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Magnetically activated rotational vacuum friction
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We predict the existence of a torque acting on an isotropic neutral nanosphere activated by a static magnetic
field when the particle temperature differs from the surrounding vacuum. This phenomenon originates in time-
reversal symmetry breaking of the particle interaction with the vacuum electromagnetic field. We present a
rigorous quantum treatment of photons and particle excitations that leads to a nonzero torque even in a motionless
particle. We also find that the dynamical evolution of the particle temperature and rotation frequency follow
an exotic dynamics, including spontaneous changes in the rotation direction. Magnetically activated thermal
vacuum torques open a unique avenue for the investigation of the effect of time-reversal symmetry breaking in
thermal and Casimir physics.
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I. INTRODUCTION

Coupling between the bosonic excitations of moving ob-
jects (e.g., plasmons or phonons) and the vacuum elec-
tromagnetic field can produce net transfers of momen-
tum and emission of real photons at the expense of me-
chanical motion [1–41]. These phenomena have been ex-
plored in accelerated mirrors [1,4,7,16,26,32], sliding surfaces
[8,9,18,25,33,35], rotating objects [13,15,21,22,27,30,31,41],
optical cavities [6,14,28], and moving atoms and particles
[19,20,29,36,39,40]. For example, two planar homogeneous
surfaces in relative parallel motion undergo contactless fric-
tion due to exchanges of surface excitations that interact
through the vacuum electromagnetic field [8,18]. Friction
can additionally occur by emitting photon pairs if the two
media are transparent and their relative velocity exceeds the
Cherenkov condition [9,33,42]. The continuous change in
the dielectric boundaries associated with the rotation of a
nonspherical object made of a nonabsorbing material also
leads to stopping, assisted by the emission of photon pairs
[13,15]. More intriguing is the case of a spinning lossy sphere:
despite the apparent preservation of dielectric boundaries, it
undergoes a frictional torque even when the entire system is
at zero temperature [21,43], while the torque can be enlarged
by the presence of a planar surface [31], giving rise to a lateral
force [41].

Vacuum friction is closely related to time-reversal symme-
try (T symmetry) of the electromagnetic field in the vicinity
of the involved materials. Considering again two moving
parallel surfaces [18], T symmetry implies that the excitations
of one of them have equal local density of states (LDOS)
in its rest frame regardless of the orientations of their wave
vectors. However, T symmetry is broken for the surrounding
electromagnetic field due to the Fresnel drag associated with
the moving surface, a result that has been recently exploited to
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design optomechanically induced nonreciprocal optical de-
vices [44–48]. T-symmetry breaking is a direct consequence
of the different Doppler shifts experienced by excitations
propagating along opposite directions in the moving sur-
face, which understandably exhibit a LDOS asymmetry. This
produces an imbalance in the momentum exchanged during
transfers of excitations between the two surfaces, giving rise
to a net stopping force. In a similar fashion, the rotational
Doppler effect in a rotating spherical particle induces T-
symmetry breaking between excitations circulating in clock-
wise and counterclockwise directions, which also results in a
vacuum frictional torque. From these general considerations,
one would expect the emergence of vacuum forces in geo-
metrically symmetric structures composed of nonreciprocal
materials, in which T symmetry is broken for example by
applying a static magnetic field.

In the present paper we show that a spherical particle expe-
riences a counterintuitive torque due to T-symmetry breaking
induced by a static magnetic field. We formulate a rigorous
quantum-electrodynamic model to describe the system and
show that a finite torque is exerted parallel to the magnetic
field even on a motionless particle, provided its temperature
differs from that of the surrounding vacuum. The torque origi-
nates in the asymmetric thermal population of particle internal
bosonic excitation modes with opposite angular momentum
(AM). We find the particle temperature and rotation frequency
to follow an exotic dynamics characterized by spontaneous
changes in the direction of rotation. We anticipate that sim-
ilar vacuum forces should generally appear in nonmagnetic
nanostructures when optical T symmetry is broken by means
of static magnetic fields.

