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High-precision calculations of the 1s22s2p 1P1 → 1s22s2 1S0 spin-allowed E1 transition in C III
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Large-scale relativistic calculations are performed for the transition energy and line strength of the
1s22s2p 1P1 − 1s22s2 1S0 transition in Be-like carbon. Based on the multiconfiguration Dirac-Hartree-Fock
(MCDHF) approach, different correlation models are developed to account for all major electron-electron
correlation contributions. These correlation models are tested with various sets of the initial and the final-state
wave functions. The uncertainty of the predicted line strength due to missing correlation effects is estimated
from the differences between the results obtained with those models. The finite nuclear mass effect is accurately
calculated taking into account the energy, wave functions, as well as operator contributions. As a result, a reliable
theoretical benchmark of the E1 line strength is provided to support high-precision lifetime measurement of the
1s22s2p 1P1 state in Be-like carbon.
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I. INTRODUCTION

Our understanding of the structure and dynamics of many-
electron atoms and ions depends on a detailed analysis and
comparison of theoretical predictions with experimental ob-
servations of atomic properties. Two important and comple-
mentary properties of atomic states are transition energies and
transition rates. For transition energies, the present experi-
mental accuracy reaches the order of 10−6–10−18 [1–3]. For
this case the interplay between experiment and theory has
drastically improved our understanding of different effects,
e.g., the Breit interaction, finite nuclear mass, and quantum
electrodynamics (QED) effects [4,5]. This interplay also has
great potential in the search for new physics [6].

For transition rates of many-electron atoms and ions, in
contrast, most if not all the experiments provide uncertainties
in the region of 30%–1%, e.g., see the reviews [7,8] and
references therein. But only a few experiments provide the
uncertainty in the region 1%–0.1%, with some rare and favor-
able circumstances mainly for the M1 forbidden transitions,
e.g., Refs. [9,10]. In this context, high hopes are pinned on
femtosecond laser technology [11], which has already demon-
strated great success in studies of chemical reactions, wave-
function dynamics, photoionization time delays, etc. Fem-
tosecond laser technology allows performance of the highly
accurate pump-probe atomic lifetime measurements. In par-
ticular, the so-called pump-probe technique has already been
used in lifetime measurements of the 6P3/2 excited state in
cesium atoms, which is relevant to atomic parity nonconserva-
tion [12,13]. In contrast to neutral atoms, transitions to excited
states in ions quickly reach the XUV or x-ray energy range
and, therefore, for the pumping and/or probing processes a
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high-photon flux of XUV or x-ray sources is required. For
this purpose, for instance, the Linac Coherent Light Source
has been employed in the measurement of lifetimes in Ne-like
iron [14]. Recently, it has been also proposed to use a compact
high-power XUV-ray source in combination with the storage
ring at GSI to perform precision spectroscopy and lifetime
measurements of ions [15]. For this purpose, a novel high-
photon-flux XUV radiation source based on high harmonic
generation in argon has been developed which provides ∼100
femtosecond pulses at photon energies up to 26.6 eV [16,17].
As the first experiment, the measurement of the lifetime of
the 1s22s2p 1P1 state in Be-like carbon is proposed. The
schematic diagram of the proposed experiment is shown in
Fig. 1. In principle, the relative accuracy could reach the order
of 10−4–10−5 [15].

The excited state 1s22s2p 1P1 decays to the 1s22s2 1S0

ground state through a strong spin-allowed E1 transition.
Therefore, the lifetime of the 1s22s2p 1P1 state is de-
fined by the line strength of this strong transition. During
past years, various calculations have been reported for this
line strength. Among these ab initio theories, particularly
for the last three decades, are multiconfiguration Hartree-
Fock (MCHF) [18], multiconfiguration Dirac-Hartree-Fock
(MCDHF) [19–21], many-body perturbation theory (MBPT)
[22], the configuration-interaction (CI) method based on a
B-spline basis [23], and configuration-interaction and many-
body perturbation theory (CI + MBPT) [24]. As a result,
the most accurate theoretical calculations [20,23] report an
accuracy of the order 5 × 10−4. In view that the expected
experimental accuracy is much better, there is a need for
further improvements in the theoretical calculations.

