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Classical theory of laser-assisted spontaneous bremsstrahlung
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We study the process of laser-assisted spontaneous electron bremsstrahlung by running classical trajectories
in a combined Coulomb and laser (ac) fields. Due to chaotic scattering in the combined Coulomb and ac fields,
the radiation probability as a function of the impact parameter and the constant phase of the laser field exhibits
fractal structures. However, these structures are smeared out when the cross section is integrated over the impact
parameter and averaged over the phase. We analyze the role of different types of orbits, including the trapped
orbits, and the dependence of the radiation probability on the impact parameter and the initial phase of the ac
field. We show that, at low incident electron kinetic energy, the Coulomb focusing leads to a substantial extension
of the range of impact parameters contributing to the bremsstrahlung cross section and results in a substantial
increase (by one to two orders of magnitude) of the cross section as compared with the pure Coulomb case. As
examples, we discuss the case of relatively high ponderomotive energy Ep when we obtain an efficient production
of photons with frequencies up to 2Ep, and the case of low Ep when only infrared photons are produced. Overall
accuracy of the classical approach is estimated to be very good, although it does not describe resonant processes
studied previously by quantum-mechanical methods.
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I. INTRODUCTION

Laser-assisted spontaneous bremsstrahlung is a process of
creation of a photon with frequency � due to electron-atom
scattering in the presence of an ac field of a lower frequency
ω, i.e., the process

nh̄ω + e + A → n′h̄ω + h̄� + e + A.

It is different from the stimulated bremsstrahlung when the
emitted photon has the same frequency as the initial photon.
Laser-assisted spontaneous bremsstrahlung is in fact the same
as the harmonic generation in the continuum. We will be
interested in the process when the atomic system A is a bare
nucleus or a positive ion, then the bremsstrahlung process is
more efficient. Accordingly, we model the e-A interaction by
the Coulomb potential

V (r) = −Ze2

r

where Z is the charge of the positive ion.
This process has been studied since 1970s [1–6]. More

recent research [7–15] was stimulated by the development
of intense lasers. Most of these papers, particularly those
dealing with relativistic electrons, were treating the electron-
ion interaction in the first order of perturbation theory. Some
exceptions [8,9,12,16] were concentrating on the resonance
processes when the frequency of the emitted photon equals an
integer times the laser frequency. A more recent paper [17]
analyzed the plateau structure due to rescattering similar to
that in high-order harmonic generation.

Here we investigate another feature of the process relevant
to low-energy electron scattering when the Coulomb inter-
action cannot be treated perturbatively. It is known that the
laser-induced atomic ionization processes can be enhanced by

the Coulomb focusing [18–25]. The action of the Coulomb
potential, in combination with multiple electron returns due
to the laser field, focuses parts of the electron wave function,
increasing the efficiency of processes such as multiphoton
ionization. Similar effects can occur in continuum-continuum
transitions, which are the subject of the present paper.

In contrast to the ionization problem, the bremsstrahlung
problem can be treated purely classically as long as the elec-
tron kinetic energy is small compared with its potential energy
at distances equal to the electron de Broglie wavelength [26]
(Sec. 49). This leads to the condition ν � 1 where ν is the
Coulomb parameter ν = Ze2/(h̄v) (v is the electron velocity).
This condition should be modified in the presence of an ac
laser field, as discussed below. It will be also shown that the
range of validity of the classical approach is even broader
than suggested by the condition ν � 1. Some discrepancies
between classical and quantum results for the laser-assisted
bremsstrahlung problem were discussed in Ref. [7] and were
shown to be not due to the failure of classical mechanics
but due to the difference in description of electron states
(localized wave packet versus the Volkov wave). It should
also be added that, according to the Heisenberg correspon-
dence principle, the quantum-mechanical matrix element of
the electron dipole moment can be replaced by the Fourier
transform of the corresponding classical quantity which leads
to the classical result for the effective cross section for the
spontaneous bremsstrahlung.

Classical treatment of electron motion in a combined
Coulomb and ac field was given by Wiesenfeld [27,28]. He
found that, in a certain range of initial parameters, this motion
becomes chaotic and exhibits a fractal structure when a final
parameter, like the deflection angle, is plotted as a function
of the (initial) impact parameter. The irregular behavior is
associated sometimes with the electron capture in an unstable
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bound orbit. This kind of behavior was studied by Leopold
and Percival [29] in connection with the classical ionization
problem in a microwave field. From the quantum-mechanical
point of view, the electron is captured into a Rydberg orbital,
and then diffuses through a manifold of Rydberg states. The
correspondence between classical chaotic behavior and quan-
tum mechanics was addressed in the past (see, for example,
Refs. [30,31]). In the present paper we concentrate on the
classical aspects of the problem. In particular, we analyze
in detail the dependence of the radiation probability on the
impact parameter and the initial phase of the ac field.

II. BASIC EQUATIONS

Consider an electron beam moving in an external field.
For a given trajectory, the energy of radiation emitted in the
frequency interval d� is [Eq. (67.10), Ref. [32]]

dE� = 2e2

3πc3
|r̈�|2d� = 2e2�4

3πc3
|r�|2d�,

where r� is the Fourier transform of the electron trajectory for
a given impact parameter b:

r�(b) =
∫ ∞

−∞
ei�t r(b, t )dt . (1)

The total effective radiation (energy times cross section) per
unit frequency in the case of cylindrical symmetry is given by

dκ�

d�
= 2π

∫ ∞

0

dE�

d�
bdb. (2)

In what follows we will be presenting the probability of a
photon emission per unit frequency,

P(b,�) = 1

h̄�

dE�

d�
, (3)

and the cross section for emitting one photon per unit fre-
quency,

S(�) = 1

h̄�

dκ�

d�
. (4)

In the case of the laser-assisted bremsstrahlung we are inter-
ested in the following potential:

V (r) = −Ze2

r
− F0z cos (ωt + ϕ0), (5)

where the first term is due to the Coulomb field of the
nucleus, and the second term is due to the external laser field
with the linear polarization along the z axis. Generally, the
incident beam makes some angle with the z axis, but in the
present paper we limit ourselves by the case when the incident
velocity is parallel to the polarization of the laser field. Then
the cylindrical symmetry of the problem is preserved, the
conserved z component of angular momentum is 0, and the
motion is planar. Figure 1 presents a schematic view of a
classical trajectory of an electron which is undergoing sponta-
neous bremsstrahlung in the potential given by Eq. (5).

