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Quantum computation from fermionic anyons on a one-dimensional lattice
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Fermionic linear optics corresponds to the dynamics of free fermions and is known to be efficiently simulable
classically. We define fermionic anyon models by deforming the fermionic algebra of creation and annihilation
operators, and consider the dynamics of number-preserving, quadratic Hamiltonians on these operators. We
show that any such deformation results in an anyonic linear-optical model which allows for universal quantum
computation.
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I. INTRODUCTION

There are good reasons to study computational models
using particles with some kind of fractional statistics. Ex-
perimentally, there has been a growing interest in finding
such exotic particles in condensed-matter systems such as
the one exhibiting the fractional quantum Hall effect (FQHE)
[1], as they can simplify the description of a multitude of
complex condensed-matter phenomena. They can also be used
as a platform for models of quantum computation that are
intrinsically robust to decoherence under specific conditions
[2–5]. Theoretically, understanding the computational power
of models based on such particles can give us more knowledge
about the transition from classical to quantum computation
and what resources make this transition possible.

In this paper we generalize the model of quantum com-
putation based on the dynamics of noninteracting fermions
(known as fermionic linear optics, FLO [6–8]) to one of
anyons on a one-dimensional (1D) lattice [9,10]. This anyon
system is defined via a deformation of the fermionic anticom-
mutation relations that introduces nontrivial exchange phases
(also called fractional exchange phases).

A system of identical particles with Abelian fractional ex-
change statistics is one where the multiparticle wave function
gains an arbitrary complex phase factor under an operation
that exchanges particle positions [11,12]. A non-Abelian sys-
tem is very similar but, in this case, each particle has an
internal Hilbert space, and because of it the exchange phases
are replaced by arbitrary unitary matrices. Particles with these
properties are called Abelian anyons in the first case and
non-Abelian anyons in the second [13]. Such statistics have a
topological origin related to the dimensionality of the physical
space and can be observed in two-dimensional many-body
systems subject to a process know as transmutation of statis-
tics [13]. This involves many-body interactions described by
nondynamical effective vector potentials, whose only roles
are to associate fictitious magnetic fluxes to charged particles,
generating the exchange phase factor via the Aharonov-Bohm
effect. These fictitious fields are described by topological
quantum field theories (TQFT), such as the Chern-Simons
theory [14], and are used to describe many classes of states
of FQHE systems [15,16].

In contrast to this topological description, known to be
valid only in two dimensions, a system is said to have frac-
tional exclusion statistics if the maximum number of particles
allowed per mode is a finite integer not equal to 1 [17]. This is
a dimension-independent generalization of the Pauli exclusion
principle, which also applies to the description of some sub-
sets of FQH states that possess exchange statistics. This gen-
eralization is unrelated to statistical transmutation and is, in
fact, independent of it. For such a definition, spinless fermions
and spinless hard-core bosons are both seen as fermions,
since both obey the exclusion principle, even though their
commutation relations differ if particles are in different states.

The type of anyonic system we will be concerned with
here is defined by modified commutation relations, re-
ferred to in the literature as deformed commutation relations
[9,10,18–20], obtainable from the conventional fermionic and
bosonic ones via specific mappings [21–23]. These mappings,
which have a similar form to the Jordan-Wigner transforma-
tion [24], relate fermionic and bosonic operators on a lattice
to corresponding anyonic operators on the same lattice.

Systems defined in terms of deformed commutation rela-
tions allow for the study of anyonic gases and other analogs
of one-dimensional condensed-matter systems using conven-
tional many-body quantum mechanics and renormalization
group methods [9,25–27]. Besides effects in thermodynamics
and the study of phase transitions [28–30], these systems are
interesting also due to practical proposals for implementations
in systems such as in optical lattices [31–33], and even a
proposal for simulation using classical optics [34].

We define a computational model similar to the boson
sampling model [35], where a finite number of photons are
input into a circuit made of optical devices such as beam
splitters and phase shifters, followed by photon-counting de-
tectors. The anyonic model used in this work interpolates be-
tween one-dimensional fermions and one-dimensional hard-
core bosons. We remark that our proposal is different from the
one made in topological quantum computing (TQC), which
deals with the computational power of braiding non-Abelian
anyons and is intrinsically fault-tolerant [3,36–40].

This paper is organized as follows. In Sec. II we define and
review the properties of several computational models based
on quadratic number-preserving particle dynamics, including
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FLO, hard-core bosons, and the anyonic model we investigate
[41,42]. In Sec. III we solve the general two-particle dynamics
and define equivalent “linear-optical” devices, highlighting
the differences with respect to its bosonic and fermionic
counterparts. In Sec. IV we construct a universal set of gates
inspired by the one obtained in [42], showing that our model
is universal for quantum computation (as could be expected
from the literature on extensions of FLO and related models
[43,44]). Finally, in Sec. V we offer some concluding remarks.