Here, we present a detailed calculation of the line strength
of the 1s22s2p 1P1 − 1s22s2 1S0 transition in Be-like car-
bon on account of high-precision experiment. We develop
various electron correlation models and use orthogonal and
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FIG. 1. Scheme of a pump-probe experiment for atomic lifetime measurements of the 1s22s2p 1P1 state in Be-like carbon. At time t1 the
XUV pump pulse excites the 1s22s2 1S0 ground state of the Be-like carbon sample to the 1s22s2p 1P1 excited state. The population n(t ) of the
excited state 1P1 decays then exponentially. A second and temporally delayed XUV probe pulse probes the rest population of the excited state
at time t2 by ionizing Be-like carbon ion and maps out the exponential curve from which the decay rate is determined.

nonorthogonal sets of orbitals for the initial and final states
in these correlation models. It is found that the accuracy
assessment based on an agreement between the gauges might
significantly lead one to underestimate the uncertainty. For
this reason, we estimate the uncertainty from the differences
between the results obtained within all the correlation mod-
els developed. In addition, the finite nuclear mass effect on
the line strength is evaluated and its gauge invariance is
demonstrated after taking into account the recoil correction
to the transition operator. As a result, the calculated line
strength amounts to 2.43926(40) with a relative accuracy of
1.5 × 10−4.

The following parts of the paper are structured as follows.
In Sec. II, we present the underlying theory for the calcu-
lation of the transition energy and line strength. Details of
the correlation models and results obtained are explained in
Sec. III. In Sec. IV, we present theoretical methods for the
finite nuclear mass effect. In the final section, we compare
the obtained results with other theories and experiments and
present the conclusion. Atomic units (h̄ = 1, e = 1, me = 1)
are used throughout the paper unless stated otherwise.

II. THEORETICAL METHODS

To effectively evaluate the electron-electron correlation
effects, we apply systematically enlarged many-electron wave
functions by using the general purpose relativistic atomic
structure package GRASP2K [25]. This package implements
the multiconfiguration Dirac-Hartree-Fock (MCDHF) method
in j j coupling [26,27]. In this method, the wave function � of
a state labeled �, total angular momentum quantum number
J , and parity π is referred to as an atomic state function
(ASF), which is represented as �(�; πJ ). It is an approximate
eigenfunction of the Dirac-Coulomb Hamiltonian given by

ĤDC =
N∑

i=1

[
cαi · pi + (βi − 1)c2 − V (ri)

]
+

N∑
i< j

1

ri j
, (1)

where c is the speed of light, α and β are (4 × 4) Dirac
matrices, V (ri ) is the potential of a two-parameter Fermi
nuclear charge distribution, and ri j is the distance between
electrons i and j.

The ASF �(�; πJ ) is expanded in the basis of configura-
tion state functions (CSFs) of the same symmetry:

�(�; πJ ) =
nc∑

j=1

c j�(γ j ; πJ ), (2)

where nc is the number of CSFs, c j are the mixing coefficients,
and γ j denotes the orbital occupancy and angular coupling
scheme of the jth CSF. The CSFs �(γ j ; πJ ) are a linear
combination of Slater determinants of one-electron Dirac
orbitals:

φnκ,m(r) = 1

r

(
Pnκ (r)χm

κ (θ, ϕ)
iQnκ (r)χm

−κ (θ, ϕ)

)
. (3)

Here, κ is the relativistic angular momentum quantum num-
ber, Pnκ (r) and Qnκ (r) are the large and small radial com-
ponents of the one-electron wave functions represented on a
logarithmic grid, and χm

κ is the spinor spherical harmonic. The
radial part of the Dirac orbitals and the expansion coefficients
c j are optimized to self-consistency from a set of equations
which result from applying the variational principle in the
Dirac-Coulomb approximation [28]. Here we have a choice
of simultaneous or separate optimization of the orbitals for the
desired ASFs. In the optimal level (OL) scheme, a variational
functional is constructed to minimize the energy for only one
ASF, whereas in the extended optimal level (EOL) scheme,
the calculations can be extended to include several ASFs. In
the latter case, the energy functional contains weights for the
levels under consideration.

The line strength of the transition is defined as a square
of the reduced nondiagonal matrix element of the electromag-
netic operator,

S = |〈�(�; πJ )||T ||�(�′; π ′J ′)〉|2 , (4)
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which after the optimization of the wave functions for the
states �(�; πJ ) and �(�′; π ′J ′) is calculated as

S =
∣∣∣∣∑

j,k

c jc
′
k〈�(γ ; πJ )||T ||�(γ ′; π ′J ′)〉

∣∣∣∣
2

. (5)

Here, T is E1 transition operator [26]

T l
M =

√
2πc

ω

N∑
i

[ −
√

6 j1(ωri/c)Y1M (ni )

+ 3 j2(ωri/c)cαi · Y 2
1M (ni )

]
(6)

in the length gauge and

T v
M =

√
2πc

ω

N∑
i

[−√
2 j0(ωri/c)cαi · Y 0

1M (ni )

+ j2(ωri/c)cαi · Y 2
1M (ni )

