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Sub-Doppler spectroscopy in alkali-metal vapor cells using two counterpropagating dual-frequency laser
beams allows the detection of high-contrast sign-reversed natural-linewidth sub-Doppler resonances. Previously,
a qualitative theory based on a simplified �-scheme model has been reported to explain underlying physics of this
phenomenon. In this paper, an extended theoretical model of dual-frequency sub-Doppler spectroscopy (DFSDS)
for the Cs D1 line is reported. Taking into account the real atomic energy structure, main relaxation processes, and
various nonlinear effects, this model describes quantitatively the respective contributions of involved physical
processes and predicts main properties (height and linewidth) of the sub-Doppler resonances. Experimental
tests are performed with a Cs vapor microfabricated cell and results are found to be in correct agreement
with theoretical predictions. Spatial oscillations of the sub-Doppler resonance amplitude with translation of the
reflection mirror are highlighted. A beat note between two laser systems, including one stabilized with DFSDS on
a Cs vapor microcell, yields a fractional frequency stability of 2 × 10−12 τ−1/2 until 10-s averaging time. These
results demonstrate that DFSDS could be an interesting approach for the development of a high-performance
microcell-based optical frequency reference, with applications in various compact quantum devices.
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I. INTRODUCTION

Sub-Doppler spectroscopy [1–4] in alkali-metal vapor cells
is an exquisite approach to perform high-precision probing
of atomic or molecular resonance spectral lines and elegant
fundamental physics experiments [5–8]. Due to its relative
simplicity and reliability, this technique is known to be of rele-
vant interest and widely used for laser frequency stabilization.
Fractional frequency stabilities in the 10−13 − 10−11 range at
1-s integration time have been demonstrated with lasers stabi-
lized to atomic vapor cells [9–11]. Lasers frequency stabilized
onto molecular lines have also known a great success [12–14],
including their recent deployment in space missions [15].

In usual saturated-absorption spectroscopy, the light-field
configuration is based on two counterpropagating waves of
same optical frequency ω, traveling in a vapor cell filled
with atoms or molecules. The natural-linewidth sub-Doppler
resonance can be detected using a photodiode at the output of
the cell as a transparency peak in the bottom of a Doppler-
broadened absorption profile when ω is scanned around the
atom optical transition frequency ω0 or around a middle point
(ω01 + ω02)/2 between two transition frequencies (so-called
crossover resonances).

In a recent study [16], the detection of sign-reversed
enhanced-absorption sub-Doppler resonances has been
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demonstrated using dual-frequency sub-Doppler spectroscopy
(DFSDS). This approach has allowed one to improve the
frequency stability of a diode laser [16] and contributed to
improve the performance of Cs cell atomic clocks [17,18].
Moreover, since it is based on the use of a single-modulated
laser, the compactness of a DFSDS-based laser system
could remain comparable to the usual single-frequency (SF)
saturated-absorption laser setup.

A theoretical analysis of the DFSDS technique has been re-
ported in [19]. This study has demonstrated that the detection
of the high-contrast sign-reversed sub-Doppler resonances
results from several complex physical phenomena, including
coherent population trapping states (CPTs [20–22]) of Zee-
man sublevels inside a single hyperfine (hf) state and between
two hf states, and velocity-selective optical pumping effects.
However, this analysis was based on a simplified � scheme,
only considering independently a few nonlinear optical effects
and then restricting to a limited qualitative understanding of
the phenomenon.

In the present paper, an extended theoretical model of
DFSDS is reported. We consider the real energy structure of
the atom with manifold Zeeman sublevels, the simultaneous
contribution of various nonlinear effects, and main relaxation
processes. In contrast to the simplified model proposed in
[19], the extended model allows one to predict quantitatively
the properties (line shape, height, and linewidth) of sub-
Doppler resonances. Evidence of spatial oscillations of the
sub-Doppler resonance height with proper position of the
retroreflection mirror and the use of short-length cells is an
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FIG. 1. Sketch of the proposed optical configuration: M, mov-
able mirror; λ/4, quarter-wave plate; PD, photodiode.

important result of presented calculations. Experimental tests
were performed using a Cs vapor microfabricated cell in order
to evaluate the validity of the model. The experimental results
are found to be correctly explained by the theory.

In the last section of this paper, frequency stabilization of
a diode laser using DFSDS onto a Cs microcell is reported,
yielding an Allan deviation lower than 2 × 10−12 τ−1/2 until
10 s. These encouraging stability results are at 1-s averaging
time ten times better than laboratory-prototype microwave
CPT-based chip-scale microwave atomic clocks (CSACs)
[23–25], 100 times better than commercial CSACs [26],
and competitive with recently reported microcell-based opti-
cal frequency references [27–29]. These encouraging results
demonstrate that the DFSDS approach could be of interest
for the development of a highly integrated and high-stability
microcell-based optical frequency reference.

II. THEORY

A. Problem statement

We consider a buffer-gas-free vapor cell placed in the field
of two laser beams propagating in opposite directions along
the quantization axis z (see Fig. 1). Each of the beams consists
of two monochromatic plane waves:

E(z, t ) = [
E1 ξ1 eik1z + E3 ξ3 e−i(k1z+φ1 )

]
e−iω1t

+ [
E2 ξ2 eik2z + E4 ξ4 e−i(k2z+φ2 )

]
e−iω2t + c.c. (1)

with Ei the real amplitudes of the waves, φ1 and φ2 the phases
of two backward waves, ξi the unit complex vectors of the
wave polarizations, k1,2 = ω1,2/c the wave numbers for the
light waves with angular optical frequencies ω1,2, and “c.c.”
the complex conjugate terms. In experiments, two resonant
frequencies ω1 and ω2 can be obtained by modulating the
light of a laser with an intensity Mach-Zehnder electro-optic
modulator (EOM).

Light waves have linear polarizations so that the com-
ponents E1 and E2 are polarized along the x axis, while
polarizations of the other two waves, E3 and E4, are oriented
at an angle α with respect to the x axis. In spherical basis, we
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FIG. 2. Relevant energy levels of the D1 line of an alkali-metal
atom. Solid arrows denote optical transitions induced by the waves
propagating along the z axis, while dashed arrows stand for backward
waves. Wavy arrows are for spontaneous relaxation. h̄	g is the
energy hyperfine splitting of the atom ground state. The case depicted
here corresponds to the atoms at rest under the null Raman detuning
(δR) and the null one-photon optical frequency detuning (δ). For Cs,
we have F1 = 3, F2 = F3 = 4.

can write [30]

ξ1,2 = (e−1 − e+1)/
√

2, (2)

ξ3,4 = (eiαe−1 − e−iαe+1)/
√

2, (3)

where complex vectors e±1 are spherical basis vectors respon-
sible for σ+ and σ− optical dipole transitions in the atom.

Polarized light waves induce electric dipole transitions in
alkali-metal atoms, as shown in Fig. 2. For simplicity, the
figure does not reflect the degeneracy of hyperfine levels
over magnetic Zeeman sublevels with quantum numbers ma =
−Fa,−Fa + 1, . . . , Fa with Fa being the total angular momen-
tum of the “a” hyperfine level (a = 1, 2, 3). This atom-light
interaction leads to various nonlinear optical effects, such as
optical pumping, optical transition saturation, coherences be-
tween magnetic sublevels, and spontaneous anisotropy trans-
fer from the excited state to the ground state. In the config-
uration considered here, a moving atom experiences a four-
frequency light field due to the linear Doppler effect. This field
induces multiple spatial harmonics of the atom’s polarization.
The finite size of the light beams leads also to time-of-flight
relaxation. Our model includes all these effects in order to
adequately reproduce the experimental observations.

