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Rotational cooling of molecules in a Bose-Einstein condensate
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We discuss the rotational cooling of diatomic molecules in a Bose-Einstein condensate (BEC) of ultracold
atoms by emission of phonons with orbital angular momentum. Despite the superfluidity of the BEC there
is no frictionless rotation for typical molecules since the dominant cooling occurs via emission of particle-
like phonons. Only for macrodimers, whose size becomes comparable to or larger than the condensate healing
length, a Landau-like, critical angular momentum exists below which phonon emission is suppressed. We find
that the rotational relaxation of typical molecules is, in general, faster than the cooling of the linear motion of
impurities in a BEC. This also leads to a finite lifetime of angulons, quasiparticles of rotating molecules coupled
to phonons with orbital angular-momentum. We analyze the dynamics of rotational cooling for homonuclear
diatomic molecules based on a quantum Boltzmann equation including single- and two-phonon scattering and
discuss the effect of thermal phonons.
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I. INTRODUCTION

The physics of a quantum impurity in collective many-
body environments is an important subject of condensed
matter physics. It dates back to the classic problem of a
polaron put forward by Landau and Pekar [1] and Fröhlich and
Holstein [2–5] to explain charge transport in solids resulting
from the dressing of a moving electron with phonon-like exci-
tations of the surrounding material. In many systems internal
degrees of freedom of the impurity can be disregarded as
their characteristic energy scale is well separated from that of
the environment and the impurity can be treated as point-like
object. The Fermi and Bose polarons recently realized in ultra-
cold quantum gases [6–17] are important examples providing
a many-body model system where impurity problems can be
analyzed very precisely.

Also the dynamics of its formation can be studied, which
is an equally important problem since collective properties
such as the superfluidity of a BEC can strongly influence
the equilibration dynamics [18–20]. Recently the concept of
a polaron was extended to impurities with a more complex
structure such as a molecule. It was shown that the coupling
of rotation to collective excitations of a surrounding BEC
can give rise to a new type of quasiparticles termed angu-
lons [21–25]. In the present paper we discuss the cooling
dynamics of the rotational degrees of freedom of a single,
diatomic molecule immersed in a three-dimensional (3D)
Bose-Einstein condensate, see Fig. 1, which is relevant both
for the formation and the stability of angulons. To this end we
use a microscopic quantum Boltzmann approach [26] based
on a Bogoliubov theory of impurity-condensate interaction.

Emission and scattering of Bogoliubov phonons with or-
bital angular momentum off the molecule lead to a deceler-
ation of the rotational motion and eventually to equilibration
with the condensate.

For typical sizes of molecules and weakly interacting con-
densates there is no analog of a Landau critical velocity, i.e.,

there is, in general, no critical value of angular momentum
below which phonon emission and scattering is suppressed.
This is because the spatial structure of the molecule can only
be resolved by high-energy phonons, which have a particle-
like character. Thus different from the case of polarons, i.e.,
point-like impurities dressed with Bogoliubov phonons, there
are in general no stable states of angulons. The rotational
relaxation rates are, however, smaller than the typical binding
energies of angulons.

The situation is different if one considers macrodimers,
such as Rydberg molecules [27–30], where an atom is trapped
in a high-lying Rydberg state of another atom. In this case
molecular size and healing length can become comparable and
the interaction with low-energy phonons becomes the most
important one. The same holds true for impurities trapped
in shallow, rotationally symmetric potentials. In this limit
the superfluidity of the condensate changes the relaxation
dynamics and we recover a Landau critical behavior. Below a
certain angular momentum of the macrodimer the emission of
phonons is effectively suppressed and the rotational relaxation
stops in a prethermalized state.

The paper is organized as follows. In Sec. II we will
introduce the model of a rigid rotor coupled to Bogoliubov
phonons of an atomic BEC. The quantum Boltzmann equa-
tion used to describe the relaxation dynamics is reviewed
in Sec. III and the different contributions to the relaxation
rates resulting from spontaneous and thermal single- and
two-phonon processes are derived. The relaxation dynamics
of macromolecules will be discussed in Sec. IV and that of
typical molecules in Sec. V.

II. MODEL

We here discuss the case of a diatomic molecule, which
we describe as a rigid rotor of two point masses mI with
distance 2r0, see Fig. 1, immersed in a three-dimensional
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FIG. 1. (a) A rotating dimer with mass mI , diameter 2r0, and
rotational quantum numbers j, mj immersed into a BEC of density
n0 undergoes rotational relaxation by emission of phonons with
orbital angular momentum and quantum numbers k, λ, μ. (b) Spon-
taneous creation of phonons by interaction with condensate atoms.
The inverse process requires the availability of thermal excitations.
(c) Spontaneous or thermally induced two-phonon creation. (≺)
(d) Scattering and exchange of angular momentum between excita-
tion and impurity dimer (×).