]
(7)

in the velocity gauge. Here, ω is the transition energy, YJM

are the spherical harmonics, Y L
JM are the spherical vectors,

and jJ (ωr/c) is the spherical Bessel function. The operators
(6) and (7) are used for the present calculations of the line
strengths in length and velocity gauges. However, in order
to investigate the dependence of the line strength on the
transition energy we expand the Bessel functions jJ (ωr/c) ≈
(ωr/c)J/(2J + 1)!!, the so-called long-wavelength approxi-
mation ω/c � 1, and retain only the leading term in the
power-series expansion. In such a way the line strength takes
a form

Sl ≈
∣∣∣∣∣
〈
�(�; πJ )

∣∣∣∣∣
∣∣∣∣∣

N∑
i

ri

∣∣∣∣∣
∣∣∣∣∣�(�′; π ′J ′)

〉∣∣∣∣∣
2

(8)

in the length gauge and

Sv ≈ c4

ω2

∣∣∣∣∣
〈
�(�; πJ )

∣∣∣∣∣
∣∣∣∣∣

N∑
i

αi

∣∣∣∣∣
∣∣∣∣∣�(�′; π ′J ′)

〉∣∣∣∣∣
2

(9)

in the velocity gauge. From the expressions (8) and (9) one
can see that the leading term of the line strength in the
length form is insensitive to the transition energy, whereas in
the velocity form it is proportional to ω−2. Based on these
observations one can introduce the semiempirical correction
to the line strength in the velocity gauge by adjusting the
transition energy to a more accurate, e.g., experimental, value,
i.e., �Sv = (ω2 − ω2

exp)/ω2
exp Sv . Such a correction allows us

to take partially into account the missing correlation contribu-
tions. The line strength in the velocity gauge adjusted in this
way Sv

(exp) is typically much closer to the value in the length
gauge Sl . Generally, the gauge invariance should be restored
when all correlation effects are taken into account, both for
the transition matrix element and transition energy, which was
explicitly demonstrated in the framework of the relativistic
many-body perturbation theory [29] and QED formalism [30].
In view of this, the excellent agreement between the gauges
after adjustment suggests that the remaining unaccounted
correlation effects to the transition amplitude are rather small.
As a result, the difference between the line strengths calcu-
lated in the length gauge and adjusted value in the velocity
gauge is employed for the theoretical error estimation [31,32].

However, it is still possible that the remaining unaccounted
correlation effects not only reduce the discrepancy between
the gauges but also shift both values by an amount which
is much larger than the difference between the gauges after
adjustment.

III. CORRELATION MODELS

In a view of an absence of strong criteria for the uncertainty
estimation of the calculated line strength, we performed the
MCDHF calculations for different correlation models. Among
those models, we choose only four models based on the
accuracy criterion for the transition energy as it is compared
with the experimental energy. These four models were based
on separate and simultaneous (orthogonal and nonorthogonal)
sets of orbitals for the ground and excited states. In each
model, the correlations were incorporated by systematically
extending the calculations in a series of steps. As a first
step, the calculations were performed for the lowest order
of approximation where the orbitals belonging to so-called
reference configurations were spectroscopically optimized,
i.e., orbitals were required to have a node structure similar to
the corresponding hydrogenic orbitals [27]. Here the reference
configurations for the first three models were {1s22s2, 1s22p2}
for the 1S0 ground state and {1s22s2p} for the 1P1 excited
state. For the fourth model, the reference configurations were
increased and we explain their details later in this section. In
the latter steps, the calculations were extended by expanding
the basis set of CSFs using the active set approach. In this ap-
proach, the correlations are incorporated by virtually exciting
the electrons from spectroscopic reference configurations to a
set of orbitals called the active set of orbitals. We increased
the active set by adding a layer of correlation orbitals but
optimized only the outermost layer and kept the remaining
orbitals fixed from the previous step of calculations.

