [Eq. (2)]. (b) Same as (a) but with δ = 0.2. In
both (a) and (b) the spectrum of the system without disorder (solid
black curve) is shown for comparison. (c) HHG spectra obtained
from calculations with the dynamic KS potential and the frozen
KS potential (see the text) for a representative disordered system
and the disorder-free system. The laser parameters are A0 = 0.3,
ω0 = 0.015, and Nc = 8 [Eq. (7)].

Note that the disorder-induced changes of the KS potential
and the band structures are obtained self-consistently within
the DFT framework. By considering, in our simulations, a set
of model systems with different random shifts of the ionic
locations [Eq. (2)], we have confirmed that our qualitative
findings regarding static KS potentials and band structures
are universal for the disordered systems corresponding to
imperfect crystals. Indeed, in the following discussion of the
disorder-induced changes in HHG spectra, one can clearly
observe some common features of the disordered systems
in the HHG spectra, from which we draw some general
conclusions for HHG in imperfect crystals.

B. Disorder-induced changes of HHG spectra

Having prepared many disordered systems in their ground
states using different random shifts of the ionic locations, we
perform the corresponding TDDFT simulations [Eq. (8)] and
calculate the HHG spectra. The results are presented in Fig. 2
for a fixed laser parameter A0 = 0.3, with the HHG spectrum
from the disorder-free system also displayed for comparison.

Before starting the discussion of the HHG spectra, let us first
revisit the intra- and interband contributions of HHG in solids
[12,13]. Intraband HHG stems from the laser-driven electron
motion within band structures with anharmonicity. Typically,
the intraband HHG intensity decreases with increasing har-
monic order. Interband HHG is described by the generalized
three-step model for solids: First an electron tunnels into the
conduction band, leaving a hole in the valence band; then
the electron and hole move in their respective bands and may
recombine at a later time, emitting a photon with energy above
the BG energy.

For the considered laser frequency ω0 = 0.015, which is in
the midinfrared regime, harmonics up to order 20 are in the
sub-BG regime. With increasing harmonic order, the intensity
of intraband HHG decreases and interband HHG becomes
dominant when going into the above-BG regime, resulting in
a spectral minimum in the sub-BG region (of order ∼8) and
a spectral maximum around the BG energy (of order ∼20).
Such spectral features have also been observed in some other
works using different methods [29,43]. For the system without
disorder, the HHG spectrum has two plateaus, with their
corresponding cutoffs of order ∼50 and ∼140, respectively.
Although the mechanisms of the HHG plateaus and cutoffs are
not the main focus of this paper, for completeness we would
like to briefly mention that the first cutoff can be explained
by semiclassical analysis of the electron (hole) motion in the
conduction (valence) band [13,20]. Note that for the consid-
ered vector-potential amplitude A0 = 0.3, the electron, after
tunneling has occurred at k = ±π/a, cannot reach the mini-
mum BG between the first and second conduction bands (at
k = 0). The second plateau and the corresponding cutoff may
be related to many-electron effects as discussed in a recent
paper [38]. The authors of Ref. [38] proposed a hauling-up
effect to explain how the valence-band electrons climb up
to the second conduction band and contribute to interband
HHG when taking into account correlated-electron dynamics,
in principle also included in the present TDDFT approach. In
addition to the TDDFT simulations with the time-dependent
KS potential [Eq. (9)], we perform calculations with a frozen
ground-state KS potential, as done in Refs. [15,35–37,39].
Such a frozen-KS-potential approach is typically applicable
when the electron density is not significantly changed during
the laser pulse and it captures all the independent-electron
dynamics [39]. As will be shown below, the second plateau for
the disorder-free system, which is a signature of correlated-
electron dynamics [38], cannot be well described within the
frozen-KS-potential approach.