The theoretical analysis is based on the standard density-
matrix formalism for a single atom, moving in gas. Inter-
actions between atoms at low pressure gas can be omitted.
The kinetic equation for the atom’s density matrix ρ̂ has the
Lindblad form (for instance, see [1,3]):(

∂

∂ t
+ υ

∂

∂ z

)
ρ̂ = − i

h̄
[(V̂ + Ĥ0), ρ̂] + �̂[ρ̂]. (4)

Here, υ is the projection of the atom’s velocity on the z axis.
The operator V̂ = V̂E + V̂B describes the interaction between
the atoms and the light (E) and the static magnetic (B) fields
in the electric-dipole approximation. Ĥ0 is the part of the total
Hamiltonian for a free atom. The linear functional �̂ in (4)
is responsible for various relaxation processes in the atom,
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including the spontaneous relaxation described by the rate γ

and the transit-time relaxation taken into account by the rate
� ≈ τ−1 with τ being the mean time of the atom’s passage
through the light field. By introducing the latter constant,
we omitted derivatives over the transverse coordinates ∂/∂x
and ∂/∂y in (4). Strictly speaking, this approach corresponds
to light beams with steplike intensity cross sections. This
approach remains reasonable and is widely used in theory
with Gaussian-like profiles. All explicit expressions of the
operators included in (4) are reported in the Appendix.

The density matrix can be expanded into a series of nine
matrix blocks:

ρ̂ =
∑

F

ρ̂ab(z, t ) |Fa〉〈Fb| (a, b = 1, 2, 3), (5)

where angular brackets stand for the Dirac bra and ket vectors.
The diagonal blocks ρ̂aa in (5) stand for magnetic sublevel
populations of a single |a〉 level and coherent superpositions
of these sublevels (Zeeman coherences). ρ̂13 and ρ̂23 and con-
jugate matrices ρ̂31 = ρ̂

†
13 and ρ̂32 = ρ̂

†
23 are known as optical

coherences since they oscillate in time at optical frequencies
ω1 and ω2. Finally, ρ̂12 and ρ̂21 = ρ̂

†
12 are hf coherences,

oscillating in time at frequencies close to 	g with h̄	g the
ground-state hyperfine energy splitting (see Fig. 2).

The proposed light-field configuration leads to a complex
dependence of the atom’s polarization on the z coordinate. In
this case, the matrix blocks ρ̂ab(z, t ) can be expanded into a
series of various spatial harmonics. Following the work pre-
sented in [19], we only consider the lowest spatial harmonics:

ρ̂aa(z) ≈ ρ̂ (0)
aa + ρ̂ (+)

aa e2i k12z + ρ̂ (−)
aa e−2i k12z, (6)

ρ̂12(z, t ) ≈ ei δ12t
(
ρ̂

(+)
12 ei k12z + ρ̂

(−)
12 e−i k12z

)
, (7)

ρ̂21(z, t ) ≈ e−i δ12t
(
ρ̂

(+)
21 ei k12z + ρ̂

(−)
21 e−i k12z

)
, (8)

where k12 = k1 − k2 and δ12 = ω1 − ω2. Taking into account
that (7) and (8) must be Hermitian conjugates to each other,
we have ρ̂

(+)
21

† = ρ̂
(−)
12 and ρ̂

(−)
21

† = ρ̂
(+)
12 . Series expansions for

the optical coherences are reported in the Appendix.
Many fast spatial oscillations induced by simultaneous ac-

tion of counterpropagating waves as, for instance, e±i (k1+k2 )z,
e±2i k1z, e±2i k2z, and others, studied for various intensity ranges
in [3,31,32], are dropped from our consideration for two main
reasons. The first reason is that their consideration would
dramatically complicate our analysis. The second reason is
that experimental intensities of both counterpropagating light
beams cannot be equal to each other due to losses of optical
elements of the setup and light-field absorption in the cell.
The latter reason is more especially confirmed in the dual-
frequency (DF) regime where absorption is enhanced. Thus,
the influence of higher-order spatial harmonics is significantly
suppressed in the DF regime.

In (6), we show that the temporal evolution of sublevel
populations is not considered since all the transient processes
are assumed to be completed. The light-field interaction with
the second excited-state hyperfine level F4 (not shown in
Fig. 2) of the D1 line is neglected. This simplification can be
validated since the hyperfine energy splitting in the excited

state for the Cs atom is large enough (1.17 GHz), compared to
the Doppler profile linewidth (≈370 MHz in our case).

The light-field intensity change due to absorption in the cell
can be written formally as the Beer-Lambert law:

It (zc) = I0t e
−OD (9)

where I0t is the total intensity before the cell and OD is the
optical density of the medium such that

OD = −
∫ zc+L

zc

χ (z) dz, (10)

where χ is the absorption coefficient for the total light field in
the cell and zc is the position of the cell face window along the
z axis.

The absorption coefficient depends on many parameters
such as the optical frequency detuning δ, the two-photon
(Raman) detuning δR, the polarization angle α, the relative
phase φ12 = φ1 − φ2, the coordinate z within the cell, the
cell position zc, and intensities of all light waves I1,2,3,4(z),
being also functions of the z coordinate. Instead of considering
the real dependence χ = f (z) and solving the complicated
Maxwell-Bloch system of equations, a proper approximate
expression is used instead of (10), explained by the following
assumptions. First, the alkali-metal vapor is considered to
be optically thin, i.e., OD�1. Secondly, the coefficient χ is
determined by the total population of the atom’s excited state
Tr[ρ̂33(z)] averaged over the Maxwellian velocity distribution.
From (6), the population undergoes spatial variations due to
nonlinear interference effects. Thus, χ should show the same
oscillations. However, the cell length L is assumed to be much
smaller than the period of these oscillations, i.e.,

Tz = π/k12 = πc/	g ≈ 16.3 mm � L ≈ 1.4 mm. (11)

Consequently, assuming a small optical density, the light
intensity recorded by the photodetector can be written as

It (zc) ≈ ηI0t e
−χ (zc )L ≈ ηI0t [1 − χ (zc)L], (12)

where η denotes possible intensity losses on optical elements
of the setup. The absorption coefficient can be expanded into
two parts:

χ ∝ We = 1√
π υ0

∫ ∞

−∞
Tr[ρ̂33(zc, υ )] e−υ2/υ2

0 dυ

= W0(δ, α, I1−4) + Wz(δ, α, φ12, I1−4, zc), (13)

with

W0 = 〈
Tr

[
ρ̂

(0)
33

]〉
υ
, (14)

and

Wz(z) = 2 sinc(Lk12)
〈
Re

{
Tr[ρ̂ (+)

33 ]eik12(2zc+L) }〉
υ
, (15)

where “sinc” is the un-normalized sinc function. The velocity
υ0 = √

2kBT /ma in (13) is the most probable atom thermal
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velocity with kB = 1.38 × 10−23 J/K the Boltzmann constant
and ma the atom’s mass. Brackets 〈. . .〉υ stand for averaging
over the Maxwellian velocity distribution.

