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Digitizing gauge fields: Lattice Monte Carlo results for future quantum computers
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In the near-future noisy intermediate-scale quantum era of quantum computing technology, applications of
quantum computing will be limited to calculations of very modest scales in terms of the number of qubits used.
The need to represent numeric quantities using limited resources leads to digitization errors which must be taken
into account. As a first step towards quantum simulations of realistic high-energy physics problems, we use
ensembles of SU(2) lattice gauge fields generated with standard classical computing to explore the effects of
digitizing elements of the gauge group to a finite set. We consider several methods for digitizing the group,
finding the best performance from an action-preserving projection onto a mesh. Working in (3+1) dimensions,
we find that using ∼7 (qu)bits to represent each SU(2) gauge link induces a digitization error of the order of
10% in short-distance observables and 2% in long-distance observables. Promisingly, our results indicate that
each SU(2) gauge link can be represented by O(10) (qu)bits, from which we estimate that a 163 SU(2) lattice
could be simulated with no more than O(105) (qu)bits. Our results on digitization are also of interest as a form
of lossy compression that could be used in high-performance classical computing to alleviate communications
bottlenecks.
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I. INTRODUCTION

Quantum computers offer the promise of solving prob-
lems which are presently intractable. In particular, simulat-
ing strongly interacting gauge theories on a digital quantum
computer is an exciting prospect. Many interesting physics
problems in lattice gauge theory remain intractable even for
cutting-edge classical computers, including real-time dynam-
ics of hadronization and thermodynamics at large quark-
number density. While the lattice community has made im-
pressive progress in studying hadronic physics directly from
QCD [1–3], the heavy nuclear physics needed by neutrino
experiments, such as the quark-current form factors of argon,
remain beyond the limits of current classical computers. More
fundamentally, some simulations are intractable on any classi-
cal computer. For example, storing the full wave function of a
500-qubit system would require more classical bits than there
are atoms in the observable universe.1

Despite the eventual promise of quantum computing, spec-
ulation about near-term prospects for these devices in the
“noisy intermediate-scale quantum” (NISQ) era suggests that
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1On an N-bit classical computer, 2N different numbers are acces-

sible, but the memory needed to store m numbers is mN bits. On a
N-qubit quantum computer, 2N different numbers are also accessible,
but these N qubits can also store the 2N values.

qubit and gate resources will be severely limited [4]. On
the other hand, due to their local nature, field theory Hamil-
tonians require less connectivity to implement than general
quantum computing algorithms and may, in fact, be among
the first realistic problems tractable on large-scale quantum
computing devices. Nevertheless, efficient use of available
qubit resources will be important to simulate a gauge theory
on any near-future quantum computer. This requires us to
confront “digitization error,” which we define as the error due
to representing continuously valued quantum fields in finite
numerical precision.

Field theories are physical systems with infinitely many
degrees of freedom and their simulation on any digital com-
puter requires finite approximations. The standard approach
restricts the fields to a discrete spacetime lattice in a finite vol-
ume, and the control and extrapolation of the resulting finite
lattice-spacing error and finite-volume error are well known
in the literature on lattice field theory. However, there is a
third finite approximation which is usually not emphasized:
the quantum fields themselves must be restricted to take on
discrete numerical values, limited by floating-point precision.
In principle, this discretization yields a third approximation
error, digitization error.

Of course, the use of 64-bit double-precision floating point
numbers guarantees that such errors will be utterly negligible
in most modern lattice calculations, although there can be con-
cerns about reversibility of the hybrid Monte Carlo algorithm
in global sums on large lattices [5]. We refer to the common
use of 64-bit floating point numbers to represent gauge fields
as ultrafine digitization.

Even in the early days of computational lattice field theory,
the availability of classical bits was sufficient to avoid large
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digitization errors compared to other error sources. However,
there was early interest in simulating with discrete subgroups
of SU(N ), which would allow the use of lookup tables to
speed up the computations [6]. These studies found that
the subgroup digitization created an artifact lattice phase at
weak coupling. For the 120-element largest point subgroup of
SU(2), this artifact phase was at sufficiently weak coupling
that some parameters of interest remained accessible [7,8].
This was not the case for the largest 1080-element point
subgroup of SU(3) [9]. However, an additional study [10]
found that this phase could be pushed to weaker coupling in
SU(3) by using a finer digitization generated by interpolating
between SU(3) elements.

In this work, our goal is different: we study the impact
of extreme memory restrictions, rather than aim to improve
computational efficiency. We ask how coarsely the digitization
of group elements onto a finite set may be done before
inducing large systematic errors. By translating the size of
the digitized group into the number of (qu)bits required to
represent a gauge link, we can estimate the number of (qu)bits
required to avoid digitization error at some level. We study
several different group-truncated digitization schemes to gain
insight into the features of an optimal scheme.

More specifically, we consider the effect of digitizing
pure SU(2) gauge theory. Although not directly relevant
to QCD, this theory is computationally less expensive than
SU(3), allowing us to generate large data sets and thereby
avoid statistical errors that might introduce ambiguity in our
results otherwise. Furthermore, SU(2) is isomorphic to the
four-dimensional unit sphere S3, providing an intuitive picture
for digitization that would be lacking for larger gauge groups.
Our work shares some characteristics with a recent paper by
Urbach [5], although his focus is on the hybrid Monte Carlo
algorithm while we focus on the observables, and his study is
concerned with a much finer digitization than our results will
explore.