We now explain how valence-valence (VV), core-valence
(CV), and core-core (CC) correlations were incorporated. We
started to expand the basis set by adding the CSFs that are gen-
erated from the configurations 1s2nln′l ′ which result from sin-
gle and double (SD) excitations from outer shells of the refer-
ence configuration. These CSFs account for VV correlations,
and the calculations are named VV calculations. To each layer
of VV correlation calculations we then added CSFs of the con-
figurations 1s2snln′l ′ + 1s2pnln′l ′, which arise from the sin-
gle excitation from the 1s2 core with or without another exci-
tation from the valence shells. These added CSFs account for
the CV correlations, and the calculations are called VV + CV.
Now with each layer of VV + CV correlation calculations, the
correlations of two-electron excitations from the 1s2 core were
included to account for the CC correlations. These additional
CSFs arise from the configurations 2s2nln′l ′ + 2p2nln′l ′ for
the 1S0 state and 2s2pnln′l ′ for the 1P1 state. These correlation
calculations are named VV+CV+CC calculations. In all VV,
VV+CV, and VV+CV+CC calculations, the active set of
orbitals was spanned by the orbitals with principal quan-
tum number n, n′ � 15 and with azimuthal quantum number
l, l ′ � 7. Finally, the basis set of CSFs was expanded by ap-
pending CSFs with configurations arising from single, double,
triple, and quadruple (SDTQ) excitations from the reference
configurations. In the SDTQ excitations, the number of CSFs
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increased very rapidly with the increasing number of orbitals
in the active set, which challenges the numerical stability and
available hardware resources. So the SDTQ excitations were
limited only with n, n′ � 5 and l, l ′ � 4. These calculations
were then extended with SD excitations with the remaining
layer of correlation orbitals with n, n′ � 15 and l, l ′ � 7. We
name this final set of calculations VV+CV+CC : SDTQ.

A. Model 1

In this model the VV and VV+CV calculations were per-
formed by utilizing the OL scheme for the ground and excited
state, i.e., for both states orbitals are separately optimized,
whereas for the VV+CV+CC as well as VV+CV+CC :
SDTQ calculations, the spectroscopic orbitals and the cor-
relation orbitals with n = 3 were simultaneously optimized
using the EOL scheme. Then the calculations after n = 3
were extended with a separate set of correlation orbitals (the
OL scheme). This model accounts for the correlations in a
similar manner as those presented by Jönsson and Froese
Fischer [20]. The only difference is that Jönsson and Froese
Fischer performed VV+CV+CC : SDTQ calculations with
SDTQ excitation until n = 3 only and extended their cal-
culations from n > 3 with VV+CV types of correlations
only.

In Fig. 2 (upper plot) we compare the present calculations
of model 1 with Jönsson and Froese Fischer results [20]. The
line strength in length and velocity form is plotted against
increasing n of the active set size defining the wave-function
expansion in respective calculations. It is clearly evident that
their two gauges agree perfectly at n = 8 once the experimen-
tal energy adjustment was applied. Explicitly, the line strength
calculated in Ref. [20] amounts to 2.437 6 in the length gauge
and 2.436 6 in the velocity gauge after adjustment, which
leads to a tabulated final value of 2.437 6(13). Despite that we
cannot explicitly reproduce these calculations, our evaluations
show a similar effect at the n = 7 active set layer, where the
results obtained in the length and velocity (adjusted) gauges
approach each other. However, when the active set size is
further extended, one can clearly see that after the n = 7 layer
the results first drift apart and then, again, approach each
other but at some different position. These observations lead
us to the following conclusions. First, the agreement between
gauges might be of an accidental character and therefore, sec-
ond, the difference between results in the length and velocity
(adjusted) gauges should be very carefully used as a criterion
for the error estimation.

Let us mention here another important observation. From
the basic theory [29,30], it is clear that the adjustment should
be made to the transition energy which corresponds to the dif-
ference of the eigenvalues of the Dirac-Coulomb Hamiltonian
in Eq. (1). Therefore, we calculate a so-called experimental
Dirac-Coulomb transition energy ωexp−DC as a difference of
the experimental value ωexp and the contributions beyond
the Dirac-Coulomb approximation, i.e., the Breit interaction,
recoil, and QED corrections. The ωexp−DC energy is thus
an experimentally deduced, fully correlated Dirac-Coulomb
transition energy. We compare in Table I as well as in Fig. 2
(lower plot) the line strengths in the length gauge (Sl ) and
in the velocity gauge (ab initio) (Sv) with the adjustment to

FIG. 2. Comparison of the line strengths evaluated according to
model 1 (TW) as a function of active set size of the orbitals with
the results of Ref. [20]. The green circles, red down triangles, and
blue upper triangles display the present calculations in the length
gauge Sl as well as in velocity gauges before Sv and after adjustment
Sv

(exp) to the experimental transition energy ωexp, respectively. The
green hollow squares, red hollow diamonds, and blue hollow stars
are corresponding values taken from Ref. [20].

ωexp (Sv
(exp)) and to ωexp−DC (Sv

(exp−DC)) values. As one can see
from this comparison, the values adjusted to the experimental
Dirac-Coulomb energy are much closer to the results in the
length gauge. In particular, for the n = 15 layer the relative
difference between the gauges amounts to 2 × 10−5. However,
as we mention at the end of Sec. II, the agreement between the
gauges cannot be uniquely used for the accuracy assessment.
For this reason, in the next sections, we also investigate other
correlation models.