We concentrate on the case when the electron initially has
a relatively low velocity of about 0.1 a.u. at the distance
from the center of a few hundred bohrs. Then, depending on
the initial phase ϕ0, the field strength F0, and the ac field

FIG. 1. A schematic of a classical trajectory of an electron under-
going spontaneous bremsstrahlung. The electron radiates a photon
with frequency � as it is being accelerated by the Coulomb and laser
fields.

frequency ω, the electron can get close to the Coulomb center
or be reflected from the interaction region. In the former case
the radiation will be efficient; in the latter, it is negligible. If
the ponderomotive energy

Ep = F 2
0

4mω2

equals a few a.u., the electron speed in the interaction region
at the distance of a few bohrs from the Coulomb center, can
reach 2 to 3 a.u. Therefore, we discuss first the major features
of bremsstrahlung in this velocity range. Since these velocities
are small compared with the speed of light, c = 137 a.u.,
relativistic effects can be safely neglected.

III. BREMSSTRAHLUNG IN THE COULOMB FIELD

A. Comparison of classical and quantum approaches

In the case F0 = 0, the analytical solution is known in both
classical and quantum theories. From now on we use atomic
units and assume that the nucleus is infinitely heavy. Then in
the classical theory [Eq. (70.18), Ref. [32]],

P(b,�) = πZ2�

6c3E2

{[
H (1)′

iμ (iμε)
]2 − ε2 − 1

ε2

[
H (1)

iμ (iμε)
]2

}
,

(6)

where E = v2
0/2 is the initial electron kinetic energy, μ =

Z�/v3
0 , and ε is the eccentricity of the hyperbolic orbit,

ε2 = 1 + v4
0b2

Z2
.

H (1)
p (x) is the Hankel function, and the prime means the

derivative with respect to its argument.
The total cross section per unit frequency [Eq. (70.19),

Ref. [32]] is

S(�) = 4π2Z3

3c3v5
0

∣∣H (1)
iμ (iμ)

∣∣H (1)′
iμ (iμ). (7)

For calculations it is convenient to express the Hankel func-
tion and its derivative through the real modified Bessel func-
tion of the third kind Kiμ(x):

H (1)
iμ (iμε) = 2

π i
eπμ/2Kiμ(με),

H (1)′
iμ (iμε) = − 2

π
eπμ/2K ′

iμ(με).
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FIG. 2. The bremsstrahlung cross section in the Coulomb field
(Z = 1) without the ac field for two electron velocities. For each
velocity the solid (blue) curve represents the classical result, and the
dash-dotted (red) curve represents the quantum result.

At large μ, which corresponds to large frequencies, the calcu-
lation of Kiμ(με) by either power series or asymptotic series
becomes impossible, and we use the uniform Airy function
approximation discussed in Appendix A.

The quantum cross section is given by [Eq. (92.15),
Ref. [33]]

S(�) = 64π2Z2

3c3�

v

v0(v0 − v)2

1

(1 − e−2πν )(e2πν0 − 1)

×
(

− d

dξ
|F (ξ )|2

)
,

where v is determined from the conservation of energy,

v2
0 = v2 + 2�,

where ν0 and ν are the Coulomb parameters for the initial and
final states, ν0 = Z/v0, ν = Z/v, and F (ξ ) is the hypergeo-
metric function

F (ξ ) = F (iν, iν0, 1, ξ ), ξ = − 4v0v

(v0 − v)2 .

As apparent from the above equations, the important de-
ficiency of the classical treatment is in the neglect of the
electron energy loss due to radiation. This should become
a concern when the electron incident energy E0 = v2

0/2 is
comparable to the energy h̄� of the radiated photon. More-
over, it seems first that for � > E0/h̄ radiation is simply not
possible, and for small incident electron velocities of about
0.1 a.u. the range of � is limited to infrared and microwaves.
However, two important points relax these restrictions. First,
the quantum bremsstrahlung does not really have the well-
defined high-frequency cutoff because of the possibility of
further loss of electron energy due to capture into Rydberg
states [33]. Indeed, the quantum cross section is finite at
� = E0/h̄. In Fig. 2 we compare classical and quantum
bremsstrahlung cross sections in the Coulomb field for two
electron velocities. Although at v0 = 2 a.u. the formal cutoff
frequency is � = 2 a.u., the quantum cross section remains
finite at this frequency. Moreover, we see that classical and
quantum cross sections agree very well even for velocities

corresponding to a relatively low Coulomb parameter ν0 =
Z/v0 (the classical limit corresponds to large ν0).

Second, and more important, when the ac field is added,
the electron, when approaching the Coulomb center, might
have a kinetic energy which is much higher than its initial
kinetic energy if the ponderomotive energy Ep is high. In what
follows we choose an illustrative case with ponderomotive en-
ergy about 3 a.u. In case of a favorable phase ϕ0, the electron
kinetic energy at a distance of a few a.u. from the Coulomb
center typically reaches 2Ep, corresponding to a velocity of
about 3.5 a.u. For this velocity the classical treatment, as
follows from Fig. 2, is reasonably accurate. Second, at this
velocity, the electron is allowed to emit photons with energies
of up to about 6 a.u. Although the classical theory does
not produce the rigorous cutoff frequency, it will be safe to
assume that the electron can emit photons with energies up to
3 a.u.

We conclude that, even for small incident velocities, the
bremsstrahlung process can generate high-frequency UV ra-
diation in case of favorable initial conditions and high enough
ponderomotive energy, and the quantum effects play a minor
role in this case. This agrees with the remarkable classical-
quantum correspondence for the motion in the Coulomb po-
tential. In particularly the Rutherford scattering cross section
is the same in both theories.