In sub-Doppler spectroscopy, the light field transmitted
through the vapor cell is monitored as a function of the
optical frequency. In our case, this is equivalent to scanning
It over δ = ω0 − (ω31 + ω32)/2, corresponding to the optical
frequency detuning of the laser carrier ω0 = (ω1 + ω2)/2
from the middle frequency of both optical transitions F1 → F3

and F2 → F3 (see Fig. 2). As long as We determines all the
nonlinear optical effects observed in It , we will analyze for
different physical conditions both contributions W0 and Wz.

Dividing the expression (13) into two parts has a real
physical meaning. The term Wz is only responsible for the
effects caused by hf coherences, including coherent popu-
lation trapping, embracing magnetic sublevels of different
hyperfine levels F1 and F2. This effect is called here “hf CPT.”
The term W0 reflects all the other optical effects including
optical pumping, optical transition saturation, and CPT within
a single level F2. This CPT effect is called “Zeeman CPT”
since it embraces Zeeman sublevels of a single hyperfine F2

level. Note that as long as we consider the transition F1 →
F3 = F1 + 1, which is not a transition of the “dark” type [33],
the Zeeman CPT does not occur within the F1 level.

In previous studies [16,19], we have demonstrated that
both Zeeman-CPT and hf-CPT effects can lead to the observa-
tion of the sub-Doppler resonance with enhanced absorption.
An obvious prospect is then to predict how to make these two
nonlinear effects work and use them together. The simple �

scheme considered in [16,19] does not allow one to solve this
problem. Thus, the rigorous approach to discriminate the con-
tribution of these two effects is to consider the real structure
of atomic energy levels. Subsequent results are presented in
the next subsections.

B. Analysis of the high-contrast effect

Let us analyze contributions W0 and Wz in (13) in order
to reveal their physical meaning and their influence on the
total light field absorption in the cell under different physical
conditions. In the following calculations, typical parameters
values of sub-Doppler spectroscopy experiments [16,19] are
used, with the specificity that a miniaturized cell is considered.
We consider the real structure of the Cs D1 line with λ =
894.6 nm, γ = 2π × 4.56 MHz, F1 = 3, F2 = 4, and F3 = 4
(see Fig. 2). All the levels are degenerate over magnetic
(Zeeman) sublevels m = −F,−F + 1, . . . , F . We take the
time-of-flight relaxation rate � = 0.02γ , corresponding to a
laser beam diameter of about 0.5 mm. The Doppler half width
is kυ0 = 50γ . For Figs. 3–6, the magnetic field is null. The
Raman frequency detuning under the DF regime is assumed
to be zero (δR = 0). The optical frequency detuning δ is
scanned in order to obtain the resonance curves. The absorp-
tion coefficient χ is proportional to the total excited-state
population [see Eq. (13)]. Therefore, we focus on analyzing
the population We as a function of the detuning δ.

Figure 3 shows numerically calculated resonances in both
SF and DF regimes. When a single optical transition is excited
(either F1 → F3 or F2 → F3, solid and dashed black curves),
the regular saturated-absorption absorption dip is observed.
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FIG. 3. Sub-Doppler resonances calculated for the single- (solid
and dashed curves at the bottom) and dual-frequency (solid red spike)
regimes of light-field excitation. Here, A is the height of the sub-
Doppler resonance under the DF regime, while AD is the height of
the broad Doppler background. The total laser beam power at the
entrance of the cell is 50 μW. The magnetic field is switched off.
Other parameters are written in the text.

The sign of the sub-Doppler resonance changes when the
regime of excitation is switched to the DF regime, with F3 = 4
being the common excited level. In addition to the change of
the resonance sign, the resonance in the DF regime is narrower
and has a much higher contrast.

1. Influence of the light wave polarizations and phases

Figure 4(a) shows the influence of the polarization configu-
ration on W0 and Wz. Both contributions, W0 and Wz, depend in
a relevant manner on the angle α between linear polarizations
of the counterpropagating laser beams. For W0, the wide
Doppler background does not depend on this angle: solid
green and dash-dotted blue curves overlap at their “wings”
(δ � 	res). The sign of the resonance is not changed but its
height is attenuated.

In contrast, the sign of Wz strongly depends on the an-
gle α. The absorption is enhanced for α = π/2 (orthogonal
linear polarizations) whereas the transmission is increased
for α = 0 (parallel polarizations). When the optical detuning
is large (δ � 	res), both counterpropagating dual-frequency
laser beams interact with different velocity groups of atoms
and do not “feel” each other. Atoms in both groups are
pumped into “noncoupled” (NC) dark states. Since these
groups have different velocities, there is no “competition”
between the states |NC1〉 and |NC2〉 and both states survive.
The dark states lead to a low level of light absorption at the
Doppler “wings” of the absorption profile [see solid green and
dash-dotted blue curves in Fig. 4(a)].

At resonance (δ � 	res), both laser beams interact with the
same atoms. The result of this interaction depends strongly on
the polarization configuration since the quantum state of the
atom depends on the angle α. With orthogonal polarizations
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FIG. 4. Analysis of different contributions to the excited-state
population. (a) Influence of linear polarizations orientation at mutual
backward waves phase φ12 = 0. (b) Influence of the mutual phase φ12

for orthogonal linear polarizations of the counterpropagating waves
(α = π/2). The total laser beam power is 50 μW; the static magnetic
field B is switched off.

(α = π/2), a significant increase of W0 and Wz is obtained
[Fig. 4(a), solid green and dotted pink curves, respectively].
The increase of W0 is due to the destruction of the Zeeman-
CPT states. Dark states created within the F2 level are orthog-
onal, i.e., 〈NC1|NC2〉 = 0, and cancel each other. The vapor
becomes less transparent for the light. The increase of Wz is
caused by the destruction of the hf-CPT states.

With parallel linear polarizations, hyperfine dark states
can exist but do not compete with each other. At resonance
(δ � 	res), atoms are pumped faster into hf-CPT states due to
the simultaneous action of both beams. This process causes
the creation of an absorption dip in Wz [see Fig. 4(a), dashed
orange line]. The same diplike structure in the center of
the W0(δ) picture might be expected. Indeed, if light beam
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FIG. 5. Calculated contribution W0 in the single-frequency
regime, when only the transition F2 → F3 is excited. β is the branch-
ing ratio for the transition. The total laser beam power is 50 μW. The
static magnetic field is null.

polarizations are parallel (α = 0), both dark states |NC1〉 and
|NC2〉, which could be created at δ � 	res within the F2 level
by independent light beams, should also survive at δ ≈ 	res

since these states are parallel, i.e.,〈NC1|NC2〉 = 1. However,
only a reduction of the central resonance height is observed,
while its sign remains positive [see the blue dash-dotted
line in Fig. 4(a)]. The fact is that the W0 term, in contrast
to Wz, includes other nonlinear effects besides creation of
the CPT states. In particular, the optical pumping effect also
contributes to W0. This effect can lead to increased light field
absorption at δ � 	res even under parallel linear polarizations
(α = 0). This issue will be discussed further in the text.