(3D) weakly interacting Bose Einstein condensate of atoms,
which we describe in Bogoliubov approximation. We assume
that the center of mass (COM) of the molecule is at rest in
the laboratory frame of the BEC and we disregard the COM
kinetic energy of the molecule. The total Hamiltonian

H = Hm
0 + Hph

0 + Hint (1)

consists of the free Hamiltonians of the diatomic molecule
Hm

0 , the interaction Hint, and that of the Bogoliubov phonons
Hph

0 [31]:

Hm
0 = L̂2

4mI r2
0

, Hph
0 =

∑
k,λ,μ

ωk b̂†
kλμ

b̂kλμ. (2)

Here L̂ is the angular momentum operator of the rotating
diatomic molecule and 2r0 the molecule diameter.

ωk = ck
√

1 + k2ξ 2/2 is the Bogoliubov dispersion relation
of phonons with momentum k, with ξ = 1/

√
2mBgn0 being

the condensate healing length. mB is the mass of the BEC
atoms, g is the strength of atom-atom interactions in the
condensate in s-wave approximation. c = √

gn0/mB is the
speed of sound of the phonons. The homogeneous condensate
of density n0 is assumed to be in an initial equilibrium
state at temperature T � Tc, Tc being the critical temperature
of condensation, which for a noninteracting homogeneous
condensate of density n0 reads Tc = 2πn2/3

0 /(mBζ (3/2)2/3).
If a rotating molecule is placed in the BEC we expect that its
angular momentum thermalizes to an equilibrium distribution
of quantum numbers j with characteristic value

jT ( jT + 1) = 8π

ζ (3/2)2/3

T

Tc

mI

mB

(
r0n1/3

0

)2
, (3)

For a typical molecule with size small compared to the
average distance between atoms in the BEC, i.e., r0 � n−1/3

0 ,
we expect a cooling to the lowest angular momentum j → 0.

The interaction of the homonuclear diatomic molecule
with the BEC, Hint = HI(r) + HI(−r), is described as s-wave
scattering interaction of the two atoms with the condensate.

We assume that higher-order partial waves are not relevant for
the scattering process process with small rotational quantum
numbers. They result in modifications of the dispersion rela-
tion that has been discussed, e.g., for He-dimers in [23]. The
interaction HI(r) of a point-like impurity at position r with the
BEC reads in terms of plane-wave Bogoliubov modes

HI(r) =
∫

d3k
gIBn1/2

0

(2π )3/2
Wke−ik·r(b̂†

k + b̂−k)

+ gIB

2(2π )3

∫
d3k

∫
d3k′

[
W ×

k,k′ b̂
†
kb̂k′

+ 1

2
W ≺

k,k′ (b̂†
kb̂†

−k′ + b̂−kb̂k′ )

]
e−i(k−k′ )·r, (4)

where Wk = [k2ξ 2/(2 + k2ξ 2)]1/4 = √
εk/ωk , with εk =

k2/(2mB) being the kinetic energy of the condensate atoms,
and we used the abbreviations W ×

k,k′ = WkWk′ + W −1
k W −1

k′ and
W ≺

k,k′ = WkWk′ − W −1
k W −1

k′ .
Making use of the decomposition of plane waves into

spherical ones

eik·r = 4π
∑
λμ

iλ jλ(kr)Yλμ(θ, φ)Y ∗
λμ(θk, φk ),

where jλ(kr) is the spherical Bessel function, and the orthogo-
nality relations of spherical harmonics, we can rewrite Eq. (4)
in terms of angular momentum modes

b̂kλμ = k
∫

dφk

∫
dθk sin θkiλ Y ∗

λμ(θk, φk ) b̂k,

b̂k = 1

k

∑
λμ

i−λ Yλμ(θk, φk ) b̂kλμ.