Other work on gauge group digitization in quantum com-
puting for high-energy physics has focused on finding few
qubit problems that can be implemented on NISQ technology.
For example, Ref. [11] examines the (1 + 1)-dimensional
(D) Schwinger model, with one and two spatial sites us-
ing a two-qubit digital quantum computer, and shows that
the quantum computer produces observables which agree
with analytic results for a large time range before fidelity
becomes appreciable. Also, using an analog quantum com-
puter, Ref. [12] computes two-body and three-body forces
between heavy mesons in the Schwinger model. The authors
of [13] formulate the SU(N ) Hamiltonian with matter fields
for an analog quantum simulation and study the digitization
error in the (2 + 1)-D compact QED ground state energy
for a range of couplings. All these works digitize the gauge
group by imposing a cutoff on the allowed energy eigenstates
[13]. This approach has the advantage of conceptual clarity:
keeping only the low-energy eigenstates should leave low-
energy physical observables unaffected. Moreover, the eigen-
state digitization always enforces gauge invariance but breaks
unitarity at finite truncation [13]. Reference [13] show the
mathematical mapping between the eigenstate and group rep-
resentations of the infinite-dimensional gauge Hilbert space,
yet it is also unclear how practically the resource require-

ments of the eigenstate-truncation method compare with the
group-truncation schemes that we study here, especially for
short-range observables. Notably, the group truncation always
enforces unitarity but can break gauge invariance at finite trun-
cation and is more natural for lattice gauge theory simulations
on classical computers.

Previous works have examined the eigenstate-truncation
methodology in models of SU(2) within the Hamiltonian
approach. Of these, [14] classically performs exact diagonal-
ization of a (1+1)-D U(2) Hamiltonian in a quantum link
model with different spatial lattice extents in the range Ls =
2–18. There, they use one rishon per link and study the energy
splitting between the two lowest-energy eigenstates and the
real-time evolution of an order parameter. In [15], the authors
classically examine a (1+1)-D SU(2) tensor network approx-
imation in a quantum link model with two rishons per link
and study the quantum phase diagram.2 In [16], the authors
extensively study (2+1)-D SU(2) with projected entangled
pair states (PEPS) in the tensor network framework. For this
specific construction of PEPS observables, the physical states
are restricted to the j � 1/2 sector. In this approximation, the
observables with a truncated gauge Hilbert space are exactly
identical to the model results if they were calculated in the full
infinite-dimensional gauge Hilbert space. Also, the authors of
[17] use the physical subspace to find an efficient eigenstate
truncation in a (1+1)-D SU(2) model. Allowing up to j = 2
eigenstates, and using the matrix product state approximation
in the tensor network framework, the authors are able to
compute a large range of physical quantities in different limits.

The outline of this work is as follows: in Sec. II, we discuss
several different schemes for digitizing SU(2) as well as the
projections to coarser digitizations. In Sec. III, we describe
how we generate SU(2) lattice ensembles and our lattice
gauge theory methodology used to compute observables. In
Sec. IV, we present the main results of our work: the error
induced by our group-truncated digitization and projection
schemes. Finally, in Sec. V, we discuss our conclusions.

II. DIGITIZING SU(2)

In this work, we digitize the gauge group by reducing the
infinite set of SU(2) matrices to a finite set A of size |A|.
Each such digitization scheme defines a different surjective
mapping f : SU(2) → A. The elements of A may or may
not be elements of SU(2). We write A f to denote the set A
associated with a given digitization f .

There are many different choices for the digitization
scheme f . Our objective is to compare several reasonable and
well-motivated schemes which reproduce a set of physical
observables to a predetermined level of accuracy with the
smallest set A, thereby requiring the least resources. In the

2In quantum link models, the continuous gauge operators of SU(N )
are embedded into a SU(2N ) algebra which are fermionic, and thus
have finite-dimensional Hilbert spaces. However, here one has to
show how to get the correct continuum physics out of the embedded
simulated SU(2N ) model. This can be done by adding an extra
compact dimension to the model and then separately taking this extra
dimension correlation length to infinity in a numerical study.
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following, we discuss the different digitization schemes we
will study in this work. We view our list as a base for future
improvement rather than an exhaustive study of all possible
digitizations.

In what follows, we parametrize any SU(2) element in the
fundamental representation as

g =
(

a + ib −c + id
c + id a − ib

)
, (1)

where a, b, c, and d are real numbers in [−1, 1]. As the deter-
minant of any SU(2) matrix is unity, a2 + b2 + c2 + d2 = 1
and there are only three independent real degrees of freedom.

Since SU(2) and the sphere S3 are diffeomorphic,
any SU(2) matrix may be written as a (Euclidean) four-
dimensional unit vector (a, b, c, d ). In this sense, a digitiza-
tion of SU(2) is a finite set of points on or near S3.

A. Fixed-point digitization

In typical lattice gauge theory simulations, an SU(N )
matrix is typically represented as N2 complex numbers, with
unitarity and the unit determinant condition enforced by hand.
Real numbers are typically represented as 64-bit double-
precision floating-point numbers (or, briefly, doubles). Here-
after, we refer to this as the “matrix-of-doubles” representa-
tion of SU(Nc) matrices.

In a standard double, one bit s represents the sign of the
number, 11 bits represent the integer exponent −1024 < e <

1023,3 and the remaining 52 bits represent the normalized
significand. Denoting the bits of the normalized significand as
mi, the significand 1 � S < 2 is a fixed-point number whose
value is given by

S = 1 +
∑
i=1

mi

2i
. (2)

Taken together, the value represented by the 64 bits of the
double is (−1)s × S × 2e. A double can represent values as
small as 2−1024 ∼ 10−39 and as large as 21024 ∼ 1039, and
the values that a double can represent grow exponentially
denser closer to zero. This representation is not optimal. Most
glaringly, the real numbers in an SU(N ) matrix are bounded
between −1 and 1, so half of the values a double can represent
(e > −1) are wasted.

