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The study of information scrambling in many-body systems has sharpened our understanding of quantum
chaos, complexity, and gravity. Here, we extend the framework for exploring information scrambling to infinite-
dimensional continuous variable (CV) systems. Unlike their discrete variable cousins, continuous variable
systems exhibit two complementary domains of information scrambling: (i) scrambling in the phase space of
a single mode and (ii) scrambling across multiple modes of a many-body system. Moreover, for each of these
domains, we identify two distinct types of scrambling; genuine scrambling, where an initial operator localized in
phase space spreads out, and quasiscrambling, where a local ensemble of operators distorts but the overall phase
space volume remains fixed. To characterize these behaviors, we introduce a CV out-of-time-order correlation
(OTOC) function based upon displacement operators and offer a number of results regarding the CV analog for
unitary designs. Finally, we investigate operator spreading and entanglement growth in random local Gaussian
circuits; to explain the observed behavior, we propose a simple hydrodynamical model that relates the butterfly
velocity, the growth exponent, and the diffusion constant. Experimental realizations of continuous variable

scrambling as well as its characterization using CV OTOCs will be discussed.
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I. INTRODUCTION

Scrambling refers to the dynamical delocalization of quan-
tum information over an entire system’s degrees of free-
dom [1-4]. Recent developments in the study of quantum
information scrambling have led to the discovery of soluble
models of holography [5-8]; these developments have also
begun to shed light on a disparate array of fundamental ques-
tions, including black hole information problems in quantum
gravity [1-4,9-14], transport properties of non-Fermi lig-
uids [15,16], and chaotic thermalization dynamics in isolated,
many-body systems [17-22].

Prior studies of scrambling have generally focused on
discrete variable (DV) systems, where the many-body Hilbert
space is composed of a tensor product of local qubits. One
of the defining features of such DV scrambling is the notion
of operator growth, where the time evolution of an initially
simple, local operator V), yields a more complex, late-time
operator, V(t) =U T)VU(t) [4], whose decomposition is
dominated by nonlocal operator strings. A particularly pow-
erful quantitative diagnostic of operator growth is provided
by the so-called out-of-time-order correlation (OTOC) func-
tion (VT (1)WT(0)V(1)W(0)), which measures the spreading
of V(t) via another local probe operator W [23-29]. In
addition to its use on the theory front, OTOCs have also
attracted a significant amount of experimental interest and
attention [30-34].

While discrete variable OTOCs are relatively well under-
stood, both from an information-theoretic perspective and
in terms of physical interpretation, their continuous variable
(CV) cousin remains poorly explored. This is a result of
a number of intrinsic subtleties associated with CV sys-
tems, which describes systems with infinite-dimensional local
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Hilbert space, such as harmonic oscillators. For example, their
infinite-dimensional local Hilbert space leads to technical and
conceptual challenges requiring the need for short- and long-
distance cutoffs as well as ambiguities related to properly
defining the “volume” of an operator. Moreover, for CV sys-
tems, there naturally exist two distinct notions of scrambling,
namely, scrambling within the phase space of a single degree
of freedom and scrambling across the phase space of many
coupled degrees of freedom.

To this end, the broad goal of our paper is to lay out a
theoretical foundation for investigating quantum information
scrambling in CV systems [7,35-42]. This is motivated in part
by an abundance of strongly interacting, controllable physical
systems, whose microscopic degrees of freedom are continu-
ous variable; these include quantum optical systems, cavity
and circuit QED, photonic networks, and more abstractly
quantum field theories in general.

A. Analogy between DV and CV systems

Throughout our paper, we find it illuminating to frame our
results in analogy with well-known ideas from DV systems.
Here, we will begin by introducing this dictionary before
summarizing the organization of the remainder of the paper.

In an N-qudit DV system (dimension d = ¢" with g-state
qudits), it is common to diagnose scrambling by observing
how a single-qudit Pauli operator, P, evolves under unitary
time evolution, U (¢). Since the Pauli operators form a com-
plete basis, the time-evolved P(¢) can be re-expanded as

P@)= ) fIO;P()IQ, )

Qe€Pauli
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where |f[Q;P(t)]|> can be interpreted as the probability
distribution of P(¢) over Q and is normalized such that
>0 If1Q; P()]]* = 1. As mentioned, scrambling in DV sys-
tems corresponds to the fact that strongly interacting time
evolution generically leads the operator expansion in Eq. (1)
to have significant overlaps with “high-weight” Pauli oper-
ators. Here, the weight of a Pauli operator Q quantifies its
nonlocality and equals the number of qudits on which Q acts
nontrivially.

A central motif of our work is the analogy between Pauli
operators in DV systems and displacement operators in CV
systems. In a single-mode CV system (e.g., a simple harmonic
oscillator), the displacement operators (which shift a coherent
state in phase space) form a complete basis,

D(&1, &) = expli(29 — &1p)], 2)

where & and &, are (respectively) the shifts of g and p,
the canonical position and momentum quadrature operators.
More generally, an N-mode displacement operator can be
written as the tensor product of local displacements.