λ = 0, 1, . . . and μ = −λ,−(λ − 1), . . . , λ − 1, λ are the
quantum numbers of the orbital angular momentum of the
phonons in the rest frame of the center-of-mass of the mol-
ecule. The spherical-mode operators fulfill bosonic commuta-
tion relations [b̂kλμ, b̂†

k′λ′μ′] = δ(k − k′)δλ,λ′δμ,μ′ . With this we
find

Hint =
∑
kλμ

Uλ(k) [Yλμ(θ, φ) b̂kλμ + Y ∗
λμ(θ, φ) b̂†

kλμ
]

+
∑
kλμ

k′λ′μ′

U ×
λλ′ (k, k′)Y ∗

λ′μ′ (θ, φ)Yλμ(θ, φ) b̂†
k′λ′μ′ b̂kλμ

+
∑
kλμ

k′λ′μ′

1

2
U ≺

λλ′ (k, k′) Yλμ(θ, φ)Yλ′μ′ (θ, φ)

× b̂k′λ′μ′ b̂kλμ + h.a., (5)

where we made use of the fact that the distance of both atoms
to the origin is the same and fixed to r = r0.

The coupling constants for the single-phonon terms read

Uλ =
{

gIB

√
8n0
π

k Wk jλ(kr0), λ even,
0, λ odd,

(6)
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and for the two-phonon terms

U μ

λλ′ =
{

2gIB

π
kk′ jλ(kr0) jλ′ (k′r0)W μ

k,k′ , λ + λ′even,

0, λ + λ′odd,

(7)

The vanishing of the coupling constants for odd values of
λ or λ + λ′ is due to the inversion symmetry of the molecules.
For the heteronuclear case also odd terms would be nonzero.
As a consequence the symmetric molecule can only emit and
absorb single phonons with even orbital angular momentum
or phonon-pairs which have an even total angular momentum.
Rotational cooling will thus occur in a cascade with angular
momentum steps of two.

III. QUANTUM BOLTZMANN EQUATION

We now want to study the dynamics of a molecular im-
purity with finite initial angular momentum interacting with
the BEC, described by the Hamiltonian (5). The starting point
is a master equation for the impurity-density matrix, ρmm′

j j′
between angular momentum states which can be derived by
integrating out the phonon degrees of freedom and employ-
ing a Born-Markov approximation. The Born approximation
neglects higher-order scattering contributions and is valid for
weak impurity-condensate interactions gIB. On a short time
scale off-diagonal matrix elements dephase and it is sufficient
to consider probabilities p jm = ρmm

j j only, for which we ob-
tain a linear Boltzmann equation, with transition rates obey-
ing Fermi’s golden rule �m→n = 2πδ(Em − En)|〈m|Hint|n〉|2
[26]

d p jm

dt
=

∑
j′m′

(p j′m′� j′m′→ jm − p jm� jm→ j′m′ ). (8)

In the following we will derive the transition rates resulting
from single- and two-phonon processes.

A. Single-phonon transition rates

To determine the transition rates � jm→ j′m′ from Eq. (5), we
make use of the matrix elements of spherical harmonics

〈 j, m|Yλμ(θ, φ)| j′, m′〉 =
√

1

4π
Gjm

j′m′,λμ,

Gjm
j′m′,λμ =

√
(2 j′ + 1)(2λ + 1)

(2 j + 1)
C jm

j′m′,λμ C j0
j′0,λ0,

where Cλμ

jm, j′m′ are Clebsch-Gordan coefficients, which reflect
angular momentum conservation.

As discussed in detail in the Appendix the spontaneous
(sp) and thermal (T) contributions resulting from the single-
phonon term in the interaction Hamiltonian read:

�
1ph,sp
jm→ j′m′ =

∑
λμ

γ
j j′

λ Gjm2

j′m′,λμ� j, j′ , (9)

�
1ph,T
jm→ j′m′ =

∑
λμ

γ
j j′

λ Gjm2

j′m′,λμn j j′ . (10)

� j, j′ = �( j − j′) is the heaviside step function and n j j′ =
(exp{|Ej j′ |/kBT } − 1)−1 is the thermal phonon number cor-
responding to the transition energy Ej j′ = Ej − Ej′ between
rotational states with Ej = j( j + 1)/mI r2

0 . The effective tran-
sition rates for angular-momentum transfer λ are given by

γ
j j′

λ =
⎧⎨
⎩

4g2
IBn0√

2cξ 2π

(k j j′ ξ )3√
1+2E2

j j′ ξ
2/c2

j2
λ(r0k j j′ ) λ even,

0, else,
(11)

where k j j′ is the phonon momentum corresponding to Ej j′ .
The discussion can be substantially simplified if we

consider only the total probabilities for angular momen-
tum j, p j = ∑ j

m=− j p jm. Making use of the properties of
Clebsch-Gordan coefficients we find that the total rates∑

m′ � jm→ j′m′ = � j→ j′ are independent of m as expected
from the rotational symmetry of the problem. Thus Eq. (8)
simplifies to

d p j

dt
=

∑
j′

(p j′� j′→ j − p j� j→ j′ ) (12)

with the total rates

�
1ph,sp
j→ j′ = (2 j′ + 1)

∑
λ

γ
j j′

λ

(
Cλ0

j0, j′0
)2

� j, j′ ,

(13)
�

1ph,T
j→ j′ = (2 j′ + 1)

∑
λ

γ
j j′

λ

(
Cλ0

j0, j′0
)2

n j j′ .