B. Calculation of electron trajectories in the Coulomb field

The accuracy of numerical methods for calculation of clas-
sical trajectories can be verified in the case F0 = 0. Consider
the Coulomb scattering in the zx plane. The equations for a
hyperbolic trajectory are

z = a(ε − cosh ξ ), x = b sinh ξ, t = a

v0
(ε sinh ξ − ξ ),

where a = Ze2/v2
0 is the semimajor axis, and we use a(ε2 −

1)1/2 = b.
At t → −∞ the trajectory approaches asymptotically the

straight line which makes angle α with the z axis defined as

tan α = b

a
.

In numerical calculations the velocity of the incident electron
is parallel to the z axis. Therefore we perform the rotation by
the angle α.

z′ = z cos α + x sin α, x′ = −z sin α + x cos α

or

z′ = 1

ε

(
z + b

a
x

)
, x′ = 1

ε

(
−b

a
z + x

)
,

so that at t → −∞, z′ → −∞, x′ → −b.
Above equations can be compared with numerical calcu-

lations. The results of applications of numerical algorithms
of the Runge–Kutta type exhibit strong instabilities due to
the Coulomb singularities. It is well known that instabilities
occur because these methods generally do not conserve energy
and do not satisfy the canonical transformation requirement.
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FIG. 3. (a) P(b,�) as a function of the impact parameter b for the case Z = 1, v0 = 0.1 a.u. F0 = 0.05 338 a.u., ω = 0.0147 a.u., and
� = 0.2 a.u. Red curve: pure Coulomb case for v0 = 3.56 a.u. (b) The same as in panel (a) except � = 1.0 a.u.

Although this problem can be resolved by using the sym-
plectic algorithms [34,35], we found the method based on
the extended Hamiltonian and canonical transformation of the
time coordinate is more efficient for hyperbolic trajectories;
see Appendix B.

To avoid numerical difficulties, many classical and
quantum calculations of strong-field ionization and high-
order harmonic generation use the soft-Coulomb potential
[36–38] which is finite at the origin. We stress that in the
bremsstrahlung problem the full account of the Coulomb
interaction, including the short distances, is necessary, since
the most of radiation occurs at small distances.

IV. BREMSSTRAHLUNG IN THE AC FIELD

For calculation of Fourier transform of Cartesian compo-
nents of acceleration, we use alternately acceleration, velocity,
and the length form, depending on the distance from the
Coulomb center. Details are presented in Appendix C.

In Fig. 3 we present P(b,�) with addition of the
ac field with parameters F0 = 0.05 338 a.u. (intensity I =
100 TW/cm2), ω = 0.0147 a.u. (wavelength λ = 3.1 μm),
ϕ0 = 0. Integration always starts with z0 = −300 a.u. where
the Coulomb field can be safely neglected. In this situation
averaging of results over z0 is equivalent to averaging over the
phase ϕ0 [7]. To compare this probability with the probability
of the field-free bremsstrahlung, we have chosen the electron
velocity v = 3.56 a.u. (kinetic energy 6.35 a.u.) correspond-
ing to a typical velocity of electron in the ac field with the
ponderomotive energy Ep = F 2

0 /4ω2 = 3.30 a.u.
Two striking differences with the pure Coulomb case

are immediately noticeable. First, in the laser-assisted case
P(b,�) exhibits very sharp quasiperiodic structures. By ex-
panding the b scale, as shown in Fig. 4, we can see that the
structure is a fractal as was observed before for the deflection
angle as a function of the impact parameter b [27,28] for b
below the quivering length l = F0/ω

2. This fractal structure

is caused by chaotic scattering which was demonstrated by
investigation of deflection angle as a function of b for several
stationary problems [39–41]. In our case l = 247 a.u., there-
fore the condition b < l [27] is satisfied in the whole range of
b where P(b,�) is non-negligible.

Second, the range of impact parameters b contributing
to the total cross section is much larger than in the pure
Coulomb case. Both features can be explained by the behavior
of trajectories in the combined laser and Coulomb fields.

In Fig. 5 we present two trajectories for impact parameter
b = 47.60 and 51.55 a.u. The first corresponds to a large
probability P = 0.14 × 10−4 a.u. and the second to a small
probability P = 0.42 × 10−8 a.u. Both trajectories undergo
Coulomb focusing. However, whereas the first trajectory ap-
proaches very close to the Coulomb center (minimum distance
is 0.0164 a.u.), the second trajectory misses the center (the
closest approach is 9.24 a.u.) and does not exhibit a large
acceleration, therefore contributing very little to the radiation.
Therefore the spikes in P as a function of b correspond to
the hard-collision trajectories. Apparently the hard-collision
events depend randomly on the impact parameter b and lead
to the fractal structure.

However, two certain features can be noticed. First, in
intermediate range of impact parameters the spikes exhibit
a quasiperiodic structure. Second, due to the initial nonzero
velocity in the z direction, trajectories drift in this direction
leading to the disappearance of spikes and the effective cutoff
in b. For the given choice of the parameters this occurs at
about 140 a.u.

To give a rough analytical estimate for the cut-off in b,
consider the drift of the electron in the direction perpendicular
to the electric field with the starting position x = b, z = 0.
Neglecting z as compared with x during the drift, we obtain
for the drift velocity vx

vx =
[

2Z

(
1

x
− 1

b

)]1/2

.
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FIG. 4. (a) The same as in Fig. 3 (b) but on an expanded b scale. (b) The b scale is expanded further.

Integrating the equation

dx

dt
= vx(x),

we obtain the expression for the time during which the elec-
tron reaches the Coulomb center

t = π

(
b3

8Z

)1/2

.

During this time the center of the trajectory in the z direction
covers the distance

z0 = v0t = πv0

(
b3

8Z

)1/2

.

To obtain a hard collision, this distance should be smaller than
the oscillating amplitude in the z direction F0/ω

2. As a result,

FIG. 5. Electron trajectories for two impact parameters, b =
47.60 (solid curve) and 51.55 a.u. (dotted curve).

we obtain for the impact parameter cutoff

b < (8Z )1/3

(
F0

πv0ω2

)2/3

.