II. REVIEW

In this section we review how to describe noninteracting
bosons and fermions, whose dynamics are respectively known
as bosonic (Sec. II A) and fermionic linear optics (Sec. II B).
In Sec. II C we review how qubits can be understood as a sys-
tem of bosons under a hard-core interaction. In Sec. II D we
define the anyon model we use and how it can be constructed
from deformed fermionic commutation relations, although we
defer the discussion of their dynamics to a subsequent section.

A. Linear optics

Photons are described by their degrees of freedom (which
we call modes, for short). We consider a system with m modes
described by creation and annihilation operators b†

i and bi with
i = 1, . . . , m, which respectively create and destroy a single
photon in mode i. These operators obey the canonical bosonic
commutation relations

bib
†
j − b†

jbi = δi j, (1a)

bib j − b jbi = 0, (1b)

b†
i b†

j − b†
jb

†
i = 0, (1c)

for all modes i, j. The basis vectors for this system’s Hilbert
space can be chosen to be

∣∣nB
1 , . . . , nB

m

〉 = (b†
1)nB

1 . . . (b†
m)nB

m√
nB

1 ! . . . nB
m!

|0B〉, (2)

where nB
i is the eigenvalue of the number operator NB

i = b†
i bi.

This basis is called the Fock basis or the occupation number
basis, and we use this basis throughout this work.

As we will shortly see, any free-particle bosonic dynam-
ics can be expressed in terms only of one- and two-mode
passive linear-optical elements (as described, e.g., in [45]). A
phase shifter is a single-mode passive linear device described
as the time-evolution operator PSi(θ ) = exp iθHPS

i of the
Hamiltonian HPS

i = NB
i . Its effect on Fock states results in an

occupation-number-dependent phase:

PSi(θ )
∣∣nB

1 , . . . , nB
m

〉 = eiθnB
i
∣∣nB

1 , . . . , nB
m

〉
. (3)

A phase shifter acts on creation operators as

PSi(θ )b†
jPSi(−θ ) = eiθδi j b†

j . (4)

A beam splitter is a two-mode passive linear device de-
scribed by the time-evolution operator BSi j (θ ) = exp iθHBS

i j ,

corresponding to the Hamiltonian HBS
i j = b†

i b j + b†
jbi. Its ef-

fect in creation operators is given by the matrix equation

BSi j (θ )

[
b†

i

b†
j

]
BSi j (−θ ) =

[
cos θ i sin θ

i sin θ cos θ

][
b†

i

b†
j

]
. (5)

Another way to understand how these devices act is
to consider a system with a single photon which can be
in any of the m modes. The basis states of this system
in the occupation number representation are the m states
|1, 0, 0, . . . , 0〉, |0, 1, 0, . . . , 0〉, . . . , |0, 0, 0, . . . , 1〉. In terms
of these states, the actions of beam splitters and phase shifters
are SU(2) matrices in the subspaces on which they act. In fact
it was proven that any SU(m) matrix can be constructed in
this single-photon system using only successive applications
of phase shifters and beam splitters [46]. The computational
model where the computational basis states are the Fock
states, the unitaries are arbitrary circuits of phase shifters and
beam splitters between two arbitrary modes, and measure-
ments are made in the Fock basis is called the boson sampling
model [35]. This model is not known to be universal for
quantum computational, but there is evidence that it is hard
to simulate on a classical computer given some complexity-
theoretic assumptions.

B. Fermionic linear optics

We now turn to the FLO model as described, e.g., in
[6,7,47], and specialize it to our needs. Consider a system of
abstract fermionic modes described by creation and annihila-
tion operators f †

i and fi on m modes, satisfying the canonical
fermionic anticommutation relations

fi f †
j + f †

j fi = δi j, (6a)

fi f j + f j fi = 0, (6b)

f †
i f †

j + f †
j f †

i = 0, (6c)

for all modes i, j. The occupation number operator is NF
i =

f †
i fi, and the vacuum state is |0F 〉. The Fock basis for fermions

comprises the basis states∣∣nF
1 , . . . , nF

m

〉 = ( f †
1 )nF

1 . . . ( f †
m)nF

m |0F 〉, (7)

where the nF
j are eigenvalues of the corresponding number

operators which, due to the commutation relations, can only
be 0 or 1.