II. CALCULATION OF THE FRICTIONAL TORQUE AND
ABSORPTION POWER

We present a self-contained derivation of the torque and
the absorption power that is general for a particle with axial
symmetry and a static magnetic field along the rotation axis,
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FIG. 1. Imbalance of photon absorption and emission caused by
Zeeman splitting in a rotating nanoparticle. (a) We consider a sphere
rotating with frequency � around the direction of a static magnetic
field B ‖ ẑ. The temperatures of the particle and the surrounding
vacuum are T1 and T0, respectively. A dipolar excited state in the
sphere undergoes a splitting ωc = eB/mec. Emission and absorption
rates γ e

± and γ a
± from these two states are also affected by Doppler

shift associated with rotation. (b) When ω = 0 and T0 = 0, the
asymmetric coupling of the excited states to radiation is determined
by the blackbody distribution ∝ω3n1(ω) at temperature T1 (dashed
curve).

as shown by a sphere in Fig. 1(a). For motionless particles
(� = 0) with axial symmetry, the magnetic field induces a
splitting equal to the cyclotron frequency ωc on the resonance
peaks of the two optical dipolar modes that are both initially
located at ω0, as illustrated in Fig. 1(a). In fact, when focusing
on particles that possess isotropic dipolar polarizability in the
plane perpendicular to the magnetic field, the magnitude of
this magnetic splitting depends on the actual morphology.
The magnetic splitting of ωc in an axially symmetric particle
originates in the Zeeman shifts of its internal electron states,
which are quantized in accordance with the matrix elements of
the orbital momentum operator [49]. In contrast, in a crosslike
particle, these matrix elements can be neglected in the internal
electronic states and the magnetic field does not affect its
optical response. In this study, we focus on particles with axial
symmetry.

Our derivation also shows that a rotating particle experi-
ences a gyromagnetic effect [50–52] in the frame rotating with
it, where the Coriolis forces acting on the particle electrons

can be assimilated to an effective magnetic field. In particular,
when such electronic states are eigenstates of the AM operator
(e.g., in ellipsoidal particles), the excitation modes in the
polarizability display an additional frequency splitting equal
to 2� in the rotating frame, but do not undergo any correction
due to rotation in the laboratory frame (i.e., it is the same
regardless of the rotation speed). This is in contrast to previous
results [21,22,30,31,33,34,41,53,54], in which the resonance
peaks in the particle polarizability were frequency shifted
in the laboratory frame due to rotation, a possibility that
only holds for particles whose polarizabilities are not affected
by this effective magnetic field (e.g., in crosslike particles,
for which a classical description based on rigid rods also
generates this correction [27], essentially due to the inability
of Coriolis forces to produce motion transversal to the rods).

Incidentally, at low optical frequencies ω, absorption in
metallic particles is dominated by Ohmic losses and scales
linearly with ω, but for this term the AM correction becomes
negligible and the imaginary part of the polarizability needs
to be corrected due to rotation, leading to a term proportional
to ω − � regardless of particle morphology (see results for
this limit in Ref. [21]). However, we are concerned here with
the effect of optical resonances in rotating particles under the
influence of a magnetic field, for which Ohmic losses can be
safely ignored.

A. Quantum states in a rotating particle

We study an axially symmetric nanoparticle rotating with
angular frequency � at temperature T1 in a vacuum at tem-
perature T0, exposed to a static magnetic field. The torque
on this particle originates in the energy and AM exchanges
between its excitations and the vacuum electromagnetic field,
as illustrated in Fig. 1(a). We assume the rotation direction and
the magnetic field to be aligned along the axis of symmetry
of the particle (direction z). The internal electronic states of
the particle |l〉 of energies h̄εl can be chosen to be associated
with azimuthal numbers ml corresponding to a rotational wave
function eiml ϕ , where ϕ is the azimuthal angle around z. We
remark that the present formalism applies to any type of
electronic states, including many body descriptions of the
problem.