A less wasteful representation for the real numbers in an
SU(N ) matrix is the simple fixed-point numbers, with the
most significant digit starting at 1/2 [18]. Denoting the bits
of the fixed-point number as fi, with f0 = s as a sign bit, the
value represented by p bits of fixed-point precision is

(−1)s
p−1∑
i=1

fi

2i
, (3)

which can represent 2p values evenly spaced between −1
and 1. This distribution of possible values is better suited
for lattice data: the distribution of values in typical lattice

3211 = 2048.

data is closer to flat than to exponentially spiked about
zero.4

Our fixed-point truncation scheme is simply to convert
the doubles of an SU(2) matrix to p-bit fixed-point numbers.
More specifically, we first convert the doubles a, b, and c to
64-bit fixed-point numbers. To truncate each number, we cut
off the 64 − p least-significant bits of each number and then,
to avoid having to implement fixed-point arithmetic, convert
them back to doubles. To maintain the unit determinant condi-
tion to p bits of precision, we compute d2 = 1 − a2 − b2 − c2

at full precision (while keeping the original sign of d) and then
apply the same truncation procedure to the resulting value.
It is important to note that this operation is only unitary and
gauge invariant to p bits. We return to this key point in Sec. IV.

B. Indexed mesh digitization

The above fixed-point digitization scheme has several
drawbacks. First, representing an SU(N ) matrix using fixed-
point values is still wasteful. The independent real degrees
of freedom a, b, c in fixed-point representation parametrize
an even grid of (2p)3 points over the box (−1, 1)3, but
because |d| � 1 and d2 = 1 − a2 − b2 − c2, all values of
a2 + b2 + c2 > 1 are wasted (∼48% of all possible values).
Furthermore, in practice, all of the points lie slightly off the
unit sphere and are thus not elements of SU(2), leading to
violations of unitarity and gauge invariance. In principle, this
issue is shared by high-precision floating-point numbers.

For a different digitization of the gauge group, we may
consider simply choosing some finite subset of SU(2) ele-
ments as the digitization. It is easy to visualize SU(2) as a unit
three-sphere and imagine the subset as a discrete “mesh” of v

points lying on the sphere. Each element of the subset may
then be represented by its index in this subset. This requires
only ceil log2 v bits per gauge link.5 The most obvious choice
for a mesh is a discrete subgroup of SU(2). Abelian subgroups
are clearly inadequate since the non-Abelian nature of the
group plays a critical role in its nonperturbative dynamics.
Creutz et al. considered this problem previously from a
slightly different perspective [6]. They found that the finite
subgroups of SU(2) with sufficient non-Abelian structure to
avoid significant distortions of physical results are

(i) the 24-element tetrahedral subgroup T̄ ,
(ii) the 48-element octahedral subgroup Ō, and
(iii) the 120-element icosahedral subgroup Ī or Ȳ .
Whether these subgroups are large enough for practical

use as a digitization scheme on a quantum computer is an
important question, which we revisit in Sec. IV.

To get finer digitizations, we can simply pick a larger
subset of elements which are distributed approximately evenly
across the unit three-sphere. As the three-sphere is generally
not diffeomorphically equivalent to the polytope, one cannot
find a general exactly uniformly distributed mesh. Geodesic
meshes are the familiar solution to this problem in three
dimensions and generalize straightforwardly to 4D.

4It is straightforward to plot the distribution of SU(N ) values and
check that it is closer to flat rather than being exponentially spiked at
the origin.

5With N bits we can represent v = 2N numbers.
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We generate geodesic meshes using the MVMESH R package
[19]. To generate the meshes, we use the “edgewise” algo-
rithm, which begins with a 4D octohedron then uniformly
tesselates each simplicial face with smaller simplices before
“inflating” the resulting mesh to an approximate sphere. The
package also offers a “dyadic” algorithm, which also begins
with the octohedron, but recursively tesselates each simplicial
face with the simplest simplicial tesselation. These dyadic
meshes are more even, but are defined for fewer different
values of mesh size v. For similar mesh sizes, all observables
that we have examined agreed, so we only present results
for edgewise meshes. This approach is similar to the one
considered in Ref. [20], but less sophisticated in that we do not
generate our meshes by subdividing polytopes corresponding
to the finite subgroups of SU(2).

Multiplication in meshes must be implemented using a
lookup table [10,20]. If the mesh is a subgroup of SU(2), then
multiplication is exact. If the mesh is not a closed subset of
SU(2), then the result of multiplying two elements together
must be projected back onto the mesh. In this exploratory
study, we immediately return to the usual matrix-of-doubles
representation after projecting links to meshes, and do not
perform any operations in the indexed mesh representation.
As such, we are unable to quantify the effect of projection af-
ter multiplication. Our approach is equivalent to using lookup
tables to compute traces of multiple mesh elements exactly, as
used in Ref. [20].

In this study, we project SU(2) matrices from existing
lattice gauge fields computed in the ultrafine digitization to
a coarser mesh digitization. This introduces another potential
source of error which compounds the error due to digitization
alone, thus it is important to also consider how we perform
projections. To get an idea for how much error is due to
projection rather than digitization, we tried several different
projection schemes, described below.