We call passive fermionic linear-optical elements unitaries
of the form

PSi(θ ) = exp iθHPS
i , (8a)

BSi j (θ ) = exp iθHBS
i j , (8b)

with Hamiltonians given by

HPS
i = NF

i , (8c)

HBS
i j = f †

i f j + f †
j fi. (8d)

The action of these elements over creation operators is very
similar to the bosonic case and is given by the equations

PSi(θ ) f †
j PSi(−θ ) = eiθδi j f †

j , (9a)

BSi j (θ )

[
f †
i

f †
j

]
BSi j (−θ ) =

[
cos θ i sin θ

i sin θ cos θ

][
f †
i

f †
j

]
. (9b)
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As in the bosonic case, one can construct any SU(m)
operator over the Hilbert space of a single fermion in m modes
using only compositions of beam splitters and phase shifters.

By taking as computational basis states the occupation
number basis and as logic gates fermionic linear-optical el-
ements between arbitrary modes and measurements in the
occupation number basis, we define the computational model
called fermionic linear optics. This model of computation is
proven to be exactly efficiently simulable by a classical com-
puter in [7], which means that there is an efficient classical
algorithm to evaluate |〈y|U |x〉|2 for arbitrary computational
states |x〉 and |y〉 and arbitrary unitaries generated by the appli-
cation of passive optical elements (and any desired marginal
probabilities).

C. Qubits as hard-core bosons

To make a point of comparison, we now give an alternate
description of the usual circuit model of computation on
qubits. We will call this model qubit linear optics. Consider
a system of m qubits, with the Pauli matrices acting on qubit
i denoted by Xi,Yi, Zi. Following [41] we can write the usual
computational basis states as a Fock space basis given by the
equations

∣∣nQ
1 , . . . , nQ

m

〉 = (π†
1 )nQ

1 . . . (π†
m)nQ

m |0Q〉, (10)

with the creation and annihilation operators given by π
†
i =

1
2 (Xi + iYi ) and πi = 1

2 (Xi − iYi ) acting on state |0Q〉 =
|0, . . . , 0〉, and the number operator NQ

i = π
†
i πi = 1

2 (1i + Zi ),
whose eigenvalues nQ

i can be only 0 or 1. These operators
must obey the algebra

πiπ
†
j − π

†
j πi = 0, (11a)

πiπ j − π jπi = 0, (11b)

π
†
i π

†
j − π

†
j π

†
i = 0, (11c)

for all modes i, j with i �= j, [compare with Eqs. (1)] and

πiπ
†
i + π

†
i πi = 1, (11d)

(π†
i )2 = (πi)

2 = 0, (11e)

for each mode i [compare with Eqs. (6)]. This algebra forbids
more than one boson in the same mode, which is why this sys-
tem can be understood as bosons with a hard-core interaction.

Similarly to bosonic and fermionic linear optics, qubit pas-
sive linear-optical elements are defined as unitary operators of
the form

PSi(θ ) = exp iθHPS
i , (12a)

BSi j (θ ) = exp iθHBS
i j , (12b)

with Hamiltonians given by

HPS
i = NQ

i , (12c)

HBS
i j = π

†
i π j + π

†
j πi. (12d)

Using a bit of algebra we can write the beam-splitter
Hamiltonian in terms of Pauli operators as HBS

i j = XiXj +
YiYj . In [42], Kempe and Whaley showed that this interaction
acting between nearest and next-nearest neighbors on a 1D
chain, along with Pauli Z rotations, can perform universal
quantum computation in an encoded subspace of the Fock
space (next-to-nearest neighbor interactions are essential for
the protocol to work). This result suggests that qubit linear
optics is computationally more powerful than fermionic linear
optics, even though the only differences are the signs of
commutators of operators in different sites.

D. The definition of fermionic anyons

The model we consider in this paper has been studied pre-
viously in the theory of interacting bosonic one-dimensional
gases [9,23], interacting fermionic one-dimensional gases
[26], and their simulations in several physical systems
[28,31–33]. In this model the creation and annihilation op-
erators a†

i and ai satisfy the deformed anticommutation
relations

aia
†
j + e−iϕεi j a†

j ai = δi, j, (13a)

aia j + eiϕεi j a jai = 0, (13b)

where the symbol εi j is given by

εi j =
⎧⎨
⎩

1, if i < j
0, if i = j

−1, if i > j
. (13c)

The dependence of the anticommutation relations on εi j de-
fines an order over the lattice, coming from the way the defor-
mation is defined [see Eqs. (14)]. When ϕ = 0 or π , this order
is irrelevant and we reobtain a fermionic system [see Eqs. (1)]
and hard-core bosons [or qubits, see Eqs. (11d) and (11e)],
respectively. For all 0 < ϕ < π we have a nontrivial anyonic
model. The deformed anticommutation relations come from
the generalized Jordan-Wigner transformation below:

a†
i = JW (ϕ)

i

†
f †
i , (14a)

ai = JW (ϕ)
i fi, (14b)