Figure 4(b) shows the behavior of W0 and Wz for different
values of the mutual phase φ12. It is seen that W0 is im-
mune to the change of φ12 since the latter only influences
hf coherences and subsequent nonlinear effects. The phase
φ12 is not relevant for other effects such as optical pumping
or Zeeman-CPT effects. In contrast, the sign of Wz strongly
depends on φ12. For φ12 = π/2, hyperfine dark states cancel
each other and increased absorption is observed. The opposite
case is observed for Wz with φ12 = 0, when dark states are
parallel to each other. Note that the dependence of We on the
polarization angle α and the relative phase φ12 could be also
treated using the general theory of closed contours described
in [34]. Common points have also been treated for the study
of subnatural electromagnetically induced transparency and
absorption resonances in [35,36] for the hf-CPT states and in
[37,38] for the Zeeman-CPT states.

2. Influence of the transition openness

Let us consider first the case where the SF regime is used.
Figure 5 reports the evolution of W0 when only the F2 → F3

transition is excited. The coefficient β (0 � β � 1) noted in
Fig. 5 is the branching ratio and characterizes the openness
of the transition. In particular, β = 1 corresponds to a closed
transition without any spontaneous decay to other nonresonant
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FIG. 6. Influence of a difference in light wave intensities on W0

and Wz. Parameters: φ12 = 0, α = π/2. The total laser beam power
is 50 μW, B = 0. Intensities I3 and I4 are assumed to be smaller than
I1 and I2 by 30%.

hyperfine levels (as F1). Figure 5 shows that the sign-reversal
effect (increased absorption) should be observed for a closed
transition (β = 1), with α = π/2. Indeed, with β = 1, the
Zeeman-CPT effect occurs and can lead to the observation of
an absorption peaklike resonance. At the opposite, if the tran-
sition is noticeably open (this is the case for F2 = 4 → F3 = 4
in Cs with β = 5/12), the Zeeman-CPT effect is significantly
suppressed. In this case, no sign reversal of the traditional
sub-Doppler resonance structure is observed, whatever the
polarization configuration (α = π/2 or 0).

In contrast, as shown in Fig. 4(a) (solid green and dash-
dotted blue curves), the Zeeman-CPT effect contributes to
the absorption peak observation in the DF regime, when both
optical transitions are excited. In other words, the Zeeman-
CPT effect does not work in the SF regime (Fig. 5) while
it is again in action in the DF regime. This phenomenon is
explained by the presence of the second field, resonant with
the F1 → F3 transition, able to optically pump atoms back into
the F2 level. The second field plays here the role of an optical
repumper and increases the effective branching ratio for the
F2 → F3 transition.

At α = 0 the Zeeman CPT states contribute to reduction of
light absorption in W0 in Fig. 4(a) (compare solid green and
dash-dotted blue curves). However, these states do not lead
to observation of any absorption dip at the resonance center
in W0 as it can be intuitively expected. The reason is that
a regular optical pumping effect prevents the change of the
resonance sign. When both counterpropagating beams interact
with the same atoms (δ � 	res), more atoms are pumped to
the F2 = 4 level from the F1 = 3 level and the absorption
increases, in spite of the fact that many (not all) of the atoms
are accumulated in the dark state within the F2 = 4 level.

3. Influence of the imbalance between counterpropagating light
wave intensities

Figure 6 depicts the influence on W0 and Wz of the
light wave intensities imbalance. The contribution of both
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FIG. 7. Influence of the static magnetic field on W0 and Wz. The
field is applied along the light wave vectors (z axis) at (a) parallel
and (b) orthogonal linear polarizations of counterpropagating laser
beams. Parameters are P = 10 μW and φ12 = 0. � is the Larmor
frequency.

hyperfine-CPT and Zeeman-CPT effects to the absorption
peak observation is optimized in the case where both coun-
terpropagating beams have the same intensity. This condition
is the best one to destroy the CPT states of the atom at the
resonance center (δ � 	res) and then to increase the light
field absorption. It is well shown in Fig. 6 that the inten-
sity imbalance affects the strength of the central absorption
peak.

4. Influence of an ambient static magnetic field

Figure 7 analyzes the influence of a static magnetic field
applied along the wave vectors (B||z). We consider here the
associated Larmor frequency � ≡ �2 = g2μBB/h̄ with g2 the
Landé g factor of the F2 level and μB = 927.4 × 10−26 J/T
the Bohr magneton. This Larmor frequency is different for
different energy levels and is responsible for linear shifts of
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magnetic sublevels m under the external magnetic field. For an
alkali-metal atom, we note �1 = −�2 and �3 = (g3/g2)�2.

As already discussed, the strong light absorption is ob-
served under two mutually orthogonally polarized counter-
propagating beams due to the presence of the Zeeman CPT
states in the atoms within the F2 level at δ � 	res and de-
struction of the states at δ � 	res. When a static magnetic
field is applied, Zeeman sublevels of the F2 are frequency
shifted and the dark states are not created, whatever the value
of the detuning δ and polarization configuration [see blue
dash-dotted curves in Figs. 7(a) and 7(b)]. The magnetic field
leads to the creation of an absorption dip in the center of the
W0 profile due to the regular saturated absorption effect.

Concerning Wz [see orange dashed and pink dotted curves
in Fig. 7(b)], the application of the magnetic field does not
lead to the total destruction of the absorption-peak effect.
The peak in Wz is still possible due to the fact that some �

schemes, embracing magnetic sublevels of different hyperfine
states (F1 and F2), are insensitive to weak magnetic fields. This
means that the hf-CPT effect partly survives, which can be a
reason for the absorption peak observation (also, see [19]).

5. Interest of short-length cells

In the end of this section, we emphasize that the contri-
bution Wz to the absorption coefficient falls off with the cell
length as sinc(k12L) [see Eq. (15)]. This means that the impact
of the Wz contribution can be increased by using short-length
vapor cells instead of extended-length cells which are usually
preferable for regular saturated-absorption technique.

The contribution Wz also depends on the cell position
with respect to the retroreflection mirror (see Fig. 1). This
position should be optimized to guarantee observation of the
highest sub-Doppler resonance. This interesting feature is
demonstrated experimentally in the next section.

III. SPECTROSCOPY EXPERIMENTS

A. Setup

The heart of the experiment, shown in Fig. 8(a), is a Cs
vapor microfabricated cell analogous to the one described in

FIG. 8. (a): Photograph of a Cs microfabricated vapor cell. (b)
Experimental setup for DFSDS measurements in the Cs microcell.
ECDL, external-cavity diode laser; EOM, electro-optic modulator;
LO, 4.596-GHz microwave synthesizer; HWP, half-wave plate; PBS,
polarizing beam splitter; QWP, quarter-wave plate; M, mirror; PD,
photodiode. The 4.596-GHz signal is applied to the EOM for the
dual-frequency measurements.

FIG. 9. Measurements of single-frequency (SF) and dual-
frequency (DF) sub-Doppler spectra through the microcell at 60 °C.
The laser power is about 200 μW after a single pass. The SF
spectrum is obtained from the F1 = 3 state. The spectra are fitted
by two-Doppler plus two-Lorentzian functions with a quadratic
background. Fit parameters for similar scans were used to deduce the
height and width of the Doppler-broadened and sub-Doppler profiles.