Since for the Clebsch-Gordan coefficients holds Cλ0
j0, j′0 =

0, if j′ + j + λ is odd and γ
j j′

λ = 0 for odd λ, one recognizes
that states with even (odd) initial angular momentum j can
only decay into states with even (odd) final angular momen-
tum j′.

To get an impression of the dependence of the single-
phonon decay rates on the angular momentum quantum num-
bers, we plotted in Fig. 2 the spontaneous scattering rates
�

1ph,sp
j→ j′ as functions of j and j′ for two different values of r0/ξ .

While for typical sizes of molecules, for which r0/ξ � 1,
shown in Fig. 2(a), there is a smooth dependence on j and
j′, one finds for macro-dimers, for which r0/ξ is of the order
of or larger than unity, shown in Fig. 2(b), that the decay
rates are strongly suppressed for j below a critical value jc.
Also the final angular momentum that can be reached in a
single-phonon process is limited by a second critical value
j (1)
c . This will be discussed in more detail in Sec. IV.

B. Two-phonon transition rates

For the calculation of the two-phonon transition rates
we need the matrix elements of the product of spherical
harmonics

〈 j′m′|Yλ′μ′ (θ, φ)Yλμ(θ, φ)| jm〉 = 1

4π

∑
LM

GLM
λ′μ′,λμGj′m′

jm,LM .

(14)

As discussed in the Appendix and shown in Fig. 1 we find
for the total transition rate corresponding to the scattering of a
phonon off the molecule (×) and the simultaneous excitation
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FIG. 2. Spontaneous single-phonon decay rates �
1ph,sp
j→ j′ as func-

tion of angular-momenta j and j′ for normal molecule sizes, r0 =
0.1ξ shown in (a), and a macrodimer with r0 = 10ξ , shown in
(b) amplified by a factor of 10. In both cases the mass ratio is mI =
2mB. Dark gray background means zero scattering amplitude. In
(b) the decay rates are suppressed for a initial angular momenta j <

jc(vertical line) and there is no scattering below j′ < j (1)
c (horizontal

line), Eqs. (20) and (21).

of two phonons (≺), described by the two-phonon interaction
terms in Eq. (5)

�×
j→ j′ = (2 j′ + 1)

∑
L even
λ λ′

(2λ + 1)(2λ′ + 1)

2L + 1

(
CL0

λ′0,λ0

)2(
CL0

j0, j′0
)2

×
∫ ∞

0
dη γ ×

λλ′; j, j′ (η) [n j, j′ (η) + � j′, j]

× [n j, j′ (η + 1) + � j, j′ ], (15)

�≺
j→ j′ = (2 j′ + 1)

∑
L even
λ λ′

(2λ + 1)(2λ′ + 1)

2L + 1

(
CL0

λ′0,λ0

)2(
CL0

j0, j′0
)2

×
∫ 1

0
dη γ ≺

λλ′; j, j′ (η) [n j, j′ (η) + � j, j′ ]

× [n j, j′ (1 − η) + � j, j′ ], (16)

where η is a dimensionless scaling parameter, which char-
acterizes how the energy of the transition is distributed over
the two phonons. n j j′ (η), and k j j′ (η) are the thermal phonon
number and the phonon momentum corresponding to the
scaled transition energy ηEj j′

γ ×
λλ′; j, j′ (η) = g2

IB|Ej j′ |3
2π3c4

(η + 1) k j, j′ (η + 1)√
1 + 2(η + 1)2E2

j j′ξ
2/c2

× j2
λ (r0k j j′ (η)) j2

λ′ (r0k j j′ (1 + η))

× η k j, j′ (η)√
1 + 2η2E2

j j′ξ
2/c2

(
W ×

k j, j′ (η),k j, j′ (η+1)

)2
,

(17)

and

γ ≺
λλ′; j, j′ (η) = g2

IB|Ej j′ |3
4π3c4

(1 − η) k j, j′ (1 − η)√
1 + 2(1 − η)2E2

j j′ξ
2/c2

× j2
λ (r0k j j′ (η)) j2

λ′ (r0k j j′ (1 − η))

× η k j, j′ (η)√
1 + 2η2E2

j j′ξ
2/c2

(
W ≺

k j, j′ (η),k j, j′ (1−η)

)2
.