B. Model 2

Within this model, both the spectroscopic and the cor-
relation orbitals were separately optimized using the OL
scheme for all types of correlations. Hence generated orbitals
for both states were not quite orthogonal with each other,
which makes the implementation of standard Racah algebra
difficult for the calculation of transition amplitude. To deal
with this complication, a transformation to a biorthonormal

062511-4



HIGH-PRECISION CALCULATIONS OF THE 1s22s … PHYSICAL REVIEW A 99, 062511 (2019)

TABLE I. Transition energies ω (cm−1) and line strengths S (a.u.) for the 1s22s2p 1P1 − 1s22s2 1S0 transition in Be-like carbon as a
function of the active set calculated within model 1. The line strengths in the length gauge (Sl ) are compared with those in the velocity
gauge ab initio calculated (Sv) and after adjustment to the experimental energy ωexp (Sv

(exp)) and to the experimental Dirac-Coulomb energy
ωexp−DC (Sv

(exp−DC)). The experimental transition energy is taken from Ref. [33], while the experimental Dirac-Coulomb energy is evaluated by
subtracting the Breit, recoil, and QED corrections from the experimental transition energy.

Active set ω Sl Sv Sv
(exp) Sv

(exp−DC)

DHF 112 958 2.34092 1.65645 2.01753 2.01651
3s3p3d 104 094 2.51432 2.36757 2.44884 2.44759
4s4p4d4 f 103 116 2.45884 2.38001 2.41568 2.41446
5s5p5d5 f 5g 102 804 2.44978 2.40435 2.42565 2.42442
6s6p6d6 f 6g6h 102 680 2.43952 2.42699 2.44259 2.44135
7s7p7d7 f 7g7h7i 102 540 2.43945 2.43173 2.44067 2.43943
8s8p8d8 f 8g8h8i8k 102 488 2.43788 2.43486 2.44135 2.44011
9s9p9d9 f 9g9h9i9k 102 459 2.43867 2.43551 2.44058 2.43934
10s10p10d10 f 10g10h10i10k 102 444 2.43797 2.43613 2.44052 2.43928
11s11p11d11 f 11g11h11i10k 102 437 2.43832 2.43604 2.44008 2.43884
12s12p12d12 f 12g12h12i10k 102 432 2.43830 2.43610 2.43993 2.43869
13s13p13d13 f 13g13h13i10k 102 429 2.43841 2.43610 2.43977 2.43853
14s14p14d14 f 14g14h14i10k 102 427 2.43840 2.43607 2.43966 2.43842
15s15p15d15 f 15g15h15i10k 102 426 2.43843 2.43608 2.43961 2.43837
Due to other models –15
Breit –3
Recoil –13
QED –10
Total 102 385
Exp 102 352
Exp-DC 102 378

basis was applied together with the countertransformation of
the expansion coefficients c j and c′

k [34].
The calculations within this model show the importance

of a common set of orbitals for the core correlations in the
framework of the MCDHF approach. For the CC effects, it is
commonly accepted that these are more balanced if a common
orbital basis is used for describing both states involved in the
transition, and hence resulting transition energies are more
accurate, for details please see Refs. [35,36]. This is also obvi-
ous from Fig. 3, where the evaluation of different correlation
effects to the transition energy is shown with respect to the
increasing n of the active set size defining the wave-function
expansion for the model 2 calculations. Here the blue upper
triangles representing VV + CV + CC correlation results are
worse than the magenta down triangles representing VV+CV
correlations. However, it is obvious from the red pentagons
representing VV+CV+CC : SDTQ in Fig. 3 that we get the
best agreement of the transition energy with the experiment
when the triple and quadrupole (TQ) excitations are included
with SD excitations in the CC correlations. The difference of
the final values of the energy of VV+CV+CC : SDTQ calcu-
lations with model 1 and model 2 is only 0.004%, whereas the
length form of the line strength from both models varies only
by 0.01%. The fact that TQ contributions are very important
is also noticed from the results of Chen et al. [23], who have
also used TQ excitations in building a common set of orbitals
in their RCI calculations based on the B-spline basis.

C. Model 3

Within this model, both the spectroscopic orbitals and
correlation orbitals were simultaneously optimized for the

ground and excited states using the EOL scheme for all
types of correlations. The so-obtained orbitals for both states
were orthogonal to each other, as it has been highlighted by
Chen et al. [23] and Savukov [24] that small orbital overlap
corrections due to nondiagonal sets of orbitals for the initial
and final state should not be ignored. Our correlation model 3
helped to address this issue.