This estimate works well when the quivering amplitude is
large compared with the impact parameter. For example in
case F0 = 0.05338, ω = 0.0147, b < 170 a.u. which agrees
very well with data presented in Fig. 3.

According to this estimate, with the growth of ω the cut-
off impact parameter should decrease as ω−4/3. In Fig. 6
we show P(b) for ω = 0.1 a.u. (λ = 456 nm), � = 0.2 and
1.0 a.u. The reduction of the impact parameter cutoff value
is qualitatively confirmed by the figure, although it is not
as drastic as predicted by the ω−4/3 dependence. Since the
quivering length in this case is 5.34 a.u., the above estimate
is not working as well. Another apparent features in this case
are that the spike structure is not as regular, and in the range

FIG. 6. P(b,�) as a function of the impact parameter b for the
case Z = 1, v = 0.1 a.u. F0 = 0.05 338 a.u. (I = 100 TW/cm2), ω =
0.1 a.u., and � = 0.2 a.u. (upper curve) and 1.0 a.u. (lower curve).
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FIG. 7. Total bremsstrahlung cross section per unit frequency,
Eq. (4), for F0 = 0.0538, � = 0.2 a.u. as a function of phase ϕ0 for
two values of the laser frequency.

of impact parameters where P is substantial, it is larger than
in the case ω = 0.0147. Another interesting feature is that
the fractal structure of P(b) dependence extends well beyond
the quivering length l . Apparently the fractal structure in the
present problem is a more general feature than suggested in
Ref. [27].

To investigate the role of the constant phase shift ϕ0,
consider the z component of the electron velocity in the
absence of the Coulomb interaction

vz = v0 − F0

ω
sinϕ0 + F0

ω
sin (ωt + ϕ0).

To obtain Coulomb focusing, we need a relatively small
averaged velocity

v̄z = v0 − F0

ω
sinϕ0.

For the case of field parameters F0 = 0.05 338, ω = 0.0147
presented in Fig. 3, this occurs in two narrow ranges of ϕ0

close to 0 and π . For all other phases the electron simply
does not get close to the Coulomb center, and the radiation
is weak. This is demonstrated in Fig. 7 for two values
of laser frequencies corresponding to v0ω/F0 = 0.0275 and
0.1873 a.u. This figure also demonstrates the chaotic structure
in the dependence of P on the other initial parameter, ϕ0.

We conclude that the average over ϕ0 strongly reduces the
cross section for larger value of the quiver velocity F0/ω =
3.63 a.u., but not as strongly for a smaller F0/ω = 0.534
a.u. In Fig. 8 we compare the bremsstrahlung cross section
for ϕ0 = 0 with the averaged cross section for the first case.
Although the averaging decreases the result by an order of
magnitude, the bremsstrahlung process is still much more
efficient than in the F0 = 0 case. To show this, we have calcu-
lated the field-free bremsstrahlung cross section for electron
velocity 3.56 a.u. (kinetic energy 6.35 a.u.), the same as
chosen for plotting field-free P(b,�) in Fig. 3. The figure
shows that the field-free cross section is about two orders
of magnitude lower than the averaged cross section for the
laser-assisted process.
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FIG. 8. Total bremsstrahlung cross section per unit frequency,
Eq. (4), for ϕ0 = 0 and averaged over ϕ0. The field-free cross section
is given for velocity v0 = 3.56 a.u.

To expand the Coulomb focusing to a larger range of
ϕ0, the quiver velocity should be made comparable to v0.
This can be achieved by reducing F0 or increasing frequency.
To demonstrate this, we choose ω = 0.05 696 (λ = 800 nm)
and F0 = 0.0056 a.u. (I = 1.1 TW/cm2). For these field pa-
rameters, however, the ponderomotive energy is small, Ep =
2.4 × 10−3 a.u., therefore, with the initial electron velocity
v0 = 0.1 a.u., only infrared photons (with the wavelength
about 5 μm or longer) will be emitted. Instead of the high-
order harmonic generation, we obtain frequencies that are
lower than those we are starting with. To increase the fre-
quency range, we need to increase the initial velocity to a
few a.u., but then the laser-assisted bremsstrahlung would
become indistinguishable from the field-free bremsstrahlung.
Nevertheless, we will investigate the case of low v0 and low
� since it is closely connected to the interesting problem
of chaos in ionization of Rydberg atoms by microwave and
far-infrared radiations.

With these field parameters, in a certain range of impact
parameters within the chaotic regime, we found unstable
trajectories which become trapped by the Coulomb field. To
demonstrate this, in Fig. 9 we present the electron distance
from the Coulomb center as a function of time for several
impact parameters.

As follows from this figure, the capture event randomly
depends on b and can occur for small b, as well as for large
b. Trajectories for these two cases are shown in Fig. 10.
Similar pictures were obtained by Wiesenfeld [28]. For the
bremsstrahlung problem, the important quantity is the closest
approach where the most radiation occurs. To demonstrate the
relevant fractal structure, we plot in Fig. 11 the distance as
a function of time in the vicinity of b = 27.75 a.u. with the
successive enlargement of the b scale.

The fractal structure of the radiation probability as a func-
tion of b leads to computational difficulties in calculation of
the total bremsstrahlung cross section. Another difficulty is
of the physical origin. Some of the orbits within the chaotic
region remain trapped for a long time, sometimes probably
forever corresponding to the invariant tori found by Leopold
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FIG. 9. Electron distance from the Coulomb center as a function
of time for several impact parameters, ω = 0.05696, F0 = 0.0056
a.u., ϕ0 = 0.

and Percival [29] (trajectories of class C1) in the classical
ionization problem. In the classical treatment, the electron in
trapped orbits will radiate an infinite energy, even if the elec-
tron energy loss due to radiation is incorporated in the equa-
tions of motion, and the cross section will become infinite. It
is apparent that the classical treatment fails at this point, and
quantum effects should be incorporated. Fortunately, however,
for a typical calculation covering an extended range of impact
parameters b there are very few trajectories which are trapped
“forever,” and they can be simply neglected in calculation of
the radiation cross section. The error due to this omission
is substantially smaller than the error caused by the fractal
structure of the dependencies of P on b and ϕ0. In Fig. 12
we present the dependence of the radiation cross section on
ϕ0. The result of averaging over ϕ0 depends on the increment

�ϕ0 used for representing dependence S(ϕ0). In Table I we
present the result of the average using the trapezoidal rule
with various �ϕ0. This comparison allows us to claim that
the uncertainty in S due to the chaotic behavior of trajectories
is about 0.4%

Finally, in Fig. 13 we present the bremsstrahlung cross
section for ϕ0 = 0 and the cross section averaged over ϕ0.
A substantial enhancement of radiation as compared with the
F0 = 0 case is observed. This case contrasts with the large
quivering length case presented in Fig. 8 where the averaging
over ϕ0 substantially cancels the enhancement effect due to
the Coulomb focusing.