(18)

Since L is only summed over even numbers in Eqs. (15)
and (16), the decay is still only possible from a initial state
with even (odd) j to a final state with even (odd) j′. So the two
relaxation cascades remain separated also when considering
two-phonon processes.

IV. MACRO MOLECULES AND LANDAU
CRITICAL ROTATION

As seen from Fig. 2 the single-phonon rotational relaxation
is very different in the two cases of a usual molecule with
r0 � ξ and a macromolecule r0 > ξ or an atom in a shallow
rotationally symmetric trap. We thus will discuss these two
cases separately in the following. We first consider macro-
molecules with a radius r0 > ξ , the opposite limit is discussed
in a subsequent section.

A. Relaxation rates and critical rotation

In the case of a macrodimer the spontaneous single-phonon
decay rate �

1ph,sp
j→ j′ is the dominating one at low temperature

and is plotted in Fig. 2(b). The checkerboard pattern evolves
as a consequence of the two independent relaxation cascades
for even an odd angular quantum number.

As noted above, transition rates are suppressed for low
angular momentum states and the molecule cannot decay to
the lowest j value. This can be understood from analogy to
linear motion of a single impurity through the condensate
[19]. The impurity will not scatter phonons when its momen-
tum is smaller than the Landau critical value pc = mI c and for
large radii the rotation of the molecule can be approximated
as a translation.

One can determine a critical angular momentum jc below
which the scattering of further phonons is strongly suppressed
by simultaneous energy and angular momentum conservation.
To this end we compare the energy of two linearly moving
impurities, each with momentum pc, to one rotating molecule,
identifying

jc( jc + 1)

4mI r2
0

= 2
p2

c

2m2
I

. (19)

The corresponding Landau critical angular momentum jc
is then given by

jc( jc + 1) = 2
m2

I

m2
B

r2
0

ξ 2
. (20)

We note that to have an integer jc � 1 the size of the
molecule r0 has, in general, to be larger than the healing length
ξ or we need a very heavy impurity mI > mB.
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FIG. 3. Single-phonon decay rate �
1ph,sp
j for different molecule

sizes r0/ξ , ξ = c = 1 and n0ξ
3 = 100. As shown in the inset we find

nonvanishing decay rates only for j > jc. Plotting the rates against j
normalized to jc the curves collapse to a single one if r0/ξ � 1.

Furthermore we know that a linearly moving impurity
with mI > mB can only decay into a state with momentum
bigger than p(1)

c = pc

√
1 − m2

B/m2
I , when only single-phonon

processes are considered. In analogy to the discussion above,
one can derive the minimal angular momentum j (1)

c a rotating
macromolecule can decay into

j (1)
c

(
j (1)
c + 1

) = 2
r2

0

ξ 2

(
m2

I

m2
B

− 1

)
. (21)

Both jc and j (1)
c fit very well to the rates calculated for the

Boltzmann equation, see Fig. 2(b).
To verify these estimates we look at the total spontaneous

single-phonon decay rate �
1ph,sp
j of a molecule with angular

momentum j, which is given by

�
1ph,sp
j =

∑
j′

�
1ph,sp
j→ j′ . (22)

In the inset of Fig. 3 �
1ph,sp
j is plotted for different ratios

r0/ξ > 1 against j. One clearly notices a sharp onset at jc. The
total rates reveal oscillations that arise from projection of dif-
ferent spherical harmonics and more strikingly, when plotting
the decay rates as function of angular momenta normalized to
the critical value from Eq. (20), all curves collapse to a single
one when r0 � ξ . This universal behavior can be understood
in analogy to the case of two linearly moving impurities: For
a rotating macromolecule with angular momentum j � 1 and
rotational energy equal to the kinetic energy of two linearly
moving impurities, each with momentum p, one finds

j

jc
= p

pc
, (23)

independent on the ratio r0/ξ .