[24,39,40]. The sub-Doppler spectroscopy takes place in a
2-mm-diameter 1.4-mm-long cylindrical cavity. The cell does
not contain any buffer gas. The cell is temperature stabilized
and is placed inside a cylindrical μ-metal magnetic shield.
The optical setup is shown in Fig. 8(b). The light source is
a narrow-linewidth external cavity diode laser (ECDL) tuned
to the Cs D1 line. The laser output beam is connected to a
fibered Mach-Zehnder EOM. For DFSDS tests, the EOM is
modulated using a commercial microwave frequency synthe-
sizer by a 4.596-GHz signal in order to produce two optical
sidebands frequency split by 9.192 GHz. The laser carrier
is then actively suppressed using the method described in
[36]. For standard SFSDS tests, the EOM is not modulated.
Before entering the cell, the light beam passes two half-
wave plates and two polarizing beam splitters ensuring power
control and linear polarization in the cell. The beam is sent
into the cell, retroreflected using a mirror through the cell,
and detected at the output by a photodiode for the detection
of the sub-Doppler resonance. The mirror is placed onto a
translation stage. A quarter-wave plate between the cell and
the reflection mirror ensures that both counterpropagating
beams are mutually orthogonally polarized. The width of the
light beam is about 0.45 mm.

Figure 9 shows typical sub-Doppler spectra detected in the
microfabricated cell at 60 °C. In the SF regime, we observe
the standard saturated-absorption resonances with increased
transmission of the light through the vapor when the laser
frequency is resonant with the atomic optical transitions. In
the DF regime, as reported in [16,19] with centimeter-scale
cells, a significant sign-reversal effect of the sub-Doppler
resonance is observed and a narrow high-contrast absorption
spike is obtained.
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FIG. 10. Height of the sub-Doppler absorption spike normalized
to the Doppler background height vs the distance between the
retroreflection mirror and the microcell (Fig. 8). The solid line is
the result of numerical calculations. The cell temperature is 42 °C.
The laser is connected to the F3 = 4 excited state and the laser power
is 45 μW.

B. Measurements

Figure 10 shows the oscillations of the sub-Doppler res-
onance height in the DF regime versus the reflection mirror
position. This effect, predicted in our previous study [19]
and here by Eq. (15), is explained by the dependence of
the excited-state population on the z coordinate of the cell.
This dependency results from slow spatial oscillations of the
hyperfine coherences, explaining that the position of the cell
can be optimized to maximize the Wz contribution to the
absorption peak creation. In Fig. 10, experimental data points
are compared to numerical calculations based on the density-
matrix formalism.

We analyze in Fig. 10 the resonance height A normalized to
the Doppler background height AD (see Fig. 3). It is seen that
the resonance height can be even larger than the height of the
broad Doppler resonance. Such a high relative contrast of the
sub-Doppler resonance (>100%) is not possible in standard
SF spectroscopy setups in which relative contrast usually does
not exceed 20–30%.

The discrepancy between the experimental data and theory
in Fig. 10 can be explained by several reasons. A first reason is
the non-negligible optical thickness of the medium, neglected
in our theory. A second reason is that the reflected beam
undergoes intensity oscillations together with the oscillations
of the light absorption in the cell. This means that different
positions of the mirror provide different combinations of
forward and backward light beam intensities. In order to
consider this effect correctly, a solution of the full system
of Maxwell-Bloch equations would be needed. Another rea-
son is linked with the influence of the high-order spatial
harmonics of the atom’s polarization at I � Isat with Isat

being the saturation intensity (∼ mW/cm2). In the theory,
we consider only the lower harmonics as it is seen from
Eqs. (6)–(8), (A13), and (A14).We note again that such spa-
tial oscillations of the sub-Doppler resonance height cannot
be easily revealed in centimeter-scale cells, as explained in
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FIG. 11. (a) Linewidth and (b) normalized height of the sub-
Doppler resonance as a function of the laser power under the single-
frequency (SF) and dual-frequency (DF) regimes. Theory results are
shown as solid curves. In the SF regime, the transition F1 = 3 →
F3 = 4 is excited. Other parameters are α = π/2, φ12 = 0, B = 0.

Sec. II A and mentioned in [19]. This observation is notably
highlighted in short-length vapor cells.

Figure 11 shows experimental results and calculations of
the resonance linewidth and normalized height in both SF and
DF regimes versus the total laser power. In the DF regime,
experimental results are reported for two different tempera-
tures (42 and 60 °C). Note that in experiments intensities of
the backward waves E3,4 are not equal to those of incident
waves E1,2 (see sketch in Fig. 1) due to absorption of light in
the cell and different losses on the beam path. To take this into
account in the model, we consider the following relations in
our calculations: I1 = I2 and I3 = I4 = 0.5I1.

In experiments, the measured linewidth of the resonance
[see Fig. 11(a)] in the DF case is several times smaller than
in the SF case and found to be closer to the natural linewidth
when extrapolated at zero intensity. For a total laser power
of about 70 μW, the resonance full width at half maximum
(FWHM) is 59.1 MHz in the SF regime while it is 16 MHz in
the DF case.

In the DF regime, experimental data are well fitted by
numerical calculations. In the SF regime, the discrepancy
between experiment and theory can be explained by the same
reasons as noted for Fig. 10. In particular, the role of high-
order spatial harmonics of the atom’s polarization can be
more relevant in the SF regime than in the DF regime of
interaction. Additionally, experimental data for the resonance
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FIG. 12. Non-normalized height of the resonance divided by its
linewidth vs laser power under the single-frequency (SF) and dual-
frequency (DF) regimes.

width might contain a residual Doppler broadening due to
minor imperfections in alignment of the beams [41].

The linewidth in both SF and DF regimes exhibits
a well-known square-root-like behavior [3,41]: FWHM ∝
γ
√

1 + G, with G being the effective saturation parameter.
At the same time, the nonlinear resonance in the DF regime
is significantly narrower. This can be explained on the basis
of a simplified two-level model of the atom [42]. Broaden-
ing of the sub-Doppler resonance in the SF regime results
from the transition openness. In the DF regime, at δ ≈ 	res

and orthogonal linear polarizations, the effective two-level
scheme is closed since there are no trap states to accumulate
the atoms.

Figure 11(b) shows that the height of the sub-Doppler
resonance in the DF regime is about three times larger than in
the SF case for a similar cell temperature of 60 °C. In the DF
case, experimental data are in good agreement with the theory.

The height of the resonance is maximized for a laser power
of about 600 μW at 60 °C and can be 1.5 times higher than the
broad Doppler background. The influence of temperature on
the resonance height is obvious. A higher temperature leads to
increased optical thickness of the vapor and considerable light
wave absorption in the cell. The latter increases the imbalance
between forward and backward light beam intensities. As
discussed in Sec. II B, this situation does not help to observe
a higher-contrast normalized resonance.

In the SF regime, the resonance height increases slightly
up to 1200 μW. For power values lower than 20 μW, the
experimental data agree with the theory. For higher powers,
the observed discrepancy could be caused by the influence of
the high-order harmonics as for Fig. 10.

Figure 12 shows the non-normalized height of the reso-
nance divided by the FWHM. This figure of merit is important
for laser frequency stabilization. For a cell temperature of
60 °C, the height to FWHM ratio in the DF case can be about
a factor 8 higher than in the SF regime.