1. L2 norm

One can project into the mesh by replacing the SU(2)
matrix by its nearest neighbor in the mesh. This requires
a metric on the group, for which we use the natural in-
variant complex matrix normed distance D(A, B) = ||A −
B||, where ||M|| = Tr(M†M ). This amounts to the L2 norm
�a2 + �b2 + �c2 + �d2 between two points on the three-
sphere representation of SU(2). Consequently, this projection
scheme simply chooses the nearest mesh point on S3.

2. Action-preserving rounding

Another idea is to engineer our projection method to
preserve physical quantities. Ideally, we would like to project
each link to the mesh such that all Wilson loops on a lattice
are changed as little as possible. In practice, measuring longer
Wilson loops is computationally expensive and finding the
exact best projection is intractable, growing combinatorically
with volume V and number of mesh points v. Instead, we
define action-preserving rounding (APR) as projection which
tries to preserve the local action density. The Wilson gauge
action is a function of the plaquette operator only [as defined
in Eq. (6)], so this amounts to trying to preserve the value of

individual plaquettes. One may think of this method as trying
to project gauge invariantly.

In practice, for each plaquette, we replace one link at a
time with an element from the mesh, choosing the mesh
element which makes the new value of the plaquette closest
to the original undigitized value. There is freedom in this
algorithm to choose the order in which one replaces the links
in each plaquette. Computationally, it is most straightforward
to replace all links in each dimension before moving onto
another. We arbitrarily choose the order XY ZT and have not
examined the effects of choosing different orderings.

III. LATTICE GAUGE THEORY METHODOLOGY

This work uses standard techniques in the lattice gauge
theory literature; we refer the reader to [21,22] for a discussion
of this methodology. For this work, we generate SU(2) lattice
gauge field configurations using MILC code [23] adapted to
run Nc = 2. We use the Wilson plaquette action for our
discretization of the pure gauge action [24]. In each ensemble,
we save a gauge configuration after every 1000 Monte Carlo
trajectories, where a trajectory is four over-relaxation steps
and one quantum heat-bath step. The typical autocorrelation
times in our data set are such that 1000 trajectories are
sufficient to decorrelate the observables that we consider.

We generated multiple different ensembles upon which
to compute observables. One is a high-statistics zero-
temperature ensemble of 1000 configurations with volume
V = 124 at β = 2. The remaining ensembles contain 100 con-
figurations each. They include 38 finite-temperature ensem-
bles with V = 123 × 6 and an additional six zero-temperature
ensembles with V = L4 for L �= 12.

For this initial investigation, we generate “undigitized”
ensembles with the standard classical Monte Carlo ultrafine
digitization, which uses matrices of 64-bit doubles to repre-
sent gauge links. We do not generate Monte Carlo ensembles
with any other coarsely digitized gauge group.

To study the effects of gauge group digitization, we take an
undigitized ensemble and project all gauge links to a coarser
digitization. For computational convenience, after projecting
to the coarser digitization, we return the gauge links to the
matrix-of-doubles representation. On the resulting digitized
ensemble, we measure observables and determine how they
have been affected.

A. Computed physical observables

This work focuses on the simplest gauge-invariant objects,
i.e., Wilson loops. A Wilson loop is the trace of a product of
gauge links Ux,μ along a closed loop L,

WL[U ] = Tr
∏

(x,μ)∈L
Ux,μ̂, (4)

where x denotes the sites in the loop and μ̂ denotes the
direction of the link. Wilson loops are best understood phys-
ically through their connection to the potential V (r) between
static color charges. Careful discussions of this connection are
available in standard textbooks on lattice gauge theory [21,22]
as well as continuum field theory [25]. The present discussion
only needs the fact that a rectangular Wilson loop W of spatial
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μ̂

ν̂

x x + μ̂

U †
ν(x) Uν(x + μ̂)

Uμ(x)

U †
μ(x + ν̂)

FIG. 1. The plaquette �μν (x) constructed from the gauge links
Uμ(x).

length r and temporal length t scales as [24]

W (t, r) ∼ e−tV (r). (5)

To extract the potential in practice, we construct rectangu-
lar Wilson loops for many different values of t and r. At fixed
spatial separation r′, we fit the lattice data to the decaying
exponential in Eq. (5) in order to obtain a value for V (r′).
Repeating this process for all spatial separations yields the
potential V (r). These techniques are standard in the lattice
literature [21,22]. This work, however, studies the behavior
of the potential under different gauge group digitizations.

A Wilson loop of particular importance is the plaquette, the
building block of the Wilson plaquette gauge action [24]. The
plaquette is a 1 × 1 square loop of gauge links, as depicted in
Fig. 1, and is the simplest gauge-invariant observable that can
be measured on a hypercubic lattice. More quantitatively, the
plaquette at site x on the 4D lattice with extent in the μ and ν

directions is

�x,μν = Re Tr[Ux,μ̂Ux+μ,ν̂U †
x+ν,μ̂U †

x,ν̂], (6)

where Ux,μ̂ is the gauge link in the μ direction at site x.
The three topologically distinct perimeter-six Wilson loops
P1, P2, and P3, depicted in Fig. 2, are longer cousins of the
plaquette. The ensemble expectation values of these quantities
are their averages over all orientations, every site on the
lattice, and each gauge configuration in the ensemble. The
unimproved Wilson gauge action is a function of the plaquette
only, while improved actions are typically functions of longer
Wilson loops, such as the perimeter-six loops. We include
perimeter-six Wilson loops in the study not just as additional
observables, but also because we anticipate improved actions
may play a role in simulations on quantum computers.