As shown in Fig. 2(a), the HHG spectra for the disordered
systems with δ = 0.4 manifest some common features. (i) The
harmonics below order ∼8 are of intensity similar to those
in the system without disorder, implying that the low-order
harmonic signals are not significantly influenced by disorder.
(ii) The harmonics of order ∼8 to ∼55, which are dominated
by the interband HHG process between the valence band and
the first conduction band, have weaker signals than those in
the system without disorder. (iii) The harmonics of order ∼55
to the second cutoff around harmonic ∼140 are however en-
hanced when disorder is introduced in the ionic positions. For
a smaller displacement of the nuclei with δ = 0.2, as shown in
Fig. 2(b), the suppression of the HHG signal in the first plateau
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region is less pronounced. This finding is consistent with the
results in Ref. [16]. The disorder-induced enhancement of
HHG signals in the second plateau region, however, is clearly
shown in both Figs. 2(a) and 2(b). Note that in Figs. 2(a) and
2(b), five spectra from randomly selected disordered systems
are presented. We have performed TDDFT simulations for a
number of randomly generated disordered systems and have
confirmed that our findings are indeed of a general nature. The
HHG spectra obtained from calculations with the dynamic
KS potential and the frozen KS potential are compared in
Fig. 2(c). For the system without disorder, the frozen-KS-
potential approach is applicable for harmonics below order
∼75, while it underestimates the HHG signals in the second
plateau region. This confirms that the second plateau stems
from correlated-electron dynamics [38], which is beyond the
independent-electron picture. For the disordered system, we
see from the figure that the frozen-KS-potential approach is
generally accurate for all the harmonics. This implies that the
disorder-induced enhancement of HHG signals in the second
plateau region could be attributed to the independent-electron
dynamics, a point we will return to below. We note that all the
HHG results presented in this paper, except for Fig. 2(c), are
obtained from the full TDDFT simulations with the dynamic
KS potential.

To further demonstrate the universality of the observed dis-
order effects on HHG in the considered midinfrared regime,
we calculate HHG spectra at different vector-potential ampli-
tudes for the systems with and without disorder and present
the results in Fig. 3. For the disorder-free system [Fig. 3(a)],
the first cutoff shows an approximately linear A0 dependence,
which is a well-known feature of HHG in solids. The second
plateau is only pronounced for stronger field strengths A0 �
0.25, which is qualitatively consistent with the findings in
Ref. [38]. One can clearly see from Fig. 3 that the first cutoff
is essentially the dividing line between the two parts of the
HHG spectra where disorder has the opposite effect on the
HHG signals. Indeed, our above findings from Fig. 2 are
generally valid for different field strengths: The harmonics
are suppressed by disorder in the first plateau region, while
the harmonics are enhanced by disorder in the second plateau
region.

Note that in the presence of disorder, it is nontrivial to
make a semiclassical analysis for the HHG processes, because
breaking the lattice periodicity makes the Bloch electron
picture inappropriate. To gain some insight into the disorder-
induced change of the dynamics in the system, we consider the
field-free KS orbitals as a basis set and examine the transition
matrix elements of the laser interaction [described by the op-
erator p̂ = −i ∂

∂x in the velocity gauge; see Eq. (8)]. We calcu-
late the transition matrix elements pmn = 〈ϕm| p̂ |ϕn〉√

ρmρn,
where ϕm and ϕn are the mth and the nth static KS orbitals
with the same spin [Eq. (3)] and the spin index is dropped for
notational convenience. Here the transition matrix elements
are scaled by the density of states ρm and ρn, since the
discretized orbital energies in our finite model are viewed as a
series of sampling points in the energy bands. As can be seen
in Fig. 4, the amplitudes |pmn| to some extent reflect the laser-
driven transitions. The transition matrix elements are closely
related to the band structures shown in Figs. 1(b) and 1(c). To
illustrate this point, in Fig. 4 we label the initial-state orbital

FIG. 3. HHG spectra as a function of vector-potential amplitude
A0 for (a) the system without disorder and (b) a disordered system
[the sample system (a5) in Fig. 2]. The dashed lines indicate the
first cutoff for the system without disorder. The remaining laser
parameters are the same as in Fig. 2.