V. LIMITATION OF THE MODEL AND
QUANTUM EFFECTS

There are two important features which are not observed in
the present calculations, both related to the resonance effects.
The first type of the resonance occurs when the frequency of
the emitted radiation � is equal to or close to sω, where s is
a positive integer. The other type of resonance is related to a
temporary capture of the electron by the ion with the following
ionization: In fact, the second type includes the first type as
well since the number of absorbed photons before the capture
k is related to the energy of the bound state ε and the frequency
of the emitted radiation as [16]

� = E0 − ε + kω.

The total number of absorbed photons is k + m where m is the
number of absorbed photons after the capture.

Both effects were described in the past by quantum-
mechanical methods [7–9,12,16]. Description of the first ef-
fect does not seem to be possible by the pure classical theory
since the dependence r(t ) does not contain higher harmonics
with frequencies sω. Quantal description which takes into
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FIG. 10. Electron trajectory for (a) ω = 0.05696, F = 0.0028, b = 0.55, ϕ0 = π/2; (b) ω = 0.05696, F0 = 0.0056, b = 44.85, ϕ0 = π/4.
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FIG. 11. Electron distance from the Coulomb center as a func-
tion of time for several impact parameters b given at the top of each
panel (in a.u.). The field parameters are the same as in Fig. 9. Panels
(a)–(c) shows the fractal structure as the step in b decreases.

account electron-laser interaction in higher orders is essential
in this case. It is interesting, however, that the stimulated
bremsstrahlung which is the emission of s photons of fre-
quency ω can be described semiclassically [42] by treating
electron motion classically but the electromagnetic field quan-
tum mechanically. This suggests that the classical-trajectory
approach used in the present paper can be modified to treat

FIG. 12. The bremsstrahlung cross section S(�,ϕ0 ) for F0 =
0.0056, ω = 0.05696 a.u., � = 0.002 and 0.01 a.u. as a function of
the phase ϕ0.

TABLE I. Dependence of the averaged cross section on the
increment �ϕ0.

�ϕ0 � = 0.002 � = 0.01

π/16 0.3476 0.1783
π/32 0.3499 0.1784
π/64 0.3498 0.1780

resonances of the first type. Resonances of the second type can
be obtained in the classical ionization problem [43,44] when
the process starts with the stationary orbit. In the scattering
problem the temporary capture does occur in classical theory.
However, the motion in quasistable orbits occurs usually for
a few impact parameters, therefore the sharp enhancements
observed in P(b,�) do not show up in the S(�) depen-
dence. Nevertheless it is useful to discuss classical-quantum-
mechanical correspondence for the resonant scattering.

The quantum-mechanical description of the resonant scat-
tering [16] in the case of Coulomb potential is particularly
challenging because of the large number of Rydberg states. It
was assumed [16] that the capture occurs only in the ground
state of the hydrogen atom because the field-free radiative
recombination cross section is higher for this state. However,
the presence of the ac field may radically change this sit-
uation. In fact the classical quasistable quasiperiodic orbits
in which capture occurs, according to the correspondence
principle, represent a superposition of these Rydberg states.
The problem with the classical treatment is that it might
result in an infinite radiation in this case, if the orbit is not
ionized classically. There are two quantum effects responsible
for the finite radiation probability. One is the stimulated
and spontaneous emission leading to electron transition to a
lower quantum state, typically to the atomic ground state. The
other is the multiphoton or tunneling ionization resulting in
electron escape from the orbit. Our simulations have shown
that, typically, an electron is captured either into a high-lying

FIG. 13. The bremsstrahlung cross section S(�,ϕ0 ) for radia-
tion of infrared photons in the range λ = 4.56 to 22.8 μm.The field
parameters are F0 = 0.0056 a.u. ω = 0.05 696 a.u (λ = 0.8 μm.)
Field-free cross section is compared with the case ϕ0 = 0 and ϕ0-
averaged cross section.

063404-8



CLASSICAL THEORY OF LASER-ASSISTED … PHYSICAL REVIEW A 99, 063404 (2019)

orbit which ionizes quickly classically (trajectory of class C3
according to Leopold and Percival [29]), or in a lower orbit
with the energy roughly corresponding to that of the n = 2
or n = 3 states. The latter, as a rule, is an invariant torus,
and often never ionizes within the classical mechanics domain
[29]. Its decay should be described quantum mechanically.
The lifetime of the corresponding n = 2 quantum state with
respect to the spontaneous emission to the ground state (6.6 ×
107 a.u.) is too long compared with our typical timescale,
and the stimulated emission can be neglected in nonresonant
case; that is, if sω, s = 1, 2, . . . is not close to the transition
frequency, 0.375 a.u. Therefore the major contribution to the
decay of the intermediate state is due to the multiphoton or
tunneling ionization. Our typical field parameters correspond
to the multiphoton regime (large Keldysh parameter), and
the ionization rate can be estimated by the semiclassical
perturbation theory [45], since our intensity is relatively small.
At I = 1.1 TW/cm2, λ = 800 nm ionization of the n = 2
manifold is dominated by the three-photon absorption with the
rate 0.6 × 10−4 a.u. Although the corresponding lifetime is
compatible with our timescale, the problem remains with qua-
sistable trajectories for which the electron passes the nucleus
many times during the time interval of 104 a.u. In the classical
theory the radiation probability is strongly increased due to
these passages whereas the quantum state corresponding to
the quasistable orbit does not radiate at all (or radiates on
a much longer timescale due to the spontaneous emission).
Fortunately, as was discussed above, for each particular value
of the initial phase ϕ0 there are very few impact parameters
leading to quasistable trajectories. Therefore, these cases are
simply ignored when we integrate over the impact parame-
ter to obtain the cross section. The chaotic behavior of the
trajectories, discussed above, in large extent smears out the
uncertainty created by this approach.