The Polyakov loop is the shortest Wilson loop that winds
around the temporal direction of the lattice once, i.e.,

�x = Tr
t=Nt∏
t=1

U(x,t ),t̂ , (7)

where U(x,t ),μ̂ is the gauge link in the μ̂ direction at site (x, t ).
In SU(Nc) pure gauge theory, the Polyakov loop is an order
parameter for the finite-temperature deconfinement transition
[26]. Unlike for Nc > 2 where it is generally complex, the
Polyakov loop is real valued in SU(2). At low temperatures

(a)

(b)

(c)

FIG. 2. The three perimeter-six Wilson loops: the (a) rectangle
P1, (b) parallelogram P2, and (c) bent rectangle P3. Dashed lines are
drawn to guide the eye.

when the system is in a confined phase, the Polyakov loop is
protected by a symmetry and therefore vanishes. Increasing
the temperature of the system (corresponding to simulations
at larger β or shorter Nt ) eventually results in a phase tran-
sition where this symmetry is spontaneously broken and the
Polyakov loop acquires a nonzero expectation value, which is
interpreted as a sign of deconfinement.

B. Mesh digitization and importance sampling

Before showing our results, we discuss our expectations
for how mesh digitization will affect observables, based on
properties of Monte Carlo simulations of lattice field theories.
A naive approach to simulating gauge theories would generate
SU(N ) gauge field configurations with gauge links randomly
distributed by the Haar measure, and weight them by the
action term e−S when computing observables.6 Monte Carlo

6This approach is intractably inefficient, as the vast majority of
possible gauge configurations are exponentially suppressed by the
action term.
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simulations instead use importance sampling, which includes
the e−S term as part of the measure when randomly generating
configurations. This induces correlations (over an ensemble
of gauge configurations generated with importance sampling)
between all gauge links.

The Haar measure has the property that∫
dU Tr U = 0, (8)

where U is an SU(N ) matrix. The integral given by Eq. (8) can
be thought of as the expectation value of a Wilson loop in a
theory where e−S = 1. It follows that the correlations between
gauge links due to the e−S term are what allow for nonzero
Wilson loops, and that the expectation value of any Wilson
loop constructed from completely random SU(N ) matrices is
zero. We thus expect that making gauge links more random
(or, equivalently, less correlated) will suppress the expectation
values of Wilson loops.

To interpret the systematic error seen in our digitized
results below in Sec. IV, note that projecting an ultrafine-
digitized SU(2) matrix to a coarser digitization can be thought
of as displacing that matrix in the group manifold. Displace-
ments applied to different gauge links are completely uncor-
related for fixed-point truncation and projection to meshes
with the L2 scheme, and less so for APR projection. We can
thus think of the effect of truncation or projection as random
kicks which add incoherent noise to the gauge links. This
noise washes out correlations between gauge links induced by
importance sampling.

Taken together, this suggests that projection to coarser
meshes will disrupt the correlations between gauge links
induced by importance sampling and thereby suppress the
expectation values of Wilson loops. When projecting to finer
meshes, the correlations between gauge links are damped but
remain significant. However, when projecting to increasingly
coarser meshes, correlations become small and the gauge
links appear random within SU(2). In this case, it becomes
comparable to performing a path integral with e−S = 1 and
restricting the group integration to those matrices in the mesh,
approximating the integral over SU(2) in Eq. (8).

As discussed in Sec. IV, our results are broadly consistent
with this narrative. The values of all Wilson loops that we
measure are increasingly suppressed by projections to coarser
digitizations. Furthermore, correlations over longer-distance
scales (i.e., large-scale structure in the gauge fields) should be
more robust against the addition of incoherent noise compared
to correlations over short-distance scales (i.e., fine structure in
the gauge fields). We observe that for a particular digitization
and projection scheme, the error induced in the static potential
V (r) is less than that induced in any of the shorter-range
observables that we examine. We also see the error in the static
potential V (r) smoothly decreases as r increases (cf. Fig. 10).

IV. RESULTS

Here we empirically quantify the systematic error that is in-
troduced by the different digitization and projection schemes
that we have studied. We compare the different schemes based
on the number of bits required to represent a gauge link,
or “bits per link.” If p is the number of bits of precision

FIG. 3. The relative error in the plaquette expectation value
(defined in Sec. III A) as a function of bits per link for different
digitization and projection schemes, normalized by its undigitized
value. These results are computed on an ensemble of 1000 config-
urations with V = 124 and β = 2. Representing an SU(2) link as a
mesh element requires log2 v bits, where v is the number of mesh
points. A fixed-point digitization of precision p requires 3p bits.
In the legend, L2 labels projection to a mesh using the L2 norm,
while APR labels projection using the action- (plaquette) preserving
scheme, both defined in Sec. II B. Circles indicate projections onto
the finite subgroups T̄24, Ō48, and Ī120.

for each fixed-point number (including the sign bit), and it
takes three fixed-point numbers to represent an SU(2) matrix
parsimoniously, then the bits per link is 3p for a fixed-point
digitization. To be explicit, in this scheme there can be 23p

(potentially bad7) different representations of SU(2) matrices
to p bits of precision. On the other hand, for a mesh of size v,
the number of bits per link is the number of bits required to
index the mesh, log2 v. Again, to give an explicit example, a
mesh with v = 4 SU(2) matrices requires a two-bit index to
provide 22 = 4 unique labels, with one label for each matrix.
In practice, we do not have fractional bits, so log2 v must be
rounded up to the nearest integer. We do not do this here to
keep our curves smooth so that the reader may interpolate.