In the laboratory frame and in the absence of a magnetic
field, the energies of the quantum states |l〉 are h̄ε0

l . The
applied magnetic field B induces Zeeman shifts mlωc/2,
where ωc = eB/mec is the cyclotron frequency, so the state
frequencies become εl = ε0

l + mlωc/2.
For a rotating particle, it is important to consider the

states in the frame rotating with the particle because ther-
mal equilibrium must be established among those states.
Under a transformation from the laboratory frame to the ro-
tating frame, r = (r, ϕ, z, t ) → r′ = (r′, ϕ′, z′, t ′) = (r, ϕ −
�t, z, t ), taking into account that the time derivative trans-
forms as ∂t → ∂t ′ − �∂ϕ′ , the Schrödinger equation in the ro-
tating frame becomes (Hpart − �Lz )ψ = ih̄∂t ′ψ [55], where
Hpart is the particle Hamiltonian in the laboratory frame
(with r substituted by r′), Lz = −ih̄∂ϕ′ is the AM operator
around the rotation axis, and the term −�Lz introduces an
additional shift in the frequencies of the quantum states, which
now become εl − ml� (see Appendix A). This term can be
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regarded as the result of an effective magnetic field acting on
the particle in the rotating frame. When thermal equilibrium
is established among the states in the rotating frame, the
populations of quantum states |l〉 are then determined by their
energies h̄(εl − ml�) according to the Boltzmann distribution
fl = e−h̄(εl −ml �)/kBT1/Z1, where Z1 is the partition function in
the rotating frame.

We note that in previous works
[21,22,30,31,33,34,41,53,54] on rotational vacuum friction,
the correction −�Lz is missing, so they only apply to
particles in which the matrix elements of Lz are negligible.

We remark that for particles that possess isotropic dipolar
polarizability in the plane perpendicular to the rotation axis,
these matrix elements depend on the actual morphology. For
example, the matrix elements are small in crosslike structures.
For particles with axial symmetry, the effect of this term
needs to be incorporated, as explained in the present paper.
In particular, when such electronic states are eigenstates of
the AM operator (e.g., in ellipsoidal particles), the excitation
modes in the polarizability do not undergo any correction
due to rotation in the laboratory frame (i.e., it is the same
regardless of rotation speed).

B. Particle-vacuum interaction

We consider a complete basis set of vacuum photon modes
i labeled by the occupation numbers ni. The state of the
particle-field system is thus expressed as a combination of
states |l, {ni}〉, where l labels the internal electronic states of
the particle (see Sec. II A). Photons and electronic excitations
are coupled through the interaction Hamiltonian [22]

HI = −
∑

i

√
2π h̄ωi

V
êi(a

+
i + ai ) · p, (1)

where V is the quantization volume, ai and a+
i are the anni-

hilation and creation operators of a photon in mode i, respec-
tively, ωi and êi are the frequency and (real) unit polarization
vector of the photon, and p is the particle dipole operator. By
describing particle-photon interactions through the excitation
dipoles, we are assuming that the particle is small compared
with the wavelengths of the involved photons.

When considering transitions in the particle driven by HI,
we need to evaluate dipole matrix elements pl ′l = −e〈l ′|r|l〉,
for which it is convenient to use the Zeeman coordinate
basis, defined by the unit vectors û± = (x̂ ± iŷ)/

√
2. Taking

into account that the |l〉 states have well-defined AM h̄ml ,
the Zeeman basis readily reveals the selection rule ml ′ =
ml ± 1 for polarization in the x-y plane and ml ′ = ml for
polarization along z. More precisely, we can write pl ′l =
p⊥

l ′l (û+δml′ ,ml −1 + û−δml′ ,ml +1) + pz
l ′l ẑδml′ ,ml , where pz

l ′l = ẑ ·
pl ′l and p⊥

l ′l = û± · pl ′l is independent of the sign of ml ′ − ml

due to rotational degeneracy. Using these expressions, the
only nonzero matrix elements of HI are

〈l ′, ni + 1|HI|l, ni〉 = −
√

2π h̄ωi

V
�l ′l,i

√
(ni + 1), (2a)

〈l ′, ni − 1|HI|l, ni〉 = −
√

2π h̄ωi

V
�l ′l,i

√
ni, (2b)

where

�l ′l,i = p⊥
l ′l

(
e+

i δml′ ,ml +1 + e−
i δml′ ,ml −1

) + pz
l ′l e

z
i δm′,m

and e±
i = û∓ · êi.