JW (ϕ)
i = exp iϕ

i−1∑
k=1

f †
k fk. (14c)

The Jordan-Wigner operator JW (ϕ)
i transmutes statistics in

a way similar to the Chern-Simons field [48].
Number operators for this system are as in the previous

cases, and we represent them by NA
i = a†

i ai, with eigenvalues
nA

i either 0 or 1. The Fock basis states for anyons are, there-
fore, ∣∣nA

1 , . . . , nA
m

〉 = (a†
1)nA

1 . . . (a†
m)nA

m |0A〉. (15)

Anyonic passive linear-optical elements are the unitaries

PSi(θ ) = exp iθHPS
i , (16a)

BSi j (θ ) = exp iθHBS
i j , (16b)
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with Hamiltonians given by

HPS
i = NA

i , (16c)

HBS
i j = a†

i a j + a†
j ai. (16d)

The computational model is as before: the computational
basis states are the Fock states, the unitaries are all possible
combinations of phase-shifters and beam-splitters for arbi-
trary pairs of modes (this arbitrariness is essential for our
result), and measurements are allowed in the Fock basis only.

III. LINEAR OPTICS OF 1D FERMIONIC ANYONS

In this section we define the dynamics corresponding to
anyonic linear optics. In Sec. III A, we solve the equations of
motion for creation operators acted on by the linear-optical
Hamiltonians exactly and explain the difference in relation
to the fermionic case. Next, in Sec. III B we show that when
beam splitters act on non-neighboring modes, the presence of
particles in between gives rise to an Aharonov-Bohm effect,
and we argue that this is responsible for the differences in the
action of beam splitters with respect to free fermions.

A. Anyonic optical elements and equations of motion

In the anyonic case, the evolution of creation operators is
more involved than for the bosonic and fermionic cases and it
is what we discuss now. For phase shifters we have that

PSi(θ )a†
jPSi(−θ ) = eiθδi j a†

j , (17)

just like before. The action of beamsplitters, on the other hand,
requires more attention. We will solve the dynamical problem
defined by the HBS

i j Hamiltonian. The Heisenberg equations of
motion are

i
da†

i

dθ
= [

HBS
i j , a†

i

]
, (18a)

i
da†

j

dθ
= [

HBS
i j , a†

j

]
, (18b)

where the commutators are computed using the algebra of
anyonic operators [Eqs. (13)]:

[
HBS

i j , a†
i

] = a†
j

{
1 − (1 − eiϕ )NA

i

}
, (19a)[

HBS
i j , a†

j

] = a†
i

{
1 − (1 − e−iϕ )NA

j

}
. (19b)

Let us start by rewriting the equation for mode i in a more
suggestive form:

i
da†

i

dθ
= a†

jW
(ϕ)

i , (20)

where we have introduced a short-hand notation for the
nonlinear term W (ϕ)

i ≡ 1 − (1 − eiϕ )NA
i . By computing the

commutator [HBS
i j , a†

jW
(ϕ)

i ] we find that the equation of motion
for this operator is given by

i
d
(
a†

jW
(ϕ)

i

)
dθ

= a†
i . (21)

Therefore this is a coupled linear system of equations for
the operators a†

i and a†
jW

(ϕ)
i , which is exactly solvable. The

equation of motion for mode j has a similar property, giving
the system

i
da†

j

dθ
= a†

i W †(ϕ)
j , (22a)

i
d
(
a†

i W †(ϕ)
j

)
dθ

= a†
j . (22b)

By linearity, the solutions of the equations for a†
i and a†

j
must be

BSi j (θ )a†
i BSi j (−θ ) = cos θa†

i + i sin θa†
jW

(ϕ)
i , (23a)

BSi j (θ )a†
jBSi j (−θ ) = cos θa†

j + i sin θa†
i W

†(ϕ)
j . (23b)

Notice that these solutions are very similar to the cor-
responding dynamics of fermions and bosons [Eqs. (5) and
(9b)].

Equations (23a) and (23b) represent the exact dynamics
for arbitrary pairs of modes for these systems. Previous
treatments have focused on many-body anyonic Hamiltonians
(for either the bosonic and fermionic anyon varieties) using
methods such as the Bethe-Ansatz, as in [9].