7See Sec. II A about the wastefulness of the fixed-point representa-
tion.

FIG. 4. The relative systematic error from digitizing the three
topologically distinct perimeter-six Wilson loops (shown in Fig. 2)
as a function of bits per link for different digitization schemes,
normalized to its undigitized value. These results are computed on
an ensemble of 1000 configurations with V = 124 and β = 2. Refer
to Fig. 3 for more details.
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FIG. 5. The plaquette expectation value (defined in Sec. III A) as a function of bits per link for different lattice volumes, normalized to the
undigitized value for 164. These results are computed on ensembles of 100 configurations with V = L4 and β = 2 (except for the V = 124,
which has 1000 configurations). Refer to Fig. 3 for more details.

We now show our results. First, in Fig. 3, we show the
plaquette expectation value against bits per link for different
digitization and projection schemes. We empirically find that
decreasing the bits per link of our digitization schemes re-
duces the plaquette expectation value towards zero, consistent
with our arguments in Sec. III B. The fixed-point scheme
performs drastically worse than the mesh-based schemes,
requiring at least twice as many bits to achieve the same error.
In part, this is due to the wastefulness of the fixed-point repre-
sentation as discussed in Sec. II A. Additionally, each matrix
is only unitary to p-bit precision in this scheme, in contrast
to the mesh-based schemes where each matrix is exactly in
SU(2). For the mesh-based schemes, projection with APR
outperforms projection using the L2 norm, especially on finer
meshes, where the induced systematic error is less than half
the magnitude. We observe this discrepancy throughout our

data, which suggests that the dominant source of error in our
data is projection, rather than inherent to digitization. Projec-
tions onto discrete subgroups induce slightly less error than
projections onto geodesic meshes of equivalent size. However,
projections to sufficiently fine geodesic meshes outperform
even the largest discrete subgroup of SU(2).

Next, Fig. 4 shows the effects of projection and digitization
on the expectation values of the three perimeter-six Wilson
loops. These observables are affected by digitization similarly
to the plaquette (cf. Fig. 3). It also appears that each operator
at some specific bits per link is suppressed by the same factor
consistent with the hypothesis of projection adding incoherent
noise to the gauge links, as discussed in Sec. III B.

Figure 5 shows the volume dependence of the effect of
projection and digitization on the plaquette expectation value.
We examine L4 lattices, varying L while keeping all other

FIG. 6. The expectation value of the absolute value of the Polyakov loop [defined in Eq. (7)] as a function of bare gauge coupling β =
2N/g2 for different mesh-based digitization schemes. These results are computed on ensembles of 100 configurations with V = 123 × 6 and
with β values interpolated across the deconfinement transition. The data points are indicated by the presence of error bars, and interpolated
between for the readers convenience. Refer to Fig. 3 for more details.
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FIG. 7. The relative systematic error from digitizing the absolute value of the Polyakov loop as a function of β = 2N/g2 for different
mesh-based digitization schemes. Note that the denominator of the y axis is the undigitized value for each ensemble. These data are the same
as in Fig. 6. Refer to Fig. 6 for further details.

physical scales (i.e., β) fixed. The L = 12 data of this plot
are the same as is used in Fig. 3. As can be observed,
curves for different volumes essentially overlap on this y-axis
scale, indicating that the volume dependence of the error is
much smaller than the mesh size dependence (for the range
plotted). We see similar volume independence in the three
perimeter-six Wilson loops. Although we have not seen any
significant volume dependence, this result may be observable
specific as the plaquette and perimeter-six Wilson loops are
short-distance quantities which only require a small volume
in order to saturate.

In Fig. 6, we examine how different mesh digitizations
affect the Polyakov loop expectation value as a function of
the bare gauge coupling β = 2N/g2. As with the other ob-
servables, digitization and projection suppresses the Polyakov
loop expectation value at all β values. Figure 7 plots the
relative systematic error induced by the different digitization
schemes for the data shown in Fig. 6. The Polyakov loop is
close to zero in the confined phase, and so we predominantly
see noise at lower βs. However, in the deconfined phase,
the curves in Fig. 7 appear to be flat, indicating that the
effect of the digitization for each β value is simply an overall
multiplication by a constant smaller than one. Figure 8 shows
the relative error averaged over the range 2.4 � β � 2.6 as a
function of bits per link, making it clear that this multiplicative
constant approaches zero as the bits per link are reduced, again
consistent with our arguments in Sec. III B. Figure 8 also
shows convergence to the undigitized result explicitly. Pro-
jection with APR produces less error than with the L2 norm
and appears to converge to the undigitized value quicker, but
our data are unable to determine whether any systematic error
survives in the limit of large bits per link for either scheme. We
see no error due to digitization and projection in the critical
value of β where the system deconfines, a positive indication
as projection should not change the phase dynamics.

Finally, we turn to the static potential. Figure 9 shows the
static potential aV (r) as a function of distance r/a, computed

in the usual lattice QCD ultrafine digitization. Due to the large
lattice spacing of this ensemble (i.e., the strong bare coupling),
the potential is dominantly linear in all distance scales in our
simulation. Above r/a ≈ 6, the data become unreliable due
to the exponentially decreasing signal in the Wilson loop, as
shown in Eq. (5). We restrict our subsequent discussion and
figures to the region r/a � 6.