by its most probable momentum k and the final-state orbital
by its orbital energy and present the amplitudes |pmn| for tran-
sitions from initial-state orbitals in the first conduction band to
final-state orbitals with higher energies. For the disorder-free
system, Fig. 4(a) shows that a state with its most probable
momentum k is most likely to transit to an adjacent state in
the same band or a state with the k-space distribution peaking
at an equivalent k value in a different band. This reflects the
description of the electron motion in the three-step model for
HHG in solids: The electron in k space either adiabatically
follows the band structure or makes a vertical transition to an-
other band. For the disordered system, we observe in Fig. 4(b)
that in addition to the two above-mentioned types of transi-
tions, there are more transition couplings allowing electrons
to climb up in energy without necessarily moving according
to the band-structure curve. The disorder-induced change
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FIG. 4. Norm of the transition matrix elements between field-
free KS orbitals for (a) the system without disorder and (b) a dis-
ordered system with δ = 0.4 as also shown in Fig. 1. The horizontal
axis and the vertical axis indicate the most probable momentum k of
the initial-state orbital and the KS orbital energy of the final-state or-
bital, respectively (see the text). The initial-state orbitals considered
in this plot are in the first conduction band, while the corresponding
final-state orbitals are in the first and the second conduction bands
[see Figs. 1(b) and 1(c)]. For a specific initial-state orbital, transitions
to final-state orbitals with higher energies are shown.

of the transition couplings can provide many more reson-
antly enhanced pathways that enable electrons to more easily
reach the second conduction band, resulting in more HHG
signals in the second plateau corresponding to the range of
energy difference between the second conduction band and
the valence band. Note that the discussion of the transi-
tion matrix elements is based on the independent-electron
picture. In the presence of disorder, the harmonics in the
second plateau region are indeed dominated by independent-
electron processes, eliminating the feature of correlated-

FIG. 5. Time-frequency profile of HHG spectra extracted by a
Gabor transform for (a) the disorder-free system and (b) a disordered
system [the sample system (a5) in Fig. 2]. The laser parameters are
the same as in Fig. 2.

electron dynamics observed in the disorder-free system [see
Fig. 2(c)].

A time-frequency profile of HHG spectra is helpful for
understanding how the HHG spectra are built up in the time
domain [16]. To this end, for the systems with and without
disorder, we perform a Gabor transform of the current J (t ),

G(ω, t ) =
∫

dt ′J (t ′) exp(−iωt ′) exp

[
− (t − t ′)2

2τ 2

]
, (14)

where the width of the time window τ is chosen to be 5π

(a.u.). The Gabor spectra |G(ω, t )|2 for the disorder-free and
a disordered system are compared in Fig. 5. We see that for
the system without disorder, the harmonics in both the first
and second plateaus show some regular structures in the time
domain, which were also observed in Refs. [29,38]. In the
disordered case, the emission of harmonics is less regular
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in time, which is a feature induced by breaking the lattice
periodicity by random shifts of ionic locations.

IV. CONCLUSION

Using a self-consistent TDDFT approach, we have studied
HHG in imperfect crystals which are modeled by random
shifts of the ionic locations. Compared with the disorder-
free system, disordered systems irradiated by midinfrared
laser pulses are found to emit suppressed harmonics in the
first plateau region and enhanced harmonics in the second
plateau region. When decreasing the amplitude of the random
displacement of the nuclei, the suppression of harmonics in
the first plateau region becomes less pronounced, while the
enhancement in the second plateau region remains almost
unaffected. The universality of our findings has been demon-
strated for many disordered sample systems and for different
laser field strengths. The difference between systems with
and without disorder was further investigated in terms of
the transition matrix elements between the static KS orbitals.
Compared with the disorder-free system, a disordered system
was found to have more laser-driven transitions among the
electronic states. This disorder-induced change is proposed

to account for the increase of the HHG yield in the sec-
ond plateau region, since the electrons are more likely to
reach the second conduction band via richer transitions in
the presence of disorder. Finally, a time-frequency profile of
HHG spectra showed that the emission of harmonics is less
regular in time for a disordered system, which is regarded as
a feature of breaking the lattice periodicity by random shifts
of ionic positions. Our study constitutes a step forward in the
investigation of disorder-induced change of HHG processes
in condensed-matter systems and might be relevant to HHG
in a thin sample of amorphous materials. Actually, exploring
the complicated processes in disordered systems still remains
one of the theoretical challenges in this research area. This
question, if addressed further in some future works, would
allow us to gain a more general and in-depth understanding
of HHG in condensed-matter systems.
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