B. Aharonov-Bohm effect in anyonic beam splitters

To complete our description of a general beam splitter, we
need to discuss what happens with the modes that are between
the ones appearing in the Hamiltonian. In the fermionic and
bosonic cases these modes commute with HBS , but in the
anyonic case creation operators a†

k with i < k < j do not
commute with HBS

i j . In fact, they satisfy the relation

exp iθ (a†
i a j + a†

j ai )a
†
k = a†

k exp iθ (ei2ϕa†
i a j + e−i2ϕa†

j ai ),

(24)

which we can treat as an effective beam splitter that acts on
states by introducing a phase correction dependent on the
number of modes occupied between i and j. Or putting it in a
more compact notation,

BSi j (θ )a†
k = a†

kBS(2ϕ)
i j (θ ), (25a)

with the new effective beam-splitter unitary defined by

BS(α)
i j (θ ) = exp iθ (eiαa†

i a j + e−iαa†
j ai ), (25b)

and the solution to the equations of motion for modes i and j
is

a(α)†
i (θ ) = cos θa†

i + ieiα sin θa†
jW

(ϕ)
i , (25c)

a(α)†
j (θ ) = cos θa†

j − ie−iα sin θa†
i W †(ϕ)

j . (25d)

Example. To illustrate this phase correction, consider a
system with three modes, and choose i = 1 and j = 3. Let us
act with a balanced beam splitter (θ = π

4 ) on state |0, 1, 1〉 =
a†

2a†
3|0A〉. The first step of the calculation is to use Eq. (25a):

BS13

(π

4

)
a†

2a†
3|0A〉 = a†

2

[
BS(2ϕ)

13

(π

4

)]
a†

3|0A〉. (26)

Now we need to analyze the dynamics of a†
3|0A〉 under the

action of BS(2ϕ)
13 ( π

4 ). Using Eqs. (25c) and (25d), and the fact
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that W (ϕ)
i |0A〉 = |0A〉, for every mode i and angle ϕ we obtain

a†
2

[
BS(2ϕ)

13

(π

4

)]
a†

3|0A〉 = 1√
2

a†
2(iei2ϕa†

1 + a†
3)|0A〉. (27)

We now use the commutation relation a†
2a†

1 = −e−iϕa†
1a†

2 to
write the final equation in normally ordered form:

1√
2

a†
2(iei2ϕa†

1 + a†
3)|0A〉 = 1√

2
(−ieiϕa†

1a†
2 + a†

2a†
3)|0A〉.

(28)

If we compare this result with the same Hamiltonian applied
on state a†

1a†
2|0A〉, we see that the effect of the phase-corrected

Hamiltonian is to guarantee unitarity of the time-evolution
operator. To see this use the solution of the equations of
motion to obtain

BS13

(π

4

)
a†

1a†
2|0A〉 = 1√

2
(a†

1 + ia†
3)a†

2|0A〉. (29)

Finally, using a†
3a†

2 = −e−iϕa†
2a†

3 we get

1√
2

(a†
1 + ia†

3)a†
2|0A〉 = 1√

2
(a†

1a†
2 − ie−iϕa†

2a†
3)|0A〉. (30)

Therefore the total effect on the Fock basis is given by

BS13

(π

4

)
|1, 1, 0〉 = 1√

2
(|1, 1, 0〉 − ie−iϕ |0, 1, 1〉), (31a)

BS13

(π

4

)
|0, 1, 1〉 = 1√

2
(−ieiϕ |1, 1, 0〉 + |0, 1, 1〉), (31b)

which is manifestly unitary.
If the anyon in mode 1 tunnels to mode 3 when another

anyon occupies mode 2, a relative phase factor between the
modes appears. It is easy to see that this phase would be absent
if mode 2 was empty. This dynamics can be understood as an
one-dimensional analog of the Aharonov-Bohm effect [49],
where the magnetic flux carried by the particle is given by
π − ϕ, and the π factor accounts for the −1 fermionic phase
appearing when ϕ = 0.

This phenomenon, due to particle statistics, was seen pre-
viously in [50], where it affects the phase difference of a
driven Bose-Einstein condensate (of bosonic anyons) in ring-
shaped optical lattices threaded by a magnetic flux. These
phase factors, as we will see in the next section, are crucial in
determining the computational power of the different models.

IV. THE COMPUTATIONAL POWER OF ANYONS

In [42], it was shown how to construct an encoded, entan-
gling two-qubit gate using only nearest and next-to-nearest
neighbor Hamiltonians (XY interaction) between physical
qubits to achieve universal quantum computation. In this
section we will generalize this construction to show that
the quadratic dynamics of fermionic anyons is also capable
of universal quantum computation. We begin by defining a
qubit encoding that is preserved by dynamics of either free
fermions, hard-core bosons, or free fermionic anyons. We
will then describe linear-optical circuits on fermionic anyons
and its action on encoded states. We prove that the two-
qubit logical gate implemented by this circuit is deterministic

FIG. 1. Single-qubit unitary decomposed in optical elements. A
single-qubit unitary needs four parameters (α, β, γ , δ). The first one
is a global phase, and the others are realized by the optical elements
in the figure.

and entangling for any value of the statistical parameter
ϕ �= 0. This, together with single-qubit unitaries, shows that
linear optics on fermionic anyons is universal for quantum
computation.