Figure 10 shows the digitization error in the static potential
as a function of distance. The most interesting feature of
this figure is the distance dependence. For any given mesh
size, within our statistical precision, the error induced by
digitizing V (r) decreases with distance until saturating around
r/a ≈ 3, where our statistical error becomes appreciable. It is
also worth noting that the static potential gets larger as the
bits per link gets smaller, a consequence of the expectation
values of Wilson loops approaching zero for projections to

FIG. 8. The relative systematic error from digitizing the absolute
value of the Polyakov loop as plotted in Fig. 7, here averaged over β

in the range from 2.4 to 2.6, as a function of bits per link. The curves
are the results for geodesic meshes, while points are the results for
discrete subgroups.
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FIG. 9. The lattice static potential [defined in Eq. (5)] as a func-
tion of distance in lattice units. The data in this plot were generated
using an ensemble of 1000 configurations with V = 124 and β = 2.0.
We refer readers to the text for further details.

coarser digitizations. The APR projection outperforms the
L2 projection at short distances. At longer distances r/a �
3, the situation is not as clear: APR appears to perform
slightly better, but this is not statistically significant for finer
meshes.

Figure 11 gives the digitization error in the static potential
as a function of bits per link. There are several interesting
features of this data. For a fixed number of bits per link, the
systematic error from digitizing the static potential is much
smaller than the systematic error in the plaquette, Wilson
loops, or Polyakov loop. For example, with six bits per link,
the systematic error in the static potential at r/a = 2.0 can
be as low as 6%, while the other quantities have at least
15% error. As expected, the digitized potential converges to
the usual lattice QCD ultrafine-digitized result as the mesh
becomes sufficiently large, with as few as 10 bits per link

being indistinguishable from the ultrafine digitization. As
expected from Fig. 10, we observe less systematic error at
larger distances.

Figures 10 and 11 convey that long-distance physics is,
evidently, less sensitive to digitization. In Sec. III B, we argue
that projecting to a coarse digitization is roughly akin to
adding uncorrelated random noise to all the gauge links. The
large effect at short length scales, approaching the Coulombic
region of the potential, is consistent with what we have already
observed in the plaquette and perimeter-six Wilson loops. At
longer distances, we see a much smaller effect. It appears that
correlations over longer length scales are less susceptible to
the addition of incoherent noise, consistent with our argu-
ments in Sec. III B. The statistically insignificant difference
between APR and L2 projections at long distances suggests
that projection is no longer the dominant source of error at
long distances. If this is the case, then the error purely due
to digitization is already at the subpercent level at 9 bits per
link.

In our finite-temperature data, we find that the induced
error does not depend significantly on β. However, the cou-
pling dependence of digitization effects could be qualita-
tively different for zero-temperature data. To check this, we
use an ensemble with β = 3 and V = 164, and repeat our
examination of the effects of digitization and projection on
the plaquette, the perimeter-six Wilson loops, and the static
potential. As shown in the Appendix, the results indicate that
there is no significant β dependence for zero-temperature data
either.

V. DISCUSSION AND CONCLUSIONS

In this work, we have empirically quantified the systematic
error associated with digitizing the SU(2) gauge group in
different ways using lattice gauge theory on classical com-
puters. Section IV contains the main results of this work.
Figures 3, 4, 8, and 11 show the relative systematic error in

FIG. 10. The digitization error in the static potential V (r) as a function of distance. Filled symbols denote edgewise meshes, while open
symbols denote discrete subgroups of SU(2). The left panel shows the L2 projection, while the right panel shows the APR projection.
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FIG. 11. The relative error from digitizing the static potential [defined in Eq. (5)] as a function of bits per link. Each line in this figure
corresponds to a different fixed value of the distance r/a. We refer the reader to Fig. 9 for further details on the ensemble data used to generate
this plot. Figure 3 contains additional details of the terminology.

the plaquette, the perimeter-six Wilson loops, the Polyakov
loop, and the static potential as a function of the (qu)bit
requirements, for each digitization and projection scheme, in
units of bits per link. Across all observables, we consistently
observe several behaviors. Projection to a coarser digitization
suppresses the values of Wilson loops, consistent with our
arguments in Sec. III B. For a given mesh, action-preserving
rounding induces less error and asymptotes more quickly to
the undigitized result than L2 norm projection. Projecting to a
subgroup mesh appears to induce less error than projecting to
a geodesic mesh of similar size, but the finer geodesic meshes
outperform the largest discrete subgroup of SU(2). Finally,
we also observe that long-distance physics is less sensitive to
digitization and projection than short-distance physics.

Taken together, our results indicate that O(10) bits per link
suffice to capture the essential physics of SU(2) gauge theory.
Compared to modern lattice simulations, which default to 512
bits per link using double-precision floating-point numbers,
this is an improvement of nearly two orders of magnitude.
This observation has important implications for the types
of physics that will be accessible to NISQ-era quantum
computers.

Moreover, the digitization and projection schemes dis-
cussed above amount to forms of lossy compression for
gauge links. The digitization error shown in this work is
smaller than other dominant sources of error in many current
classical lattice gauge theory calculations, and mesh-based
schemes offer more than an order of magnitude compression
over the commonly used floating-point representations. Thus,
this work may have applications in modern classical lattice
calculations if link compression can be used to overcome
bandwidth bottlenecks.