One more deficiency of the classical approach is that it
does not provide the high-frequency cutoff, the cross section is
simply monotonically decreasing with �. However, from the
discussion above, it can be estimated as v2

0/2 + 2Ep since this
is the maximum kinetic energy of the electron at the distance
of a few Bohr from the Coulomb center. More accurate
quantum-mechanical treatment [16] suggests that the cutoff
frequency is greater than the above estimate by F · v0/ω,
or Fv0/ω in case of initial velocity parallel to the ac field.
However, for the cases discussed in the present paper this is
an insignificant extension. For example, if I = 100 TW/cm2,
ω = 0.0147 a.u. this estimate extends the cutoff frequency
from 6.6 to 6.96 a.u.

VI. CONCLUSION

We conclude that the Coulomb focusing, leading to a
substantial extension of the impact parameters contributing
to the bremsstrahlung cross section, results in a substantial
increase (by one to two orders of magnitude) of the cross
section as compared with the pure Coulomb case. Due to
chaotic scattering in the combined Coulomb and ac fields,
the emission probability P(b,�,ϕ0) as a function of b and
the constant phase of the laser field ϕ0 exhibits fractal
structures. However, these structures are smeared out when
the cross section is integrated over b and averaged over

ϕ0. The average over ϕ0 is completely equivalent to the
average over the starting point of trajectory [7]. Although the
accuracy of the classical calculations is good, they do not
include the resonance regime studied quantum mechanically
in Refs. [7–9,16]. These studies were concentrating on the
regime whereby the initial electron kinetic energy is high
compared with the ponderomotive energy Ep. In contrast, the
present paper is focused on the case of small initial kinetic
energy but relatively high Ep when the Coulomb focusing
effects become important.

To address the question about the connection with previous
quantum-mechanical calculations, we note that nonperturba-
tive quantal treatments were applied so far only to short-
range potentials. Therefore previous quantal calculations and
the present one complement each other rather than present
two approaches to the same problem. References [16,17], for
example, concentrate on the short-range case when quantum-
mechanical effects are important. Although those calculations
include some effects of the Coulomb potential, they are mostly
pertinent to quantities responsible for the resonant capture; for
example, radiative recombination cross section. In contrast,
we are mostly concerned with the effect of the Coulomb
interaction in the continuum, particularly the Coulomb focus-
ing effect, which can be described classically, as follows, for
example, from Refs. [18–25]. It would be unphysical to apply
our approach to a short-range potential, since quantum effects
play a crucial role in scattering of low-energy electrons by a
short-range potential.

As has been demonstrated, agreement between classical
and quantum approach to the bremsstrahlung in the Coulomb
field is good for electron velocities considered in the present
paper. Relativistic effects and interference of classical tra-
jectories might be non-negligible, but we believe that we
have demonstrated that the nonrelativistic classical approach
captures the major features of the problem.

The bremsstrahlung process discussed in the present paper
can be of interest for the purpose of generation of UV photons.
Whereas the standard HHG process, starting from the bound
state, has an advantage of a more focused electron current,
the continuum-continuum transition might be efficient due to
a broad range of impact parameters contributing to the radia-
tion. The efficiency can be increased further by increasing the
ion charge Z . Another possibility is changing the geometry by
choosing a nonzero angle between the direction of the incident
beam and the laser polarization. Changing the polarization
from linear to circular and elliptical can be also explored.
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APPENDIX A: MODIFIED BESSEL FUNCTION
OF THE THIRD KIND

Consider the function Kiμ(x) where μ and x are real. It
satisfies the equation

x2y
′′ + xy′ − (x2 − μ2)y = 0.
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By substitution

y = x−1/2 f (x),

we obtain

f
′′ +

(
−1 + μ2 + 1/4

x2

)
f = 0.

We treat this equation in the spirit of the quasiclassical approx-
imation. Since the x interval is between 0 and ∞, we introduce
the Langer correction. Then, what can be called the square of
the momentum, is

k2(x) = −1 + μ2

x2
.

For x > μ (classically forbidden region) the action, or the
phase integral, is

S(x) =
∫ x

μ

(
1 − μ2

(x′)2

)1/2

dx′ = (
x2 − μ2

)1/2 − μ arccos
μ

x
.

Using the uniform Airy function approximation [46], we
obtain

Kiμ(x) = c

(x2 − μ2)1/4

(
3

2
S

)1/6

Ai

[(
3

2
S

)2/3
]
. (A1)

The constant can be determined from the asymptotic ex-
pression for Kiμ(x)

Kiμ(x) ∼
( π

2x

)1/2
e−x.

Using now the asymptotic of the Airy function for x � μ,

S(x) ∼ x − μπ/2,

(
3

2
S

)1/6

Ai

[(
3

2
S

)2/3
]

∼ 1

2π1/2
e−S,

we obtain

c = 21/2πe−πμ/2.

For x < μ (classically allowed region), we obtain the same
expression (A1) except that now

S(x) =
∫ μ

x

(
−1 + μ2

(x′)2

)1/2

dx′ = −(μ2 − x2)1/2

+ μ ln
μ + (μ2 − x2)1/2

x
,

and the argument of the Airy function is negative.
In summary,

Kiμ(x) = π21/2

|μ2 − x2|1/4
e−πμ/2

(
3

2
S

)1/6

Ai

[
±

(
3

2
S

)2/3
]
,

where the sign of the argument of Airy function is + for x > μ

and − for x < μ.
This expression works even at the turning point, when x =

μ. Suppose, for example, that x approaches μ from below so
that μ − x is a small number. Then,

S(x) =
∫ μ

x

(μ2 − y2)1/2

y
dy =

∫ μ−x

0

[μ2 − (μ − η)2]1/2

μ − η
dη.