B. Cooling dynamics

Very similar to [19] one can show that the relaxation
processes mediated by two-phonon processes are much slower
than single-phonon terms in a weakly interacting 3D BEC,

FIG. 4. Relaxation of a macrodimer initially prepared in an
angular-momentum eigenstate ρ j=24 = 1. A fast approach to a
prethermalized state with j � jc is clearly visible and on a longer
timescale j > j (1)

c is populated. Here r0 = 10ξ and mI = 1.25mB

and jc = 17 ( j (1)
c = 10) and we considered a finite temperature T =

0.01Tc and density n0ξ
3 = 100.

where n0ξ
3 � 1, since they scale as

�2ph/�1ph ∼ (n0ξ
3)−1. (24)

Furthermore also thermally induced two-phonon processes
are very slow and not relevant below Tc. Note that the situ-
ation is markedly different in lower dimensions [20], where
thermally induced processes can become important due to the
infrared divergence of contributions by thermally occupied
phonon modes.

Due to the existence of a Landau critical angular mo-
mentum we expect a prethermalization to a nonequilibrium
rotational state, which is visible unless jc � jT , which only
happens at high temperatures. In Fig. 4 we plotted the time
evolution of the occupation of angular momentum states
starting at an eigenstate with j = 24. One clearly recognizes
the formation of a prethermalized state with j � j (1)

c , while
states with lower j will only be populated on a much larger
time scales set by two-phonon processes.

We note that the mechanism of relaxation suppression
discussed here is very different from that found in the op-
posite regime of rapidly rotating molecules in a thermal gas
[32–35].

V. SMALL MOLECULES

A. Single-phonon rates and angulon stability

Typical molecules have sizes much less than the healing
length of the BEC r0 � ξ . In this case we can drastically sim-
plify the effective single-phonon transition rates (11) which
yields

γ
j j′

λ =
⎧⎨
⎩

c
πξ

g2
IB

g2
1

n0ξ 3
ξ

r0

√
mB
mI

� j j′ jλ
(√ mB

2mI
� j j′

)2
λ even,

0 else,

(25)

where � j j′ = | j( j + 1) − j′( j′ + 1)|.
Furthermore thermal contributions to the single-phonon

rate can be completely disregarded as the energy spacing
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between adjacent rotational states is much larger than the
thermal energy, Ej, j′/kBTc > (mB/mI )(n1/3

0 r0)−2. As a conse-
quence n j j′ � 1.

In Fig. 2(a), we plotted the transition rates �
1ph,sp
j→ j′ in the

limit of a small molecule. An important difference to the case
of a macromolecule is that the molecule always decays into
the lowest angular momentum states j = 0 or 1.

The absence of a Landau critical rotation can be under-
stood very simply from the following argument: Phonons
can resolve the rotation of the molecule if their wavelength
is comparable or smaller than the molecule size r0. Thus
the relaxation is dominated by scattering of high-energy, i.e.,
short wavelength phonons with k � r−1

0 � ξ−1. These short-
wavelength phonons are, however, particle-like and there is
no suppression of their emission or scattering by simulta-
neous energy-momentum conservation. As a consequence
quasiparticles arising from the dressing of rotating molecules
with angular-momentum phonons are fundamentally unstable.
Furthermore in the case of a linear motion of the impurity, it

is known that the transition rates are on the order of c
ξ

g2
IB

g2
1

n0ξ 3

[19]. In contrast Eq. (25) shows that the typical transition rates
for a rotating molecule are bigger by a factor ξ/r0. This may
raise concerns if angulons can be observed at all. However,
the typical binding energies of angulons are sizable fractions
of the rotational energy of the molecule. When we compare
the single-phonon decay rate of angular-momentum states to
the relevant energy scale, given by the rotational constant
B = 1

4mI r2
0
, we find

�
1ph,sp
j→ j′

B
∝ r0

ξ
� 1. (26)

Additionally one recognizes from Fig. 3 that states with
higher rotational number j have a larger decay rate and
therefore feature a broader spectral function. So while excited
rotational states of a molecule in a BEC are not stable, their
lifetime is still large compared to the energy of the angulon.

B. Thermal two-phonon contributions

For single-phonon processes thermal effects can be ne-
glected. This no longer holds true for processes involving two
phonons. The dominant two-phonon process is the one, were
the state of the molecule decays, via absorption of a low-
energy thermal phonon and subsequent (spontaneous) emis-
sion of a high-energy phonon. For usually sized molecules,
with r0n1/3

0 � 1 the decay rates due to two-phonon processes
are proportional to the spontaneous single phonon rates, with a
proportionality factor which depends on the BEC temperature
and n0ξ

3, but not on j or j′. In Fig. 5 we plotted the ratio
of thermal two-phonon to single-phonon decay rates from
numerical calculations. One recognizes that they approach a
universal curve (dashed line) when the gas parameter n0ξ

3

increases.
As shown in the Appendix one finds

�
2ph,T
j→ j′ = �

1ph,sp
j→ j′

√
2

4π2

1

n0ξ 3

∫ ∞

0
dκ ξk(κ ) n(κ ). (27)

FIG. 5. Ratio of thermal two-phonon to single-phonon decay
rates as a function of the BEC temperature T and n0ξ

3 for small
molecules.