We found that mesh-based schemes dramatically outper-
form the truncated fixed-point scheme, achieving similar ac-
curacies with less than half the bits per link. Some of this may
be attributed to the wastefulness of the fixed-point represen-
tation, as discussed in Sec. II B, but this only accounts for a
single bit of the difference. More importantly, each fixed-point
representation matrix is only unitary to p bits of precision, and

unitarity is a key building block of gauge theories. This em-
phasizes an important lesson: different digitization schemes
are possible, but standard principles of quantum physics re-
main a guiding light for constructing optimal digitizations as
new technology is explored.8

If gauge links are represented in an indexed mesh repre-
sentation, multiplication must be implemented using lookup
tables. There is existing work which considers how to do
this efficiently on classical computers [10,20]. An important
question for future research is whether this can be easily and
efficiently implemented on a quantum computer.

In this study, we examined SU(2) pure gauge theory.
However, we are obviously more interested in QCD, whose
gauge group is SU(3). Repeating this study for SU(3) pure
gauge theory and for theories with dynamical fermions are
obvious next steps. We note that previous work, which used
indexed mesh digitizations to simulate SU(3) pure gauge
theory, found that a mesh with 1080 elements was too coarse
to avoid artifact phases near interesting values of β, but a
mesh with 38 880 elements was viable [9]. Translating these
numbers to our bits-per-link metric, this suggests that ∼10 bits
is insufficient to represent an SU(3) gauge link, but ∼15 bits
may be enough.

As noted above, we do not generate coarsely digitized
ensembles. Systematically studying the error induced when
simulating using a coarse digitization is an interesting and
complementary direction for future work. In this study, we
generate ensembles in the standard lattice ultrafine digitiza-
tion, then project to coarser digitizations. This introduces error
specific to projection, which is difficult to disambiguate from
error due to digitization alone. Generating data directly in a
coarse digitization does not require projection, and thus would
allow estimation of digitization error without this confounding
factor. However, simulating with coarse digitizations would

8It was also necessary to enforce gauge invariance and locality
when applying machine-learning techniques to lattice QCD in order
to produce results [27].

062341-10



DIGITIZING GAUGE FIELDS: LATTICE MONTE CARLO … PHYSICAL REVIEW A 99, 062341 (2019)

FIG. 12. Caption identical to Fig. 3, except that these results are
computed on an ensemble of 100 configurations with V = 164 and
β = 3.

introduce new errors that our method is immune to, and it
may be that these errors are large (cf. the lattice artifact phases
seen by Refs. [7–9]). Thus, coarsely digitized simulation and
our approach of projection can provide independent probes of
digitization error.

Our results are already very promising, but it is likely pos-
sible to reduce (qu)bit requirements even further. One possible
method is by using better meshes and projection schemes.
We observed that projecting to discrete subgroups of SU(2)
induced less error than projecting to geodesic meshes. This
suggests that meshes made by interpolating between points in
discrete subgroups (as proposed in Ref. [20]) might perform
better than geodesic meshes. Our action-preserving rounding
method for projecting onto meshes performs substantially
better than projection using the L2 norm, even on fine meshes
where one might expect the projection method to matter less.
Pushing further and developing more sophisticated action-
preserving or gauge-invariant projection schemes would be
an interesting direction for future work. This is a particularly
interesting direction for further thought when considered in
the context of using lattice simulations on classical computers
to prepare states for quantum computers, and for gauge link
compression for high-performance computing.

Another way of reducing (qu)bit resource requirements is
by removing nonphysical degrees of freedom from the theory.

FIG. 14. Caption identical to Fig. 9, except that these results are
computed on an ensemble of 100 configurations with V = 164 and
β = 3.

The authors of [28] show that when using an eigenstate trun-
cation method, the vast majority of states in the naive finite-
dimensional Hilbert space are unphysical. There they explore
how to construct the theory on the physical subspace alone.
It would be worthwhile to explore if such techniques could
also be applied to mesh digitizations. Similarly, implementing
a digitization scheme which uses gauge fixing could also
reduce (qu)bit resource requirements. Exploring the mapping
between the eigenstate-truncation method described in Refs.
[11–13] and the group-value digitization scheme explored in
this work may provide further insights.

Our work is particularly applicable to the quantum link
formulation of SU(N ) gauge theories (with matter fields) on
quantum computers [29,30]. In these formulations, the SU(N )
link matrices build the quantum-link Hamiltonian. Our results
for four-dimensional pure gauge SU(2) indicate that only a
small number of (qu)bits per link may be needed to achieve
accurate results in these theories. If QCD is formulated on
a quantum computer in this way, future work is needed to

FIG. 13. Caption identical to Fig. 4, except that these results are computed on an ensemble of 100 configurations with V = 164 and β = 3.
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FIG. 15. Caption identical to Fig. 10, except that these results are computed on an ensemble of 100 configurations with V = 164 and β = 3.

empirically quantify the (qu)bit requirements of these SU(N )
implementations.
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APPENDIX: DIGITIZATION AT β = 3

In this Appendix, we present the results of digitizing a
weaker coupling ensemble (compared to the β = 2 ensembles
in Sec. IV) which contains 100 configurations with β = 3
and V = 164. Digitizing the plaquette with β = 3 is shown in
Fig. 12. In Fig. 13, the digitization of the perimeter-six Wilson
loops is given. Figures 14–16 show how digitization affects
the β = 3 static potential. Unlike in Fig. 9, the Coulombic part
of the static potential is clearly visible in Fig. 14, indicating
that the lattice spacing is shorter for this ensemble. All plots
are qualitatively and quantitatively similar to those shown in
Sec. IV with β = 2.

FIG. 16. Caption identical to Fig. 11, except that these results are computed on an ensemble of 100 configurations with V = 164 and β = 3.
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