In the limit x → μ we obtain

S(x) ≈ (2μ)1/2

μ

∫ μ−x

0
η1/2dη = 2

3

(
2

μ

)1/2

(μ − x)3/2,

and (
3
2 S

)1/6

(μ2 − x2)1/4
= 2−1/6μ−1/3.

Finally,

Kiμ(μ) = π

(
2

μ

)1/3

e−πμ/2Ai(0), (A2)

where Ai(0) = 0.355 028 05.
As an example, consider the cross section S(�) in the case

of large frequency � when μ � 1. Using Eq. (A2)

eπμ/2Kiμ(μ) = π

(
2

μ

)1/3

Ai(0),

and a similar equation for the derivative

eπμ/2K ′
iμ(x) = π21/2|μ2 − x2|1/4

x

(
3

2
S

)−1/6

Ai′
[
±

(
3

2
S

)2/3
]
,

eπμ/2K ′
iμ(μ) = π

(
2

μ

)2/3

Ai′(0),

we obtain

eπμKiμ(ν)K ′
iμ(μ) = 2π2

μ
Ai(0)Ai′(0) = − π

31/2μ
,

where we have used

Ai(0)Ai′(0) = − 1

2π
√

3
.

Finally,

S(�) = 16πZ2

33/2(mv0)2c3�
,

meaning that the effective radiation �S(�) is independent
of � at high �. This equation is the same as in Ref. [32],
Eq. (70.22), which was obtained there by other methods.

APPENDIX B: REGULARIZED COULOMB
TRAJECTORIES

In cylindrical coordinates, consider the following Hamilto-
nian for the motion of the electron in Coulomb plus external
electric field:

H (ρ, z, pρ, pz, t ) = 1

2

[
p2

ρ + p2
z

] + L2
z

2ρ2
− Ze2√

ρ2 + z2

− F0z cos(ωt + ϕ0), (B1)

where Lz is the z component of the electron’s angular momen-
tum and Z is the charge of the Coulomb center. The numerical
solutions for the equations of motion near the Coulomb center
become highly unstable due to the singularity in the potential.
In this Appendix, we will show how to remove this singularity
from the Hamiltonian and obtain regularized Coulomb trajec-
tories based on the formalism of extended Hamiltonian.
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1. Extended Hamiltonian

The ordinary Hamiltonian H can be extended to a new
Hamiltonian � by introducing time as a new mechanical
variable [47]. The extended Hamiltonian � can be written as

� = H + pt , (B2)

where pt is the canonical momentum for time t . In the
extended phase space, two additional Hamilton’s equations
are defined according to

dt

dτ
= ∂�

∂ pt
= 1, (B3)

d pt

dτ
= −∂�

∂t
= −∂H

∂t
, (B4)

where τ now works as the independent variable. It can be
readily shown that pt (t ) = −H (t ) and for a time independent
Hamiltonian, pt (t ) = −E0, with E0 being the initial energy of
the system. Thus, �(τ = t ) = 0.

2. Regularization of the extended Hamiltonian

For the purpose of regularization, we will introduce the
semiparabolic coordinates into the extended Hamiltonian,
according to [28]

χ =
√√

ρ2 + z2 + z, η =
√√

ρ2 + z2 − z, χ, η � 0.

(B5)

Now the extended Hamiltonian in semiparabolic coordinates
will read

�(χ, η, t, pχ , pη, pt ) = p2
χ + p2

η

2(χ2 + η2)
+ L2

z

2χ2η2

− 2Ze2

χ2 + η2
− 1

2
(χ2 − η2)

× F0 cos (ωt + ϕ0) + pt .

As the next step towards the regularization, the old extended
Hamiltonian is transformed to a new Hamiltonian K together
with a time transformation. This is achieved via the following
rule:

K = g(χ, η)�, dt = g(χ, η)dT . (B6)

It can be shown that the canonical nature of the equations
of motion is preserved in the new Hamiltonian K [48].
For the Coulomb problem in semiparabolic coordinates, the
choice of g(χ, η) = χ2 + η2 will eliminate the singularity at
(ρ = 0, z = 0) from the Coulomb potential. The transformed
Hamiltonian K (χ, η, t, pχ , pη, pt ) for the extended Hamilto-
nian � is given by

K = 1

2

(
p2

χ + p2
η

) + L2
z

2χ2
+ L2

z

2η2
+ (χ2 + η2)pt − 2Ze2

− 1

2
(χ4 − η4)F0 cos (ωt + ϕ0). (B7)

Now, the Hamilton’s equations of motion for K are as follows
(here we have assumed for simplicity Lz = 0):

dt

dT
= χ2 + η2, (B8)

d pt

dT
= −1

2
[χ4 − η4]F0ω sin(ωt + ϕ0), (B9)

d2χ

dT 2
= 2χ3F0 cos (ωt + ϕ0) − 2χ pt , (B10)

d2η

dT 2
= −2η3F0 cos (ωt + ϕ0) − 2ηpt , (B11)

and the initial conditions at T = 0 are

t = t0, pt = −H (t0),
dχ0

dT
= η0ρ̇0 + χ0ż0,

dη0

dT
= χ0ρ̇0 − η0ż0,

where (ρ0, z0, t0) and (ρ̇0, ż0) are initial configuration and
velocities in the (ρ, z, t ) coordinates. The numerical solutions
of Eqs. (B8)–(B11) behave well near the Coulomb center. By
tabulating the solutions χ (T ), η(T ), and t (T ), the trajectory
in (ρ, z, t ) coordinates can be numerically obtained.

APPENDIX C: CALCULATION OF FOURIER INTEGRALS

For calculation of Fourier transform of Cartesian com-
ponents of acceleration, Eq. (1), we use the grid points
obtained from the regularized Coulomb trajectories method,
Appendix B. Assuming that the values of a function f (t ) is
varying slowly between two successive grid points t1, t2, we
can approximate it by a linear function

f (t ) = f0 + βt

where

β = f2 − f1

t2 − t1
, f0 = f1 − βt1.