Here κ is the energy of the thermal phonon in units of
c/ξ . k(κ ) is the phonon momentum and n(κ ) the thermal
phonon number corresponding to this energy. For n0ξ

3 � 1
this expression can be further simplified which yields

�
2ph,T
j→ j′ �

(
T

Tc

)3/2

�
1ph,sp
j→ j′ . (28)

This simple relation holds since the thermal long-
wavelength phonon absorbed in the two-phonon process car-
ries effectively no angular momentum, and its energy is neg-
ligible compared to the transition energy Ej j′ . For a weakly
interacting BEC the two processes, i.e., two-phonon scatter-
ing with absorption of a thermal phonon and single-phonon
emission, only differ in that the impurity interacts with an
initially condensed atom in one case and with a low-energy
thermal atom in the other. Therefore the thermal contributions
in the two-phonon scattering only lead to a renormaliza-
tion of the single-phonon process, scaling with the thermal
fraction. One recognizes, however, that at low temperature
the two-phonon transition rates are still small compared to
the single-phonon, so three or more-phonon processes are
negligible. Furthermore direct three-body processes would not
scale with the two-body interaction constant gib but with the
three-body interaction constant, which is substantially smaller
than gib.

C. Cooling dynamics

Finally we consider also the relaxation dynamics of small
molecules. To this end we solve the Boltzmann equation (8)
numerically by calculating the spontaneous decay rates (13)
and their thermal equivalent (10). To include two-phonon
processes given in Eqs. (15) and (16) we focus on a subset
of momenta up to j � 25. Figure 6 shows the angular mo-
mentum decay of an initial state with j = 24 into a final state
with j = 0. For small molecules the influence of two-phonon
processes increases slightly, but they do not lead to qualitative
changes other than a small modification of the single-phonon
contribution as per Eq. (28). We observe a smooth and fast
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FIG. 6. Time evolution of angular momentum of a microdimer
starting at ρ j=24 = 1. The color encoding matches the occupation
number ρ j (t ) plotted on the z axis. For long times t we find a
pumping to the final state with j = 0. Here we have r0 = 0.1ξ and
mI = 2mB and a finite temperature T = 0.01Tc.

relaxation to a thermal state for any initial distribution of a
microdimer.

VI. SUMMARY

We studied the rotational relaxation of diatomic molecules
immersed in a Bose-Einstein condensate of atoms at a temper-
ature much below the critical value of condensation. The BEC
is assumed to be weakly interacting such that a description in
terms of a homogeneous condensate and Bogoliubov phonons
is valid. The molecule was modeled as rigid rotor of two
point particles. A more accurate description of the interaction
potential between molecule and condensate atoms is possible
but only affects the quantitative value of the coupling con-
stants. The relaxation dynamics was analyzed with a quantum
Boltzmann approach, which is valid for weak BEC impurity
interaction. The corresponding rates can be derived from
Fermi-golden rule and describe spontaneous and thermally
induced creation or absorption of a single phonon by the
impurity out of or into the condensate as well as spontaneous
and thermal two-phonon processes. The rotational cooling
is markedly different in the case of a macro molecule with
a size r0 exceeding the BEC healing length ξ and for a
typical molecule, for which r0 � ξ . In the first case we
found a universal behavior of the cooling rates and a Landau
critical angular momentum jc caused by the superfluidity of
the condensate in analogy to the case of linear motion. An
initially rotationally excited molecule will quickly evolve into
a prethermalized state which contains only angular momenta
above a certain value j (1)

c . The timescales of this evolution
are comparable to that found in the case of linear motion.
On the other hand, for molecules of typical size, for which
r0 � ξ , there is no effect of the superfluidity of the BEC since
the cooling is dominated by short-wavelength phonons in the
particle-like part of the Bogoliubov spectrum. Thus in contrast
to polarons, angulons are in general not protected from decay
by the superfluidity of the condensate. The typical relaxation
rates are much larger than in the case of macrodimers. They
are however still smaller than the typical binding energies of
angulons.
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APPENDIX

To calculate the single-phonon transition rates Eqs. (9)
and (10) we first evaluate the matrix element in �m→n =
2πδ(Em − En)|〈m|Hint|n〉|2, which yields