FIG. 3. Extent of different correlation effects to the transition
energy with respect to the increasing n of the active set size defining
the wave-function expansion for the model 2 calculations. The green
circles represent VV correlations, magenta down triangles represent
VV+CV, blue upper triangles represent VV+CV+CC, and red
pentagons represent VV+CV+CC : SDTQ correlations. Please see
text for the details of different types of correlations.
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FIG. 4. Convergence of transition energy with respect to increas-
ing n of the active set size defining the wave-function expansion
for the VV+CV+CC : SDTQ calculations of different correlation
models. Please see the text for details of the VV+CV+CC : SDTQ
calculations.

D. Model MR

In this model, the set of spectroscopic reference con-
figurations was expanded to account for the missing cor-
relations due to limited SDTQ excitations. We name this
the multireference (MR) model. The configurations in MR
are expanded in such a way that the CSFs for the MR set
had the largest expansion coefficients in the wave functions
that were generated by VV+CV+CC : SDTQ calculations
of model 3. For the 1S0 ground state the resulting MR set
was {1s22s2, 1s22p2, 1s23p2, 2s23s2, 2s23p2, 1s23d2}, and
for the 1P1 excited state the resulting MR set was
{1s22s2p, 1s22p3d, 2s2p3s2, 2s2p3p2}. All the orbitals occu-
pied in the MR set were spectroscopically treated in the lowest
order of approximation. Then the correlation orbitals were
treated in the same way as those of model 3 using the EOL
scheme.

E. Models: Summary

Our approach with either a common or two separate sets
of orbitals for the ground and excited states combines the
strengths and weaknesses of the previous calculations, which
provide the uncertainty of the order of 10−3 [20,23,24]. The
orbitals in the common set for both states are orthogonal to
each other, and there is no orbital overlap for the evaluation
of the transition amplitude. At the same time, our procedure
of two different sets of orbitals for each state has the ad-
vantage that the electron relaxation effects are automatically
included to a large extent. In all our correlation models the
overall convergence trends and behavior of the inner and
outer electron correlations are consistent with each other. In
Fig. 4 we present the convergence of the transition energy
with respect to the increasing n of the active set size defining
the wave-function expansion for the VV+CV+CC : SDTQ
calculations from all the correlation models under present
study. For model 3 and MR we could not get the converged
orbitals for n = 15. The first three models vary just with a
difference of maximum of 6 cm−1, but for model MR we

FIG. 5. Line strength for the VV+CV+CC : SDTQ calculations
from models 2, 3, and MR plotted similarly to those of Fig. 2. In
each subfigure, the green circles are the line strength Sl in length
form, red down triangles are ab initio Sv velocity form, blue upper
triangles are the Sv

(exp) velocity form adjusted for the experimental
transition energy ωexp, and black squares are the Sv

(exp−DC) velocity
form adjusted for the experimental Dirac-Coulomb transition energy
ωexp−DC (see text).

062511-6



HIGH-PRECISION CALCULATIONS OF THE 1s22s … PHYSICAL REVIEW A 99, 062511 (2019)

TABLE II. ω is the Dirac-Coulomb transition energy (cm−1).
Sl and Sv

(exp−DC) are the Dirac-Coulomb line strengths in the length
gauge and in the velocity gauge adjusted to ωexp−DC energy (see text)
in a.u.

Label ω Sl Sv
(exp−DC)

Model 1 102426 2.43843 2.43837
Model 2 102430 2.43820 2.43863
Model 3 102423 2.43869 2.43796
Model MR 102411 2.43854 2.43929

Final 2.43851(37)

get 15 cm−1 better results, and this is obviously due to the
inclusion of higher-order correlations in this model.

In Fig. 5 we present the line strength for the
VV+CV+CC : SDTQ correlations calculated within models
2, 3, and MR in a similar way as explained in Sec. III A and
Fig. 2 (lower plot). From these plots, one can clearly see that
in all models the line strength in the velocity adjusted to the
experimental Dirac-Coulomb energy agrees with the length
gauge result much better than that adjusted to the pure experi-
mental energy. This also confirms our expectations originated
from the basic principles as stated at the end of Sec. III A.
In order to get the final (Dirac-Coulomb) line strength value,
the results of the length gauge and those adjusted to the
experimental Dirac-Coulomb energy velocity gauge obtained
at the maximum active set size are analyzed. The employed
data from all the correlation models are summarized in Ta-
ble II and Fig. 6. As one can see from these data, despite the
extraordinary agreement between gauges, e.g., in model 1, one
cannot use it for the uncertainty estimation. The reason for this
has been explained at the end of Sec. II and confirmed now by
the calculations in other models, which predict a quite larger
spread of the results than given by the difference of the gauges.
We take an average of these scatters of the line strength

FIG. 6. Line strength of the 1s22s2p 1P1 − 1s22s2 1S0 transition
in Be-like carbon plotted against the present models. Green squares
correspond to the length-form values and blue circles to the velocity-
form values. The black solid line is the average of both the length
and velocity forms. The gray shaded region is one standard deviation
with respect to the black line.

data to predict the final value of the line strength and take
one standard deviation of these scatters of the line strength
data to predict the uncertainty in the results. As a result, the
present line strength accounting only for the correlations is
2.438 51(37). This is represented as a black solid line in
Fig. 6, whereas in this figure the uncertainty is shown as a
gray shaded region. We find it rather conservative to assess
the uncertainty as one standard deviation of the scattered data.
Such kinds of error estimation are further supported by the
fact that it covers all the values obtained in the length gauge,
which is known to be more reliable.