Because the dipole components along z cannot produce
changes in AM, we only need to consider polarization in
the x-y plane in the calculation of the torque. However, we
need to account for polarization along z when calculating
the particle absorption power (see below). Using the Fermi
golden rule with the above transition matrix elements, we
can now obtain the rates γ e

± (contribution arising from ni →
ni + 1 and ml ′ − ml = ∓1 terms) and γ a

± (from ni → ni − 1
and ml ′ − ml = ±1) associated with photon emission and
absorption processes, and accompanied by a net particle AM
change given by ∓h̄ and ±h̄, respectively; these rates are
thus separated in components with opposite AM as shown in
Fig. 1(a). In particular, the absorption rates reduce to

γ a
± = 2π

h̄2

∑
ll ′

fl

∑
i

∞∑
ni

e−ni h̄ωi/kBT0

Z0,i
δml′ ,ml ±1

× |〈l ′, ni − 1|HI|l, ni〉|2δ(εl ′l − ωi ),

where εl ′l = εl ′ − εl and we perform the thermal average over
electronic states |l〉 (initial populations fl ) and photon states
|ni〉. Here, Z0,i = ∑

ni
e−ni h̄ωi/kBT0 is the partition function of

photon mode i, assumed to be at thermal equilibrium for
a vacuum temperature T0. Now, noticing that the HI ma-
trix elements of Eqs. (2) introduce terms proportional to ni

and ni + 1 in the rates, the sum over ni readily reduces to
factors proportional to n0(ωi ) and n0(ωi) + 1, respectively,
where n0(ω) = 1/(eh̄ω/kBT0 − 1) is the Bose-Einstein distribu-
tion function at the vacuum temperature. Also, we perform the
sum over i by using a plane-wave representation of the photon
states and making the substitution

∑
i → V/(2π )3 ∑

σ

∫
d3k,

where σ and k denote photon polarization and wave vector.
The angular part of this integral can be conveniently carried
out using azimuthal and polar vectors as the two orthogonal
polarization states for each direction of k. We are then left
with an integral over the photon frequency, which reduces the
absorption rates to

γ a
± = 4π2

h̄

∑
ll ′

fl (p⊥
l ′l )

2 δml′ ,ml ±1

×
∫ ∞

0
ωρ0(ω)dω n0(ω)δ(εl ′l − ω),

where ρ0(ω) = ω2/3π2c3 is the projected local density of
optical states in vacuum [56]. Finally, we compare this ex-
pression to the polarizability of a rotating particle, which
is calculated in Appendix B using the notation and states
introduced in Sec. II A [see Eq. (B1)]. The result is

γ a
± = 4π

∫ ∞

0
ωρ0(ω)dω n0(ω)[n1(ω ∓ �) + 1]

× Im{α±(ω)}, (3)

where

α±(ω) = 1

h̄

∑
ll ′

( fl ′ − fl )δml′ ,ml ±1
(p⊥

l ′l )
2

ω − εl ′l + i0+ (4)
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is the polarizability for circular polarization in the x-y plane.
Proceeding in a similar way, using Eq. (2b) instead of Eq. (2a),
we find the emission rates associated with a net AM loss ±h̄
in the particle as

γ e
± = 4π

∫ ∞

0
ωρ0(ω)dω [n0(ω) + 1]n1(ω ∓ �)

× Im{α±(ω)}. (5)

We observe that emission and absorption processes, as de-
scribed in Eqs. (3) and (5), incorporate a Bose-Einstein
statistics for both photons and particle excitations, introduced
through their distributions n0(ω) and n1(ω) at temperatures T0

and T1, respectively, which enter as factors n j + 1 or n j de-
pending on whether an excitation is added to or removed from
the particle ( j = 1) or the vacuum ( j = 0). This is remarkable
considering that we have not made any assumptions regarding
the statistics of the particle excitations, so it can equally apply
to a discrete set of many-body states |l〉 or to bosonic modes
such as plasmons.