�
1ph,sp
jm→ j′m′ = 1

2

∑
kλμ

δ(Ej − Ej′ − ωk ) Uλ(k)2 Gjm2

j′m′,λμ, (A1)

�
1ph,T
jm→ j′m′ = 1

2

∑
kλμ

Uλ(k)2 nk
[
Gj′m′2

jm,λμδ(Ej′ − Ej − ωk )

+ Gjm2

j′m′,λμδ(Ej − Ej′ − ωk )
]
. (A2)

We made the assumption that the phonon number nkλμ de-
pends only on k, which is valid for thermal phonons. The
integration over the absolute value of the phonon momentum
k can be carried out. Furthermore by using the symmetry
Gj′m′2

jmλμ = Gjm2

j′m′λμ the thermal transition rates can be simplified.
This yields

�
1ph,sp
jm→ j′m′ =

∑
λμ

1

2

dkω

dω
Uλ(kω )2 � j j′ Gjm2

j′m′,λμ

∣∣∣∣
ω=Ej j′

, (A3)

�
1ph,th
jm→ j′m′ =

∑
λμ

1

2

dkω

dω
Uλ(kω )2 nkω

Gjm2

j′m′,λμ

∣∣∣∣
ω=Ej j′

, (A4)

where kω = 1
ξ

√√
1 + 2ω2ξ 2/c2 − 1 is the inverse of the dis-

persion relation ωk . The effective single phonon transition
rates Eq. (11) are then defined as

γ
j j′

λ = 1

2

dkω

dω
Uλ(kω )2

∣∣∣∣
ω=Ej j′

. (A5)

The derivation of the two-phonon rates can be done in
a similar way. In the following the term proportional to
U ×

λ (k, k′) will be considered. The derivation of the rates pro-
portional to U ≺

λ (k, k′) follows analogously. When evaluating
the matrix element of Hint proportional to U ×

λ (k, k′) one finds

�×
j→ j′ = 1

8π

∑
kk′λλ′

U ×
λλ′ (k, k′)2 (nk′ + 1),

× nk δ(Ej − E ′
j − ω′

k + ωk )

×
∑

LL′MM ′
μμ′m′

GLM
λ′μ′,λμGj′m′

jm,LMGL′M ′
λ′μ′,λμGj′m′

jm,L′M ′ , (A6)

what is already summed over all final m′. The last sums
over the Ds can be simplified using properties of the
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Clebsch-Gordan coefficients [36]∑
LL′MM ′
μμ′m′

GLM
λ′μ′,λμGj′m′

jm,LMGL′M ′
λ′μ′,λμGj′m′

jm,L′M ′

= (2 j′ + 1)
∑

L

(2λ + 1)(2λ′ + 1)

2L + 1
CL02

λ0,λ′0C
L02

j0, j′0. (A7)

Furthermore the integral over k′ can directly be carried out and
the one over k is transformed into an integral over η, where
ηEj j′ is the energy corresponding to the momentum k. This
yields Eq. (15), where the effective transition rate is given by

γ ×
λλ′; j, j′ (η) = |Ej j′ |

8π

dkω

dω

∣∣∣∣
ω=ηEj j′

dkω

dω

∣∣∣∣
ω=(η+1)Ej j′

× [U ×
λλ′ (k j j′ (η), k j j′ (η + 1))]2. (A8)

When a typical size molecule should be described this can
be simplified further. In the following the essential steps to
derive Eq. (27), which gives the ratio between rates due to

two- to single-phonon processes, are explained. Since Ej j′ �
kbTc the molecule cannot be excited, so j > j′. This yields

�×
j→ j′ ∝

∫ ∞

0
dη γ ×

λλ′; j, j′ (η) n j, j′ (η)[n j, j′ (η + 1) + 1].

(A9)

The thermal phonon n j, j′ (η) number at energy ηEj j′ decays
exponentially fast with η. So only η � 1 must be considered
in the integral, which is valid for r0

3
√

n0 � 1. This has the
physical meaning that the energy of the thermal absorbed
phonon can be neglected when compared to the energy of
the emitted one. In this approximation the wavelength of
the thermal phonon is much bigger than the molecule, so
r0k j j′ (η) � 1 which leads to

jλ(r0k j j′ (η))2 � δλ,0. (A10)

Since all spherical Bessel function jλ(x) with λ > 0 are
vanishing for small x. This leads to the conclusion, that the
thermal absorbed phonon carries no angular momentum.
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