IV. FREQUENCY STABILIZATION

In a last step, inspired by results observed in Fig. 12, we
have measured the fractional frequency stability of a laser beat
note between two laser systems. The first laser system (LS1)
is the one described in Fig. 8. The second laser system (LS2),
similar to that described in [16], is based on the same principle
but uses a distributed feedback diode laser (instead of an
ECDL) and a centimeter-scale Cs cell (instead of a microcell).
For all measurements, the laser LS2 is stabilized using the
DFSDS technique. The laser LS1 can be stabilized using the
DFSDS or SFSDS regime. In order to create a laser beat note
between both lasers, the laser beam at the EOM output of LS2
is sent into an acousto-optic modulator, shifting by 122 MHz
the dual-frequency optical field. The resulting output beam is
superimposed using a cube with the beam from the LS1 laser
direct output (before EOM). A microwave beat-note signal at
4.596 GHz +/−122 MHz is detected with a fast photodiode.
A single beat-note component is then filtered using a 40-MHz-
bandwidth microwave bandpass filter and amplified by 40 dB.
This signal is then mixed with a 4.496-GHz signal delivered
by a commercial microwave synthesizer driven by a reference
hydrogen maser. The final 22-MHz signal at the output of the
mixer is finally low-pass filtered, amplified, and counted with
a frequency counter.

Figure 13 reports the Allan deviation of the beat note
between both laser systems, with the microcell-stabilized laser
(LS1) in different regimes. In each case (SF and DF), the
laser power of LS1 is adjusted to a value where the height
to FWHM ratio is optimized (400 μW in the SF case, 1 mW
in the DF case).

In the DF regime, the short-term frequency stability is
measured to be 2 × 10−12 τ−1/2 until about 10 s. These per-
formances are about a factor 4 better than those obtained
in the SF regime. This factor of 4 is lower than the one
observed on the height to FWHM ratio (see Fig. 12). This
could be explained by a more favorable detection noise level

FIG. 13. Allan deviation of the laser beat note for free-running
(black squares), single-frequency (red triangles), and dual-frequency
(blue circles) regimes. In the SF case, the transition F1 = 3 → F3 =
4 is excited.
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in the SF regime since the operating laser power is lower
in this case. These aspects will be studied in more detail in
future investigations. For τ > 20 s, the laser stability in the
DFSDS case is degraded with a τ+1/2 frequency random-walk
signature, yielding 1.5 × 10−11 at 104 s. Main contributions to
this degradation are out of the scope of this paper and deserve
a dedicated further study.

While at a preliminary stage of study and characteriza-
tion, the short-term stability of the DFSDS microcell-based
laser is at 1 s about 100 times better than those of com-
mercial CPT-based chip-scale microwave atomic clocks [26]
and competitive with recently reported microcell-based opti-
cal frequency references [27–29]. These encouraging results
demonstrate that the DFSDS approach could be, if combined
with integrated laser, photonics, and microwave technologies,
an interesting alternative option for the development of a
new-generation ultracompact high-stability microcell-based
optical frequency reference.

V. CONCLUSIONS

We have developed an extended theoretical model to de-
scribe the effect of high-contrast sub-Doppler resonances
observed under the dual-frequency regime in alkali-metal
vapor cells. This theory generalizes the previous qualitative
simplified models proposed in [16,19]. The extended model
considers the real structure of atomic energy levels and vari-
ous nonlinear optical phenomena. Experimental results were
performed to validate the model using a Cs vapor microcell.
Oscillations of the sub-Doppler resonance height with transla-
tion of the reflection mirror position have been demonstrated.
The impact of the laser intensity and cell temperature on the
sub-Doppler resonance properties has been studied in both
SF and DF regimes. Experimental results are well explained
by the theory and rigorous explanations were suggested to
explain discrepancies. The interest of the DFSDS approach for
laser frequency stabilization has been pointed out. A laser beat
note between two laser systems, including one stabilized by
the DFSDS technique with a Cs microcell, has demonstrated
an Allan deviation of 2 × 10−12 at 1 s. These results suggest
that the DFSDS approach could be of interest for the devel-
opment of a highly integrated high-stability microcell-based
optical frequency reference.

ACKNOWLEDGMENTS

This work has been supported by Région Bourgogne
Franche-Comté and Labex FIRST-TF (Agence Nationale de
la Recherche, Grant 10-LABX-0048). We thank the platform
Oscillator-Imp (Agence Nationale de la Recherche, Grant
11-EQPX-0033) for the distribution of a reference hydrogen
maser signal in the laboratory. The authors thank C. Rocher
and P. Abbé (FEMTO-ST) for their help with experimental
work and electronics. The work of D.B. was supported by
Russian Science Foundation (Grant No. 17-72-20089).

APPENDIX

Let us provide explicit expressions for the operators from
(4). The free-atom Hamiltonian is

Ĥ0 =
∑
Fa,ma

εa|Fa, ma〉〈Fa, ma|, (A1)

where εa is the energy of the Fa level with a = 1, 2, 3.
The light-atom interaction operator V̂E is

V̂E = −h̄

⎛
⎜⎝

0̂ 0̂ V̂ †
31ei ω1t

0̂ 0̂ V̂ †
32ei ω2t

V̂31e−i ω1t V̂32e−i ω2t 0̂

⎞
⎟⎠. (A2)

In the rotating-wave and electric dipole approximations,
the matrix blocks in (A2) are

V̂31 = R1 ϒ̂
(1)
31 ei k1z + R3 ϒ̂

(3)
31 e−i (k1z+φ1 ), (A3)

V̂32 = R2 ϒ̂
(2)
32 ei k2z + R4 ϒ̂

(4)
32 e−i (k2z+φ2 ), (A4)

with Ri the Rabi frequencies and ϒ̂
( j)
3a (a = 1, 2, j = 1 − 4)

the dimensionless interaction operators. According to the
Wigner-Eckart theorem, we have

ϒ̂
( j)
3a = ξ j · T̂3a, (A5)

where ξ j is the j-wave polarization vector from (2) and (3).
The q components of operators T̂3a are

T̂ 3a
q =

∑
m3,ma

(−1)F3−m3

(
F3 1 Fa

−m3 q ma

)
|F3, m3〉〈Fa, ma|,

(A6)

with ( …) being the 3 jm symbols [30].
The interaction of atoms with the magnetic field is de-

scribed by

V̂B = h̄�

⎛
⎜⎝

−F̂1 0̂ 0̂

0̂ F̂2 0̂

0̂ 0̂ (g3/g2)F̂3

⎞
⎟⎠, (A7)

where � is the Larmor frequency of the F2 level. Here, the
dimensionless operators F̂a stand for the z projections of
operators of total angular momentum in the Fa level. In the
basis of eigenstates of the free-atom Hamiltonian Ĥ0, these
operators have a simple diagonal form:

F̂a =
∑

ma=−Fa,..,Fa

ma|Fa, ma〉〈Fa, ma|. (A8)

The part of operator �̂ in (4) responsible for the sponta-
neous relaxation is

�̂spon = γ (2F3 + 1)
∑

a=1,2
q=0,±1

β3a T̂ 3a†
q ρ̂aaT̂ 3a

q , (A9)

where γ is the spontaneous relaxation rate and β3a are the
branching ratios:

β3a = (2Je + 1)(2Fa + 1)

{
Jg In Fa

F3 1 Je

}2

, (A10)
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where Je,g are the total angular momenta of electrons in
excited (e) and ground (g) atomic states, In is the nuclear
spin, and { …} stands for the 6 j symbol [30]. Obviously,
β31 + β32 = 1. For the D1 line of the Cs atom, we have Jg =
Je = 1/2 and In = 7/2.