C. Torque and absorption power

We are now ready to calculate the torque acting on the
particle by summing the above transition rates, multiplied by
their respective transferred AM (ml ′ − ml )h̄. We find

M = h̄[(γ e
− − γ a

−) − (γ e
+ − γ a

+)]

= 4π h̄
∑
ν=±1

ν

∫ ∞

0
ωρ0(ω)dω Nν (ω) Im{αν (ω)}, (6)

where

Nν (ω) = n0(ω) − n1(ω − ν�)

is the imbalance of vacuum and particle mode populations.
We point out the presence of Im{αν (ω)} in Eq. (6), in contrast
to the expression Im{αν (ω − �)} used in previous works
[21,22,30,31,33,34,41,53,54]; the contribution of Lz to the
energy differences in the electronic transitions that configure
the dipolar polarizability cancel exactly the rotational Doppler
shift in � when the electronic states are eigenstates of Lz

(see Appendix B), which is the case for the particles with
rotational symmetry here discussed. The interactions between
the vacuum field and the two particle modes carrying a differ-
ence of AM given by ±h̄ follow the general principle that the
radiative exchange with photon (i.e., boson) modes is propor-
tional to the imbalance of their thermal populations. However,
for the rotating particle under consideration, the populations
of the particle excitations are evaluated at Doppler-shifted
frequencies in the rotating frame (i.e., ω ∓ �). As discussed
in Ref. [57], a solid particle rotating at low frequency � in the
absence of a magnetic field does not show optical dichroism
[i.e., α+(ω) = α−(ω)], and consequently, the rotational fric-
tion torque only arises from a population imbalance driven by
the Doppler shift, which causes n1(ω + �) − n1(ω − �) to be
nonzero, unless � = 0.

For a motionless particle (� = 0), a nonzero torque can
also emerge as the effect of circular dichroism of the particle
in the presence of a dc magnetic field. For example, with
the vacuum at zero temperature (T0 = 0), photon emission
is produced at rates proportional to the blackbody spectrum

∝ω3n1(ω) [Fig. 1(b)], while absorption is obviously zero;
additionally, the rotational invariance of the particle implies
that it possesses at least two excitation modes with opposite
AM [i.e., ±h̄; see red and blue arrows in Fig. 1(a)], therefore
undergoing opposite Zeeman shifts, which in turn results in
an imbalance of Im{αν (ω)} at the split frequencies of the
two modes; as a result of this, the contribution to the torque
associated with emission from each of the two modes does not
cancel completely [see Fig. 1(b)], leaving a net contribution.
We thus predict that a motionless particle should experience a
nonzero torque in the presence of a dc magnetic field when its
temperature differs from the vacuum.

We can also use the above rates to obtain the power
absorbed by the particle, considering that each photon absorp-
tion or emission involves a particle energy gain or loss given
by h̄ω. The absorption power then reduces to

Pabs = 4π h̄
∑

ν=0,±

∫ ∞

0
ω2ρ0(ω)dω Nν (ω) Im{αν (ω)}, (7)

where we have included a term ν = 0 associated with power
exchanges due to particle polarization along the rotation di-
rection z (see Appendix B).

III. TORQUE AND DYNAMICS IN THE PRESENCE OF A
MAGNETIC FIELD

The presence of a magnetic field produces frequency shifts
mlωc/2 in the particle excited states |l〉, depending on their
AM number ml . This directly affects the polarizability α±
[Eq. (4)] through the frequency differences ωl ′l = ±ωc/2,
leading to a nonreciprocal response characterized by α+ �=
α−. As a direct consequence of this, Eq. (6) yields a nonzero
torque even in the absence of rotation (� = 0), provided
T1 �= T0.