IV. NUCLEAR-RECOIL CORRECTION

Once the line strength is calculated, including all the major
correlation contributions, the finite nuclear mass (nuclear-
recoil) contribution was added as a correction given as

�Srec = �Srec,en + �Srec,wf + �Srec,op, (10)

where the first two terms on the right side in Eq. (10) are
the corrections to the line strength due to nuclear-recoil
contributions to the energy and wave functions. These cor-
rections were calculated using the relativistic configuration-
interaction (RCI) program of GRASP2K [25]. Here the lowest-
order nuclear motional corrections, namely, the normal-mass-
shift (NMS) term based on the Dirac kinetic energy operator

ĤNMS = 1

M

N∑
i=1

[cαi · pi + (βi − 1)c2],

where the M is the nuclear mass, and the mass-polarization
term named the specific mass shift (SMS)

ĤSMS = 1

M

N∑
i< j=1

pi · p j,

were added to the Dirac-Coulomb Hamiltonian, Eq. (1). The
additional relativistic corrections to the recoil operators are
of the order (Zα)2 [37]. For Z = 6, these corrections are
in the order of 10−6, which is far below the present level
of uncertainty. However, the relativistic corrections must be
taken into consideration for future studies of higher Z .

It is also important, however, to take into account the recoil
correction to the transition operator, i.e., the third term in
Eq. (10). Previously it was considered in Refs. [37–40] for
the E1 transitions and in Ref. [41] for the M1 decay. Starting
from the nonrelativistic Hamiltonian for N electrons and the
nucleus, we obtain the following recoil corrections to the E1
transition operator:

�T l
rec = −Z − N

M

N∑
i=1

ri (11)

in the length gauge and

�T v
rec = − Z

M

1

ω

N∑
i=1

pi (12)

in the velocity gauge. From these expressions one can
easily come to the corresponding corrections to the line
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TABLE III. Recoil corrections to the line strengths originating
from the energy and wave-function change, �Srec,en+wf , as well
as due to the transition operator �Srec,op calculated in the length
and velocity gauges. The total gauge-invariant recoil correction is
presented in the last line. The values are in a.u.

Rec. correction Length Velocity

�Srec,en+wf 0.00000 −0.00089
�Srec,op 0.00045 0.00134
Total 0.00045 0.00045

strength:

�Sl
rec,op = 2Re

{〈�(�; πJ )||T l ||�(�′; π ′J ′)〉
× 〈�(�; πJ )||�T l

rec||�(�′; π ′J ′)〉}
≈ 2

Z − N

M
Sl (13)

and

�Sv
rec,op = 2Re

{〈�(�; πJ )||T v||�(�′; π ′J ′)〉
× 〈�(�; πJ )||�T v

rec||�(�′; π ′J ′)〉}
≈ 2

Z

M
Sv . (14)

In Table III different recoil contributions due to the energy,
wave functions, and operator are presented in the length and
velocity gauges. Only with the term due to the change of the
operator included is the total recoil correction gauge invariant.
In view of this, we would recommend this contribution be
introduced to the next GRASP update.

V. DISCUSSION AND CONCLUSION

With the discussion above, we can obtain the final value
of the line strength. In order to do so, we add to the Dirac-
Coulomb value 2.438 51(37) from Sec. III the recoil correc-
tion �Srec = 0.000 45 calculated in the previous section. In
addition, we have to also consider other effects, such as the
Breit interaction and QED effects. The Breit contribution has
been calculated as follows. The frequency-independent Breit
Hamiltonian has been added to the Dirac-Coulomb Hamilto-
nian given by Eq. (1). Then the RCI calculations have been
performed within the correlation model 1. Comparing further
the obtained results with the corresponding Dirac-Coulomb
values, we get for the Breit contribution �SBreit 0.000 30
and −0.000 01 in the length and velocity gauge, respectively.
Based on an analysis of the Breit contribution in the inter-
combination transition 2s2p 3P1 − 2s2 1S0 in Be-like carbon
in Ref. [23] and on arguments presented in Refs. [48,49],
we attribute this difference to the negative-energy corrections.
That means that the gauge invariance of the Breit contribution
should be restored when the negative-energy states are accu-
rately taken into account. On the other hand, it was demon-
strated [48,49] that the negative-continuum affects dominate
only the result in the velocity gauge, while the result of the
length gauge remains stable. In view of this, we add the
Breit correction calculated in the length gauge and with 50%
uncertainty, �SBreit = 0.000 30(15), to our final value. The
remaining QED correction is estimated as α(αZ )2ln(αZ )−1