A. Encoding

We use 2n modes to encode n qubits such that each logical
qubit corresponds to a pair of neighboring modes as in the
equations

|0L〉 = |1, 0〉, (32a)

|1L〉 = |0, 1〉. (32b)

So, for example, a two-qubit system needs four modes and
the logical states are given by

|00〉L = |1, 0, 1, 0〉, (33a)

|01〉L = |1, 0, 0, 1〉, (33b)

|10〉L = |0, 1, 1, 0〉, (33c)

|11〉L = |0, 1, 0, 1〉, (33d)

where the right-hand sides of these equations are Fock states.
This encoding is independent of the parameter ϕ, since all
of these particles obey the Pauli exclusion principle, which
allows the direct comparison of logical gates between models.

B. Encoded one- and two-qubit gates

With this encoding it is possible to do any logical one-qubit
gate using only phase shifters and beam splitters on the two
corresponding modes. To prove this, consider a single qubit
encoded in modes 1 and 2, and notice that a phase shifter in
mode 2 acts in the logical basis states as

PS2(θ )|1, 0〉 = |1, 0〉, (34a)

PS2(θ )|0, 1〉 = eiθ |0, 1〉, (34b)

which is equivalent to a logical Z rotation in the Bloch sphere
by θ degrees. Note also that a beam splitter between modes 1
and 2 acts in the logical basis states as

BS12(θ )|1, 0〉 = cos θ |1, 0〉 + i sin θ |0, 1〉, (35a)

BS12(θ )|0, 1〉 = i sin θ |1, 0〉 + cos θ |0, 1〉, (35b)

which is equivalent to a logical X rotation in the Bloch sphere
by an angle θ . With arbitrary rotations around two axes in the
Bloch sphere, we can perform an arbitrary single-qubit gate,
as in Fig. 1.
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FIG. 2. Two-qubit gate, sequence of beam splitters that generate
our entangling gate.

To implement an encoded two-qubit gate we generalize the
XY interaction protocol found in [42] (see Fig. 2), adapting the
construction to our anyonic model.

When the particles considered are hard-core bosons (or
spins), we recover the original result of [42] and the circuit
executes the logical gate

√−ZZ , which is a maximally entan-
gling gate.

In Appendix we calculate the effect of this circuit on
fermionic anyons characterized by the deformed fermionic al-
gebra of Eqs. (13), for any value of the deformation parameter
ϕ. Its action on the encoded qubits is the gate

C(ϕ) = Rẑ

(π

2

)
⊗ |0〉〈0| + Rn̂

(π

2

)
⊗ |1〉〈1|, (36)

where Rẑ( π
2 ) is a rotation of π

2 around the Z axis in the
Bloch sphere, and Rn̂( π

2 ) is a π
2 rotation around the axis

n̂ = (− sin ϕ, 0, cos ϕ) in the Bloch sphere. So this is a con-
trolled rotation gate whose action depends continuously on the
parameter ϕ characterizing our anyonic model. We have, for
the special cases of fermions and hard-core bosons,

C(ϕ) =
{

Z ⊗ 1, if ϕ = 0√−ZZ, if ϕ = π
, (37)

which in the fermionic case is a local gate and for hard-core
bosons is as described above. Therefore this gate interpolates
between the corresponding ones for the other two models.

C. The entangling power of C(ϕ)

We claim that gate C(ϕ) [Eq. (36)], together with arbitrary
single-qubit gates, form a set that is universal for quantum
computing whenever ϕ �= 0. To prove this it is sufficient to
show that C(ϕ) has a nonzero entangling power (as defined
by [51]).

The entangling power ep(U ) of a unitary gate U is defined
as the average entanglement of formation generated by the
action of U on product states |ψ1〉 ⊗ |ψ2〉:

ep(U ) = E (U |ψ1〉 ⊗ |ψ2〉)
(ψ1,ψ2 )

, (38)

where the bar denotes an average with respect to some prob-
ability distribution p(ψ1, ψ2). It can be shown that if the
average is taken over the uniform distribution, the entangling
power is both local invariant and SWAP invariant (that is, it
remains the same if U is conjugated by SWAP or by single-
qubit gates). In fact, this invariant can be easily calculated
in terms of simpler invariants, which was done in [52]. Two-

qubit gates have two local invariant quantities given by

G1 = Tr2U T
B UB

16 det(U )
(39)

and

G2 = Tr2U T
B UB − Tr

(
U T

B UB
)2

4 det(U )
, (40)

where UB is the matrix representation of the gate U written
in the Bell basis. With these invariants, the (normalized) en-
tangling power ep(U ) of a two-qubit gate U over the uniform
distribution is simply given by [52]

ep(U ) = 1 − |G1|. (41)

With this in hand, the entangling power of C(ϕ) [Eq. (36)] is

ep(C(ϕ)) = 1 − cos4 ϕ

2
. (42)

This shows that any ϕ �= 0 results in a fermionic anyon model
that allows for universal quantum computation. In fact, since
this gate generates entanglement, it can be used to construct
encoded controlled-NOT gates using the argument given in
[53], with the number of required C(ϕ) gates depending on
the value of ep(C(ϕ)).