Although the results presented in Sec. II are general, in
what follows we focus for simplicity on an isotropic sphere
characterized by a degenerate dipolar mode of frequency
ω0. Also, we find it convenient to use the natural radiative
decay rate [58] γ0 = 4ω3

0 p2
0/3h̄c3 as a parameter, instead of

the excitation dipole moment of the mode p0. We further
assume the mode width to be small compared with ω0. Under
these conditions, the particle polarizability in Eqs. (6) and (7)
reduce to Im{α±(ω)} = (π p2

0/h̄)δ(ω − ω0 ∓ ωc/2) with ±
components differing due to Zeeman splitting (see Appendix
B). Inserting these expressions into Eq. (6), we readily find

M = h̄γ0

ω3
0

[(ω+
0 )3N+(ω+

0 ) − (ω−
0 )3N−(ω−

0 )], (8)

where ω±
0 = ω0 ± ωc/2 are the resonance frequencies of the

two Zeeman-split particle modes. Similarly, the absorption
power in Eq. (7) reduces to

Pabs = h̄γ0

ω3
0

[
(ω+

0 )4N+(ω+
0 ) + (ω−

0 )4N−(ω−
0 ) + ω4

0N0(ω)
]
.

(9)

We now use Eqs. (8) and (9) to produce the numerical results
presented in Figs. 2–4.

Figure 2 shows the torque on a motionless nanoparticle
(� = 0) calculated from Eq. (8) for various nanoparticle
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FIG. 2. Torque experienced by a motionless nanosphere (� =
0) in the presence of a magnetic field. We present the torque as
a function of magnetic field B, quantified through the cyclotron
frequency ωc = eB/mec, for a particle characterized by a dipolar
excitation mode at frequency ω0. Results are shown for different
normalized particle temperatures T̃1 = kBT1/h̄ω0. The torque is given
in units of M0 = h̄γ0, where γ0 is the natural radiative decay rate of
the ω0 particle mode. The vacuum is at temperature T0 = 0.

temperatures T1 as a function of magnetic field strength (cy-
clotron frequency ωc) when the vacuum is at temperature T0 =
0. The rotational symmetry of the particle implies that the
torque changes sign when the direction of the magnetic field B
is reversed. The direction of the torque also depends on parti-
cle temperature: it is roughly parallel (antiparallel) to B at low
(high) T1. This behavior is clearly illustrated by the expression
M = (h̄γ0/ω

3
0 )[(ω−

0 )3n1(ω−
0 ) − (ω+

0 )3n1(ω+
0 )], which is valid

for T0 = 0, � = 0, and |ωc/2| < ω0; under the conditions of
Fig. 1(b) (low T1), the high-energy mode at ω+

0 decays more
slowly than the mode at ω−

0 , and hence M > 0, whereas the
opposite behavior is observed when the state energies lie to
the left of the emission maximum (high T1).

We find it interesting that, despite the dipolar nature of
the particle under consideration, the vacuum torque can be
asymmetric with respect to sign changes in the rotation fre-
quency (i.e., it not only changes sign, but also magnitude).
An illustration of this effect is shown in Fig. 3, which is
obtained by using Eq. (8). In the absence of a magnetic field,
the torque is symmetric, while the introduction of a magnetic
field produces a sizable asymmetry. We attribute this effect to
the optical nonreciprocity of the material under the influence
of a magnetic field.

The frictional torque of a sphere in the presence of a
magnetic field leads to exotic dynamics, as shown in Fig. 4,
where we study the evolution of particle rotation frequency �

and temperature T1 as a function of time. Because the ionic
masses inside the sphere are large compared with the electron
mass, the evolution of the particle dynamics is governed by
the classical equations of motion �̇ = M/I for the rotation
velocity and Ṫ1 = (Pabs − M�)/C for the temperature, where
I is the moment of inertia, C is the heat capacity, and the term
M� is the fraction of absorbed power that is converted into
rotational energy rather than internal heating of the particle.
A set of universal landscapes are found for the evolution of

FIG. 3. Frictional torque acting on a rotating nanosphere under a
static magnetic field as a function of rotation frequency for different
magnetic splittings ωc. We assume the particle and the vacuum to
be at the same temperature equal to Tj = 0.2 h̄ω0/kB. All other
parameters are the same as in Fig. 2.

kBT1/h̄ and �/ω0 as a function of the fixed parameters ωc/ω0,
kBT0/h̄, and C/I . A particular numerical solution is plotted in
Fig. 3(b), where we observe evolution lines that are strongly
influenced by the magnetic field. The system is shown to