The time-of-flight relaxation term is

�̂flight = �[ρ̂ isotr − ρ̂]. (A11)

The magnetic sublevels of both ground-state levels F1 and
F2 (see Fig. 2) are populated isotropically when atoms are
beyond the light field. This initial state is described by the
following matrix:

ρ̂ isotr = (2In + 1)−1
∑

a=1, 2

|Fa, ma〉〈Fa, ma|. (A12)

The optical coherences can be expanded into the series (see
also [19])

ρ̂13(z, t ) = eiω1t
(
ρ̂

(−1)
13 e−i k1z + ρ̂

(+1)
13 ei (k1z+φ1 )

+ ρ̂
(−21)
13 e−i (2k2−k1 )z + ρ̂

(+21)
13 ei (2k2−k1 )z+i φ1

)
,

(A13)

ρ̂23(z, t ) = eiω2t
(
ρ̂

(−2)
23 e−i k2z + ρ̂

(+2)
23 ei (k2z+φ2 )

+ ρ̂
(−12)
23 e−i (2k1−k2 )z + ρ̂

(+12)
23 ei (2k1−k2 )z+i φ2

)
.

(A14)

Similar expansions can be written for Hermitian conjugate
matrices ρ̂31 = ρ̂

†
13 and ρ̂32 = ρ̂

†
23.

The static magnetic field B, if present in the vapor cell, is
assumed to be small enough to satisfy the condition �<<γ .
This allows one to take into account the magnetic field in-
fluence only on the ground-state levels. This means that the
Zeeman splitting of the saturated-absorption resonance does
not occur, while the influence of the B field on creation of the
Zeeman-CPT effect is considered.

All the listed assumptions help us exclude the optical
coherences from the final system of equations. In particular,
we have for the matrix harmonics of the ground state F1

(
� + R2

1L(−)∗
1 ϒ̂

(1)
13 ϒ̂

(1)
31 + R2

3L(+)∗
1 ϒ̂

(3)
13 ϒ̂

(3)
31

)
ρ̂

(0)
11 + ρ̂

(0)
11

(
R2

1L(−)
1 ϒ̂

(1)
13 ϒ̂

(1)
31 + R2

3L(+)
1 ϒ̂

(3)
13 ϒ̂

(3)
31

) − 2γegS(−)
11 ϒ̂

(1)
13 ρ̂

(0)
33 ϒ̂

(1)
31

− 2γegS(+)
31 ϒ̂

(3)
13 ρ̂

(0)
33 ϒ̂

(3)
31 + R1R2L(−)∗

1 ϒ̂
(1)
13 ϒ̂

(2)
32 ρ̂

(+)
21 + R3R4L(+)

1 ρ̂
(+)
12 ϒ̂

(4)
23 ϒ̂

(3)
31 e−iφ12 + R1R2L(−)

1 ρ̂
(−)
12 ϒ̂

(2)
23 ϒ̂

(1)
31

+ R3R4L(+)∗
1 ϒ̂

(3)
13 ϒ̂

(4)
32 ρ̂

(−)
21 eiφ12 − i�

[
F̂1, ρ̂

(0)
11

] − �̂spon
11

{
ρ̂

(0)
33

} = � ρ̂ isotr
11 , (A15)

(
� + 2ik12υ + R2

3M (+)∗
1 ϒ̂

(3)
13 ϒ̂

(3)
31

)
ρ̂

(+)
11 + R2

1M (−)
1 ρ̂

(+)
11 ϒ̂

(1)
13 ϒ̂

(1)
31 − i�[F̂1, ρ̂

(+)
11 ] − �̂spon

11 {ρ̂ (+)
33 } − R2

1M (−)
1 ϒ̂

(1)
13 ρ̂

(+)
33 ϒ̂

(1)
31

− R2
3M (+)∗

1 ϒ̂
(3)
13 ρ̂

(+)
33 ϒ̂

(3)
31 + R1R2M (−)

1 ρ̂
(+)
12 ϒ̂

(2)
23 ϒ̂

(1)
31 + R3R4M (+)∗

1 ϒ̂
(3)
13 ϒ̂

(4)
32 ρ̂

(+)
21 eiφ12 = 0. (A16)

Here and after, square brackets with a comma [ …, …] stand for the commutation operation of two matrices. Also, as long as
ρ̂

(−)
11 = ρ̂

(+)†
11 , the equation for matrix ρ̂

(−)
11 can be easily derived from (A16). Similarly, we get for the ground state F2

(
� + R2

2L(−)∗
2 ϒ̂

(2)
23 ϒ̂

(2)
32 + R2

4L(+)∗
2 ϒ̂

(4)
23 ϒ̂

(4)
32

)
ρ̂

(0)
22 + ρ̂

(0)
22

(
R2

2L(−)
2 ϒ̂

(2)
23 ϒ̂

(2)
32 + R2

4L(+)
2 ϒ̂

(4)
23 ϒ̂

(4)
32

) − 2γegS(−)
22 ϒ̂

(2)
23 ρ̂

(0)
33 ϒ̂

(2)
32

− 2γegS(+)
42 ϒ̂

(4)
23 ρ̂

(0)
33 ϒ̂

(4)
32 + R1R2L(−)∗

2 ϒ̂
(2)
23 ϒ̂

(1)
31 ρ̂

(−)
12 + R3R4L(+)

2 ρ̂
(−)
21 ϒ̂

(3)
13 ϒ̂

(4)
32 eiφ12 + R1R2L(−)

2 ρ̂
(+)
12 ϒ̂

(1)
13 ϒ̂

(2)
32

+ R3R4L(+)∗
2 ϒ̂

(4)
23 ϒ̂

(3)
31 ρ̂

(+)
12 e−iφ12 + i�

[
F̂2, ρ̂

(0)
22

] − �̂spon
22

{
ρ̂

(0)
33

} = � ρ̂ isotr
22 , (A17)

(
� + 2ik12υ + R2

2M (−)∗
2 ϒ̂

(2)
23 ϒ̂

(2)
32

)
ρ̂

(+)
22 + R2

4M (+)
2 ρ̂

(+)
22 ϒ̂

(4)
23 ϒ̂

(4)
32 + i�[F̂2, ρ̂

(+)
22 ] − �̂spon

22

{
ρ̂

(+)
33

} − R2
2M (−)∗

2 ϒ̂
(2)
23 ρ̂

(+)
33 ϒ̂

(2)
32

− R2
4M (+)

2 ϒ̂
(4)
23 ρ̂

(+)
33 ϒ̂

(4)
32 + R1R2M (−)∗

2 ϒ̂
(2)
23 ϒ̂

(1)
31 ρ̂

(+)
12 + R3R4M (+)

2 ρ̂
(+)
21 ϒ̂

(3)
13 ϒ̂

(4)
32 eiφ12 = 0. (A18)

The Hermitian conjugation of (A18) leads to the equation for ρ̂
(−)
22 .