V. CONCLUSION

We generalized the model of passive fermionic linear
optics by studying anyonic systems defined by deforma-
tions of fermionic anticommutation relations. We have taken
quadratic, number-preserving Hamiltonians as the analog of
fermionic linear-optical dynamics and solved the generated
dynamics exactly. We showed how the difference to fermionic
dynamics is due to a one-dimensional analog of the Aharonov-
Bohm effect, which is intimately related to the computational
power of the model we consider and also gives a simple
interpretation to a previously known effect [50].

We adapted a scheme for quantum computing with nearest-
and next-nearest-neighbor spin- 1

2 interactions to systems of
identical particles, showing that the analogous interactions in
our model allow for universal quantum computation when the
particles have fractional exchange statistics. This happens for
any value of the statistical deformation parameter ϕ �= 0, that
is, as long as our anyons differ from usual fermions. Given
that free fermions can be simulated efficiently, this means the
transition in computational power is abrupt, as is common to
extensions of FLO [43,44], going from classically simulable
to quantum universal for any ϕ �= 0.

This raises the question of whether such interactions aris-
ing from statistics alone can lead to a computational advan-
tage in other settings. For example, it would be interesting
to study deformed bosonic commutation relations. This is
likely to be a harder problem than the fermionic one due
to the absence of an exclusion principle, which simplifies
the dynamical equations. Deformed bosonic relations would
result in a generalization of the boson sampling model. Boson
sampling is known to be hard to simulate classically (given
some complexity-theoretic assumptions), but is not known to
be universal for quantum computation. We leave the exact
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dynamics of two-body hopping Hamiltonians for anyonic
bosons as an interesting open problem.

The fact that our fermionic anyon system allows for univer-
sal quantum computation is a statement about the complexity
of the model’s dynamics. As we have proven, the model
is universal for quantum computation—no efficient classical
simulation scheme is believed to exist for it. Also, no quantum
computational device which is not universal will be able
to efficiently simulate fermionic anyons. Our results show
that studying the computational capacity of general anyonic
models may yield insights on each model’s complexity.
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APPENDIX: EXPLICIT EXPRESSION OF C(ϕ)

In this Appendix we calculate the two-qubit unitary im-
plemented by the anyonic linear-optical circuit of Fig. 2. For
this, we need to calculate the matrix elements of the various
beam splitters in the two-particle basis and see if our protocol
preserves the encoding of qubits. Given the four modes of
Fig. 2, the two-particle basis is given by the states

|1, 1, 0, 0〉, |1, 0, 1, 0〉, |1, 0, 0, 1〉, (A1a)

|0, 1, 1, 0〉, |0, 1, 0, 1〉, |0, 0, 1, 1〉. (A1b)

There are three kinds of beam splitters in the circuit,
BS12, BS23, and BS13, where the first two appear more then
once, with two different angles (defining the beam-splitting
ratios). First let us calculate the matrix representation of the
general beam splitter BS12(θ ) in our two-particle basis. The
idea is to use the representation in terms of creation operators
and use the solutions to the equations of motion to find the
matrix elements. For brevity, we will do the calculation for
the more involved basis states, as the others will be similar in
form and easier to calculate.

The first case will be a†
1a†

2|0A〉,
BS12(θ )a†

1a†
2|0A〉 = [BS12(θ )a†

1BS12(−θ )]BS12(θ )a†
2|0A〉,

(A2)

where BS12(θ )|0A〉 = |0A〉. We can now use the solutions to
the equations of motion to obtain

[BS12(θ )a†
1BS12(−θ )]BS12(θ )a†

2|0A〉
= (

cos θa†
1+i sin θa†

2W (ϕ)
1

)(
cos θa†

2+i sin θa†
1W †(ϕ)

2

)|0A〉.
(A3)

Using that [W (ϕ)
1 , a†

2] = 0 we can rewrite this as

cos2 θa†
1a†

2|0A〉 − sin2 θa†
2W

(ϕ)
1 a†

1|0A〉. (A4)