FIG. 4. Temporal dynamics in the space of rotation frequency �

and particle temperature T1 for ωc = 0 (a) and ωc = 0.8 ω0 (b). The
normalized vacuum temperature is T̃0 = 0.6. The dashed curves and
corresponding numerical labels indicate evolution times in units of
τ = Iω0/h̄γ0 for C/I = kBω0/h̄, where I is the moment of inertia
and C is the heat capacity of the particle. A red circle indicates the
equilibrium point M = 0 and P = 0.
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evolve toward the equilibrium point for all initial configura-
tions. Interestingly, the evolution toward the equilibrium point
is often involving stopping of the particle out of equilibrium
and changes in the direction of rotation.

IV. CONCLUDING REMARKS

We conclude that the presence of a static magnetic field can
lead to nontrivial torques acting on a nanoparticle when its
temperature differs from that of the surrounding medium. We
have derived the resulting torque by calculating the different
rates of radiation exchange between particle excitations and
the environment, including the thermal populations of exci-
tations for opposite values of their AM, which differ due to
Zeeman splitting produced by the magnetic field.

The emergence of thermal vacuum torques in nonmagnetic
particles subject to static magnetic fields suggests a radi-
cally new way of mechanically controlling nanoscale objects.
Remarkably, these torques exist even when the particle is
nonrotating. The magnetic field also influences the dynamics
of the system significantly. These findings could be explored
by observing the dynamical evolution of small-particle gases
(e.g., through rotational frequency shifts [59–61]) held in vac-
uum inside a container that is subject to an external magnetic
field. The sum of torques of an ensemble of particles contained
inside a dielectric matrix could be also measured macroscop-
ically. Additionally, one could use a low-frequency electric
field polarized along the rotation axis to heat the particle and
control its temperature, so that dynamical equilibrium is then
established at a rotation frequency that depends on both the
applied heating and the external magnetic field. Larger torques
∝ωc could be obtained in semiconductors with low effective
electron mass m∗ � m, for which the cyclotron frequency
scales as ωc ∝ 1/m∗ [62,63]. In the presence of a planar
surface parallel to the magnetic field, the torque is increased
and a lateral force emerges due to AM conservation, even
in the absence of rotation, an effect that could be observed
through the lateral deflection of neutral particles incident on a
planar surface exposed to an in-plane magnetic field. We also
note that cosmic dust could be a potentially suitable testbed
for these ideas, as it contains submicron particles exposed to a
large range of vacuum temperatures and magnetic fields for
very long periods of time. For example, gigantic magnetic
fields are generated near stars, and in particular neutron stars.
In this respect, the resulting nonlinear Zeeman effect could
reveal additional physics in connection with vacuum friction.
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APPENDIX A: TRANSFORMATION OF THE PARTICLE
HAMILTONIAN TO THE ROTATING FRAME

For the sake of concreteness, we consider the electronic
states of a particle described by the Hamiltonian Hpart ({ri}) =
−∑

i h̄2∇2
i /2me + e2 ∑

i>i′ 1/|ri − ri′ | − e
∑

i V (ri ) when it

is not rotating, where ri and ri′ run over electron coordinates,
while V (r) is the potential produced by the atomic nuclei. The
resulting many-body eigenstates ψl ({ri}, t ), labeled by the
index l , satisfy the Schrödinger equation Hpartψl = ih̄∂tψl ,
and their time dependence is fully captured by ψl ({ri}, t ) =
ψl ({ri}) exp(−iεl t ), where h̄εl is the state energy. When the
particle is rotating, the atomic potential acquires a time depen-
dence in the laboratory frame, which is trivially eliminated in
the rotating frame (i.e., the nuclei appear to be frozen in the ro-
tating frame), defined by the transformation r = (r, ϕ, z, t ) →
r′ = (r′, ϕ′, z′, t ′) = (r, ϕ − �t, z, t ), so that the laboratory-
frame Hamiltonian remains the same if we substitute ri by r′

i
in it. However, in the right-hand side of the Schrödinger equa-
tion we have to substitute ∂t → ∂t ′ − �

∑
i ∂ϕ′

i
, and therefore,

the rotating-frame Hamiltonian becomes Hpart ({r′
i}) − �Lz,

where Lz = −ih̄
∑

i ∂ϕ′
i

is the many-body AM operator. Now,
we focus on particles that are isotropic in the plane perpen-
dicular to the rotation axis z (i.e., with axial symmetry around
that axis), and consequently, the above stationary eigenstates
of the nonrotating particle can also be used to construct the
stationary states of the rotating particle in the rotating frame as

ψl ({r′
i}, t ) = ψl ({r′

i})e−i(εl −ml �)t ,

where we choose a basis set of eigenstates of Lz with
eigenvalues h̄ml . Importantly, this is the appropriate choice of
eigenstates that also diagonalizes the particle Hamiltonian in
the presence of a magnetic field along z.

APPENDIX B: POLARIZABILITY OF A ROTATING
PARTICLE

Linear response theory [64] provides us with an expression
for the atomic polarizability in terms of particle eigenstate
energies and transition dipoles. Because dipole components
along z are unaffected by particle rotation, it is clear that the
polarizability remains unchanged for polarization along that
direction and, additionally, there are not off-diagonal terms
that mix z with x or y. We focus next on the polarizability
tensor in the remaining x-y subspace, which we obtain fol-
lowing the standard procedure of perturbing an initial state of
the particle |l〉 under the influence of an external electric field,
constructing the induced dipole as a result of this perturbation,
and then averaging over initial state populations fl [64].
When following this procedure, we must take into account the
rotation of the particle by transforming the external field to
the rotating frame, where the states are defined as described
in Appendix A, and then transforming back the resulting
induced dipole to the laboratory frame. After some lengthy
but straightforward algebra, we obtain

¯̄α(ω) = 1

h̄

∑
ll ′

( fl ′ − fl )
p∗

l ′l ⊗ pl ′l

ω − εl ′l + i0+ ,

which is the general result for the polarizability of a particle,
but in which we find that the populations fl ∝ e−h̄(εl −ml �)/kBT1

for the particle at temperature T1 are determined by the fre-
quencies εl − ml� in the rotating frame, while the frequency
differences εl ′l = εl ′ − εl are those of the particle at rest.
Additionally, the transition dipole moments pl ′l = −e〈l ′|r|l〉
are also those of the particle at rest.
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Considering that we are choosing |l〉 to be eigenstates of
the AM operator Lz with eigenvalues h̄ml , it is convenient to
express the dipole moments in the Zeeman coordinate basis
defined in Sec. II B, which permits us to write p∗

l ′l ⊗ pl ′l =
(p⊥

l ′l )
2 (û+ ⊗ û−δml′ ,ml +1 + û− ⊗ û+δml′ ,ml −1) + ẑ ⊗ ẑ(pz

l ′l )
2.

Using these expressions, the polarizability tensor in the
Zeeman basis reduces to

¯̄α(ω) = α+(ω) û+ ⊗ û− + α−(ω)û− ⊗ û+ + α0(ω)ẑ ⊗ ẑ,

where

α±(ω) = 1

h̄

∑
ll ′

( fl ′ − fl )δml′ ,ml ±1
(p⊥

l ′l )
2

ω − εl ′l + i0+ ,

α0(ω) = 1

h̄

∑
ll ′

( fl ′ − fl )δml′ ,ml

(
pz

l ′l

)2

ω − εl ′l + i0+ .

Interestingly, from the assumption of a Boltzmann distribution
for fl (see above), we find the result

Im{α±(ω)}

= π/h̄

n1(ω ∓ �) + 1

∑
ll ′

fl (p⊥
l ′l )

2δml′ ,ml ±1 δ(ω − εl ′l ), (B1)

where n1(ω) = 1/(eh̄ω/kBT1 − 1) is the Bose-Einstein distribu-
tion at the particle temperature T1. We use this identity in
the derivation of Eq. (3) in the main text. Incidentally, the
identity fl ′/ fl = exp [h̄(ω ∓ �)/kBT1] holds inside the sum
of Eq. (B1), which is useful in the derivation of Eqs. (3)
and (5).
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