The following equations are for the upper state:

(
� + γ + R2

1L(−)
1 ϒ̂

(1)
31 ϒ̂

(1)
13 + R2

2L(−)
2 ϒ̂

(2)
32 ϒ̂

(2)
23 + R2

3L(+)
1 ϒ̂

(3)
31 ϒ̂

(3)
13 + R2

4L(+)
2 ϒ̂

(4)
32 ϒ̂

(4)
23

)
ρ̂

(0)
33

+ ρ̂
(0)
33

(
R2

1L(−)∗
1 ϒ̂

(1)
31 ϒ̂

(1)
13 + R2

2L(−)∗
2 ϒ̂

(2)
32 ϒ̂

(2)
23 + R2

3L(+)∗
1 ϒ̂

(3)
31 ϒ̂

(3)
13 + R2

4L(+)∗
2 ϒ̂

(4)
32 ϒ̂

(4)
23

) − 2γegS(−)
11 ϒ̂

(1)
31 ρ̂

(0)
11 ϒ̂

(1)
13

− 2γegS(+)
31 ϒ̂

(3)
31 ρ̂

(0)
11 ϒ̂

(3)
13 − 2γegS(−)

22 ϒ̂
(2)
32 ρ̂

(0)
22 ϒ̂

(2)
23 − 2γegS(+)

42 ϒ̂
(4)
32 ρ̂

(0)
22 ϒ̂

(4)
23 − R1R2(L(−)

1 + L(−)∗
2 )ϒ̂ (1)

31 ρ̂
(−)
12 ϒ̂

(2)
23

− R1R2(L(−)
2 + L(−)∗

1 )ϒ̂ (2)
32 ρ̂

(+)
21 ϒ̂

(1)
13 − R3R4(L(+)

2 + L(+)∗
1 )ϒ̂ (4)

32 ρ̂
(−)
21 ϒ̂

(3)
13 eiφ12 − R3R4(L(+)

1 + L(+)∗
2 )ϒ̂ (3)

31 ρ̂
(+)
12 ϒ̂

(4)
23 e−iφ12

+ i(ge/g2)�
[
F̂3, ρ̂

(0)
33

] = 0, (A19)

(
� + γ + 2ik12υ + R2

1M (−)
1 ϒ̂

(1)
31 ϒ̂

(1)
13 + R2

4M (+)
2 ϒ̂

(4)
32 ϒ̂

(4)
23

)
ρ̂

(+)
33 + i(ge/g2)�[F̂3, ρ̂

(+)
33 ] + ρ̂

(+)
33

(
R2

2M (−)∗
2 ϒ̂

(2)
32 ϒ̂

(2)
23

+ R2
3M (+)∗

1 ϒ̂
(3)
31 ϒ̂

(3)
13

) − R2
1M (−)

1 ϒ̂
(1)
31 ρ̂

(+)
11 ϒ̂

(1)
13 − R2

3M (+)∗
1 ϒ̂

(3)
31 ρ̂

(+)
11 ϒ̂

(3)
13 − R2

2M (−)∗
2 ϒ̂

(2)
32 ρ̂

(+)
22 ϒ̂

(2)
23 − R2

4M (+)
2 ϒ̂

(4)
32 ρ̂

(+)
22 ϒ̂

(4)
23
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− R1R2(M (−)
1 + M (−)∗

2 )ϒ̂ (1)
31 ρ̂

(+)
12 ϒ̂

(2)
23 − R3R4(M (+)∗

1 + M (+)
2 )ϒ̂ (4)

32 ρ̂
(+)
21 ϒ̂

(3)
13 eiφ12 = 0. (A20)

The Hermitian conjugated Eq. (A20) gives the equation for ρ̂
(−)
33 . For the low-frequency coherences, we get

(
� + i[δR + k12υ] + R2

1M (−)∗
2 ϒ̂

(1)
13 ϒ̂

(1)
31 + R2

3L(+)∗
2 ϒ̂

(3)
13 ϒ̂

(3)
31

)
ρ̂

(+)
12 − i�(F̂1ρ̂

(+)
12 + ρ̂

(+)
12 F̂2) + ρ̂

(+)
12

(
R2

2M (−)
1 ϒ̂

(2)
23 ϒ̂

(2)
32

+ R2
4L(+)

1 ϒ̂
(4)
23 ϒ̂

(4)
32

) + R1R2M (−)
1 ρ̂

(+)
11 ϒ̂

(1)
13 ϒ̂

(2)
32 + R3R4L(+)

1 ρ̂
(0)
11 ϒ̂

(3)
13 ϒ̂

(4)
32 eiφ12 + R1R2M (−)∗

2 ϒ̂
(1)
13 ϒ̂

(2)
32 ρ̂

(+)
22

+ R3R4L(+)∗
2 ϒ̂

(3)
13 ϒ̂

(4)
32 ρ̂

(0)
22 eiφ12 − R1R2(M (−)

1 + M (−)∗
2 )ϒ̂ (1)

13 ρ̂
(+)
33 ϒ̂

(2)
32 − R3R4(L(+)

1 + L(+)∗
2 )ϒ̂ (3)

13 ρ̂
(0)
33 ϒ̂

(4)
32 eiφ12 = 0, (A21)

(
� + i[δR − k12υ] + R2

1L(−)∗
2 ϒ̂

(1)
13 ϒ̂

(1)
31 + R2

3M (+)∗
2 ϒ̂

(3)
13 ϒ̂

(3)
31

)
ρ̂

(−)
12 − i�(F̂1ρ̂

(−)
12 + ρ̂

(−)
12 F̂2) + ρ̂

(−)
12

(
R2

2L(−)
1 ϒ̂

(2)
23 ϒ̂

(2)
32

+ R2
4M (+)

1 ϒ̂
(4)
23 ϒ̂

(4)
32

) + R1R2L(−)
1 ρ̂

(0)
11 ϒ̂

(1)
13 ϒ̂

(2)
32 + R3R4M (+)

1 ρ̂
(−)
11 ϒ̂

(3)
13 ϒ̂

(4)
32 eiφ12 + R1R2L(−)∗

2 ϒ̂
(1)
13 ϒ̂

(2)
32 ρ̂

(0)
22

+ R3R4M (+)∗
2 ϒ̂

(3)
13 ϒ̂

(4)
32 ρ̂

(−)
22 eiφ12 − R1R2(L(−)

1 + L(−)∗
2 )ϒ̂ (1)

13 ρ̂
(0)
33 ϒ̂

(2)
32 − R3R4(M (+)

1 + M (+)∗
2 )ϒ̂ (3)

13 ρ̂
(−)
33 ϒ̂

(4)
32 eiφ12 = 0. (A22)

Since ρ̂
(−)
21 = ρ̂

(+)†
12 and ρ̂

(+)
21 = ρ̂

(−)†
12 , the other two equations can be obtained directly by Hermitian conjugation of the last two

equations.
In (A15)–(A22), several new notations have been introduced. The saturation parameters are

S(±)
n1 = R2

n |L(±)
1 |2 (n = 1, 3), (A23)

S(±)
n2 = R2

n|L(±)
2 |2 (n = 2, 4), (A24)

and the complex Lorentzians are

L(±)
1 =

[
γeg + i

(
δ + δR

2
± k1υ

)]−1

, (A25)

L(±)
2 =

[
γeg + i

(
δ − δR

2
± k2υ

)]−1

, (A26)

M (±)
1 =

[
γeg + i

(
δ + δR

2
± (2k2 − k1)υ

)]−1

, (A27)

M (±)
2 =

[
γeg + i

(
δ − δR

2
± (2k1 − k2)υ

)]−1

. (A28)

The excited-state population We can be obtained by numerically solving Eqs. (A15)–(A22).
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