FIG. 7. A comparison of the present line strength of the
1s22s2p 1P1 − 1s22s2 1S0 transition in Be-like carbon with other
theories and experiments.

[50,51] to be 4 × 10−5, which is much smaller than our
uncertainty. As a result, our final value for the line strength
reads 2.439 26(40), where the uncertainty is coming from the
correlations and Breit contribution.

Once the line strength is calculated, it is straightforward to
get the weighted oscillator strength gf

gf = 2
3ωS (15)

and the lifetime of the 1s22s2p 1P1 excited state

τ = 3g

4

c3

ω3S
, (16)

where g is the weight of the upper state. Here the conversion to
the lifetime from the line strength and vice versa is performed
by using the experimental energy, ω = 102 352.04 cm−1 [33].
We note that the present uncertainty in the lifetime is only
due to calculated line strength, since the uncertainty of the
transition energy is expected to be much better than 1 cm−1,
and this is far below the uncertainty of the line strength.

Figure 7 and Table IV compare the present results of
calculated line strength and lifetime with other theories and
experiments. Note that in the respective papers the values
of oscillator strength are provided. We have converted the
oscillator strength to the line strength using the energies
mentioned in the respective papers. In Fig. 7, the experimental
line strength reported in Ref. [47] is plotted as a function of
the experimental energy taken from the NIST database [33].
It is clear from Fig. 7 that our calculated energy is the closest
to the experimental one. The present line strength or lifetime
agrees very well with the CI + MBPT calculation of Savukov
[24] and is in fair agreement with the large-scale MCDHF
calculation of Jönsson and Froese Fischer [20] and the CI
result of Chen et al. [23].

It is obvious from Table IV that all the theoretical lifetimes
except those of Ref. [22] are inside the error bar of the
best available experimental lifetime of 0.569(10) ns [47].
However, the uncertainty of this measurement is still too large
to distinguish between different theories. Therefore, we hope
that the proposed experiment in Ref. [15] will provide a new
benchmark for testing the theories in the case of Be-like
carbon.
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TABLE IV. Comparisons between different calculations and ex-
periments for the line strength of the 1s22s2p 1P1 − 1s22s2 1S0

transition and the lifetime of the 1s22s2p 1P1 excited state in Be-like
carbon.

S [a.u.] τ [ns] Ref.

Theories
2.434(6) 0.5673(13) [18]
2.435(6) 0.5671(13) [19]
2.4376(13) 0.56650(30) [20]
2.057 0.6713 [22]
2.4377(10) 0.56648(23) [23]
2.4390(24) 0.56618(55) [24]
2.436 0.5669 [21]
2.43926(40) 0.56612(9) Present work

Experiments
2.09(1) 0.66(3) [42]
2.16(2) 0.64(6) [43]
2.09(2) 0.66(7) [44]
2.76(1) 0.50(3) [45]
2.42(1) 0.57(2) [46]
2.426(45) 0.569(10) [47]

In conclusion, we have presented high-precision atomic
calculations of the line strength of the 1s22s2p 1P1 −
1s22s2 1S0 spin-allowed E1 transition in Be-like carbon. We
have utilized the state-of-the-art multiconfiguration Dirac-
Hartree-Fock method. In these systematically enlarged wave
functions, we incorporated higher-order electron correlations,
where the orbital relaxation and overlaps are taken into ac-
count by using separate and simultaneous sets of relativistic
orbitals in the active set. This helped us to reliably estimate
the uncertainty of the obtained line strength. Moreover, the
finite nuclear mass correction to the line strength is calculated
by correcting the energy, wave functions, and the transition
operator. The achieved relative uncertainty of the line strength
amounts to 10−4, which represents a reliable theoretical
benchmark of the E1 line strength in view of upcoming high-
precision lifetime measurements of the 1s22s2p 1P1 state of
Be-like carbon.

Extensions of current studies to heavier Be-like ions allow
us to improve the theoretical accuracy of transition rates. The
given (numerical) uncertainty together with the high-precision
experiments will allow an alternative spectroscopic test rather
than the energy alone and will provide further insight into the
atomic structure of many-electron atoms and ions.
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