Then, ∫ t2

t1

f (t )ei�t dt =
(

f0

i�
+ β

�2

)
(ei�t2 − ei�t1 )

+ β

i�
(t2ei�t2 − t1ei�t1 ).

However, close to the nucleus the acceleration varies very
rapidly and the linear approximation is insufficient. In this
case the integration of acceleration can be reduced to the
integration of velocity. Consider the time interval between t1
and t2 where acceleration cannot be approximated by a linear
function. Then,∫ t2

t1

dv

dt
ei�t dt = v(t2)ei�t2 − v(t1)ei�t1 − i�

∫ t2

t1

v(t )ei�t dt .

(C1)

If necessary, this can be reduced further to integration of the
coordinate,∫ t2

t1

dv

dt
ei�t dt = [v(t2) − i�x(t2)]ei�t2 − [v(t1)−i�x(t1)]ei�t1

− �2
∫ t2

t1

x(t )ei�t dt . (C2)

Note, however, that for numerical calculations it is not con-
venient to reduce the whole integration to the integral of
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FIG. 14. Probability of spontaneous emission per unit frequency
as a function of the impact parameter for the pure Coulomb case,
Z = 1, v = 0.1 a.u. for frequencies � = 0.4 and 1.0 a.u. Solid curves
show the exact result. The dashed curves diverging near b = 0 do not
include the velocity correction, Eq. (C1).

velocity or coordinate (as is done in the analytically solvable
Coulomb case [32]) because these quantities do not disappear

at t → ±∞. Generally even acceleration does not disappear
in this limit because of the ac field. However, since

∫ ∞

−∞
ei�t F0 cos (ωt + ϕ0)dt = πF0e−iϕ0δ(� − ω),

this contribution can be dropped unless ω = �. In numerical
calculations the contribution of the ac field term should be
included because it influences the integrals in Eqs. (C1) and
(C2). Therefore we subtract the following expression from the
numerical result:

∫ t f

0
ei�t F0 cos(ωt + ϕ0)dt

= F0

2

[
eiϕ0

ei(�+ω)t f − 1

i(� + ω)
+ e−iϕ0

ei(�−ω)t f − 1

i(� − ω)

]
,

where we have assumed that the initial integration time is 0
and the final integration time is t f .

Figure 14 demonstrates the importance of the above cor-
rection, Eq. (C1). We present here the probability per unit
frequency P(b,�), Eq. (3), as a function of the impact param-
eter b for a pure Coulomb field. When we employ Eq. (C1)
at the distance of 20 integration points from the closest
approach, we obtain perfect agreement with the exact result,
Eq. (6). Otherwise we observe a divergence at low impact
parameters.

[1] M. V. Fedorov and R. V. Karapetyan, J. Phys. A: Math. Gen. 9,
L103 (1976).

[2] A. V. Borisov and V. Ch. Zhukovskii, Zh. Eksp. Teor. Fiz. 70,
477 (1976) [Sov. Phys. JETP 43, 247 (1976)].

[3] R. V. Karapetyan and M. V. Fedorov, Kvant. Electron. 4, 2203
(1977) [Sov. J. Quantum Electron. 7, 1260 (1977)].

[4] R. V. Karapetyan and M. V. Fedorov, Zh. Eksp. Teor. Fiz. 75,
816 (1978) [Sov. Phys. JETP 48, 412 (1978)].

[5] A. V. Borisov, V. Ch. Zhukovskii, and P. A. Eminov, Zh. Eksp.
Teor. Fiz. 78, 530 (1980) [Sov. Phys. JETP 51, 267 (1980)].

[6] V. P. Krainov and S. P. Roshchupkin, Zh. Eksp. Teor. Fiz. 84,
1302 (1983) [Sov. Phys. JETP 57, 754 (1983)].

[7] M. V. Fedorov and M. Yu. Ivanov, Laser Phys. 3, 365
(1993).

[8] F. Zhou and L. Rosenberg, Phys. Rev. A 48, 505 (1993).
[9] R. Daniele and E. Fiordilino, Nuovo Cimento Soc. Ital. Fis., D

18, 547 (1996).
[10] M. V. Fedorov, Atomic and Free Electrons in a Strong Laser

Field (World Scientific, Singapore, 1997).
[11] F. Ehlotzky, A. Jaron, and J. Z. Kaminski, Phys. Rep. 297, 63

(1998).
[12] A. Florescu and V. Florescu, Phys. Rev. A 61, 033406 (2000).
[13] E. Lötstedt, U. D. Jentschura, and C. H. Keitel, Phys. Rev. Lett.

98, 043002 (2007).
[14] S. Schnez, E. Lötstedt, U. D. Jentschura, and C. H. Keitel, Phys.

Rev. A 75, 053412 (2007).
[15] A. A. Lebed’ and S. P. Roshchupkin, Phys. Rev. A 81, 033413

(2010).

[16] A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov,
and A. F. Starace, Phys. Rev. A 89, 023407 (2014).

[17] A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov,
and A. F. Starace, J. Phys. B: At., Mol. Opt. Phys. 48, 075202
(2015).

[18] Th. Brabec, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. A 54,
R2551 (1996).

[19] G. L. Yudin and M. Y. Ivanov, Phys. Rev. A 63, 033404 (2001).
[20] D. Comtois, D. Zeidler, H. Pépin, J. C. Kieffer, D. M.

Villeneuve, and P. B. Corkum, J. Phys. B: At., Mol. Opt. Phys.
38, 1923 (2005).

[21] D. Shafir, H. Soifer, C. Vozzi, A. S. Johnson, A. Hartung,
Z. Dube, D. M. Villeneuve, P. B. Corkum, N. Dudovich, and
A. Staudte, Phys. Rev. Lett. 111, 023005 (2013).

[22] S. A. Berman, C. Chandre, and T. Uzer, Phys. Rev. A 92,
023422 (2015).

[23] C. Huang, Q. Liao, Y. Zhou, and P. Lu, Opt. Express 18, 14293
(2010).
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