In the next step, we use the identity NA
1 a†

1 = a†
1 to obtain

cos2 θa†
1a†

2|0A〉 − sin2 θa†
2

[
1 − (1 − eiϕ )NA

1

]
a†

1|0A〉
= cos2 θa†

1a†
2|0A〉 − eiϕ sin2 θa†

2a†
1|0A〉. (A5)

Finally, using the commutation relation a†
1a†

2 = −eiϕa†
2a†

1, we
conclude that

BS12(θ )a†
1a†

2|0A〉
= cos2 θa†

1a†
2|0A〉 − eiϕ sin2 θa†

2a†
1|0A〉

= (cos2 θ + sin2 θ )a†
1a†

2|0A〉 = a†
1a†

2|0A〉. (A6)

So the matrix element 〈1, 1, 0, 0|BS12(θ )|1, 1, 0, 0〉 is 1. Simi-
larly, 〈0, 0, 1, 1|BS12(θ )|0, 0, 1, 1〉 is also 1, because the beam
splitter has no action on these modes. Now we illustrate one
more case and then give the expression for BS12(θ ). Consider
the state a†

1a†
3|0A〉. We can proceed in pretty much the same

way we did before and obtain

BS12(θ )a†
1a†

3|0A〉
= [BS12(θ )a†

1BS12(−θ )]BS12(θ )a†
3|0A〉

= [BS12(θ )a†
1BS12(−θ )]a†

3|0A〉
= (

cos θa†
1 + i sin θa†

2W
(ϕ)

1

)
a†

3|0A〉
= cos θa†

1a†
3|0A〉 + i sin θa†

2a†
3|0A〉, (A7)

which tells us that 〈1, 0, 1, 0|BS12(θ )|1, 0, 1, 0〉 = cos θ and
〈0, 1, 1, 0|BS12(θ )|1, 0, 1, 0〉 = i sin θ . Doing the calculation
of the other matrix elements, we obtain

[BS12(ϕ)] =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 cos θ 0 i sin θ 0 0
0 0 cos θ 0 i sin θ 0
0 i sin θ 0 cos θ 0 0
0 0 i sin θ 0 cos θ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

(A8)

The matrix for BS23(θ ) is very similar, since most of the
calculations of matrix are elements repeated with different
indices. The matrix is

[BS23(θ )] =

⎡
⎢⎢⎢⎢⎢⎣

cos θ i sin θ 0 0 0 0
i sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 cos θ i sin θ

0 0 0 0 i sin θ cos θ

⎤
⎥⎥⎥⎥⎥⎦

.

(A9)

The remaining matrix is the one which marks a depar-
ture between fermions and anyons, as the 1D analog of
the Aharonov-Bohm phase appears explicitly. To calculate
it we must use the result of example in Sec. III B for the
matrix elements 〈1100|BS13(θ )|1100〉, 〈0110|BS13(θ )|1100〉,
〈1100|BS13(θ )|0110〉, and 〈0110|BS13(θ )|0110〉. The other
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matrix elements are trivial. The result of this calculation is

[BS13(θ )] =

⎡
⎢⎢⎢⎢⎢⎣

cos θ 0 0 i sin θ 0 0
0 1 0 0 0 0
0 0 cos θ 0 0 −ie−iϕ sin θ

i sin θ 0 0 cos θ 0 0
0 0 0 0 1 0
0 0 −ieiϕ sin θ 0 0 cos θ

⎤
⎥⎥⎥⎥⎥⎦

. (A10)

Now, by combining all of these results to evaluate the matrix
products indicated by the circuit (Fig. 2) we obtain the matrix

[C(ϕ)] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 e−i π

4 0 0 0 0
0 0 1−i cos ϕ√

2
0 i sin ϕ√

2
0

0 0 0 ei π
4 0 0

0 0 i sin ϕ√
2

0 1+i cos ϕ√
2

0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(A11)

To stay in the encoding defined in Sec. IV, the image of the
encoded states under the unitary must stay in the encoded

subspace, and to guarantee this we only need to show that
|1, 1, 0, 0〉 and |0, 0, 1, 1〉 are eigenstates of C(ϕ), which is
easily seen in the matrix above. In fact, C(ϕ) in the encoded
basis is

⎡
⎢⎢⎢⎣

e−i π
4 0 0 0

0 1−i cos ϕ√
2

0 i sin ϕ√
2

0 0 ei π
4 0

0 i sin ϕ√
2

0 1+i cos ϕ√
2

⎤
⎥⎥⎥⎦, (A12)

showing that C(ϕ) = Rẑ( π
2 ) ⊗ |0〉〈0| + Rn̂( π

2 ) ⊗ |1〉〈1|, with
n̂ = (− sin ϕ, 0, cos ϕ) as claimed.
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