We propose to characterize information scrambling in CV
systems by considering the time evolution of displacement
operators, D(§,;1) = U (t)'D(&,)U (t). To understand why, let
us begin by decomposing

1
D) = — / d*NE, x1&;DE;;0ID(=E),  (3)

where x (&;,A) = Tr[AD(&)] is the Wigner characteristic func-
tion. Initially, the characteristic function x[&,;D(&,;0)] =
7N8(&, + &) is highly localized; thus, scrambling in CV
systems can be identified using the spread of x[&,; D(&,;¢)] in
phase space for generic choices of &, much like the spreading
of P(t) into high-weight Pauli operators in the DV case.

With this analogy in hand, let us now introduce the organi-
zation and summary of our results.

B. Quasi- vs genuine scrambling

In Sec. II, we introduce an important distinction between
two types of scrambling, which we term quasiscrambling and
genuine scrambling. In DV systems, both types are captured
by the growth of P(¢) into high-weight operators (i.e., large-
scale entanglement is generated). The key distinction lies
in the nature of the operator distribution as quantified by
| f[Q; P(t)])*. In particular, we refer to a system as a quasis-
crambler if the operator distribution remains localized on a
single high-weight operator and as a genuine scrambler if the
distribution is spread out over a large number of high-weight
operators. This difference in operator distribution behavior
can be unambiguously identified via OTOCs and roughly
corresponds to whether the scrambling unitary is generated
by Clifford (quasi) or non-Clifford (genuine) operators.

Having defined two classes of scrambling in DV systems,
we will find that the same distinction applies for CV systems.
In particular, we propose that CV quasiscrambling corre-
sponds to situations where the Wigner characteristic func-
tion stays localized, while genuine CV scrambling results in
the delocalization of the characteristic function. Interestingly,
in the case of CV systems, this distinction corresponds to

whether the scrambling unitary is generated by Gaussian
(quasi) or non-Gaussian (genuine) operators.

C. Operator spreading and OTOCs

In Sec. III, we develop theoretical tools to study operator
spreading in CV systems using CV OTOCs. We begin by
establishing an intuitive measure of genuine scrambling, in
terms of the volume of a time-evolved operator’s distribution
in phase space. Then, we present a Fourier transform-like
formula which relates this distribution to OTOCs of the time-
evolved operator, from which we see that individual OTOCs
can detect the distinction between genuine and quasiscram-
blers. This allows us to propose a physical observable—the
OTOC magnitude—which measures the non-Gaussianity of
the dynamics. Furthermore, we show that averages of OTOC:s,
weighted over ensembles of displacement operators, can
probe an operator’s spread in phase space with tunable short-
and long-distance cutoffs. This encompasses both operator
spreading in real space, as studied in DV systems, as well
as within a single mode. Finally, we apply our findings to
study operator growth in two examples of genuine scramblers:
time evolution via cubic phase gates and the Hellon-Heiles
potential.

D. Random Gaussian circuits

In Sec. IV, we turn our attention to quasiscrambling.
Despite the fact that quasiscramblers do not fully spread
operators (i.e., they simply map one displacement operator
to another), useful insights into genuine scrambling can be
obtained by studying the stochastic evolution of quasiscram-
blers. Indeed, recent progress [9,43—47] on the interplay be-
tween holography and quantum information theory has re-
vealed that quantum circuits composed of short-range random
Clifford unitaries can provide useful intuition for understand-
ing entanglement and operator propagation in DV many-body
systems [24-29].

This motivates us to explore local random Gaussian circuits
(Sec. IV A) as an analytically and numerically tractable toy
model of CV scrambling. We observe a number of intriguing
features. In particular, we find that such random circuits
exhibit exponential growth of displacements within each local
mode, while operators spread ballistically to distant modes. In
the former case, the observed exponential growth also leads
to other surprising consequences; for example, entanglement
in the system grows quadratically in time, in contrast to the
previously found linear growth [24]. In the latter case, we
observe that the butterfly velocity vp of the ballistic spread
depends on the local growth exponent in a similar fashion to
large-N models. To this end, we propose a simple hydrody-
namical model which relates the butterfly velocity, the growth
exponent, and the diffusion constant.

E. Unitary designs for CV systems

Building upon our exploration of random Gaussian uni-
taries (see Sec. IV A), in Sec. IV B we investigate the statis-
tical properties of ensembles of such unitaries. In particular,
we attempt to construct CV analogs of Haar randomness
and unitary designs [48]. To begin, we provide a plausible
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definition for unitary designs in CV systems. Using this defini-
tion, we find that Gaussian distributed displacement operators
asymptotically form a CV 1-design. However, we find that
Gaussian unitaries do not form an exact 2-design—consistent
with prior results on state designs [49]—but nevertheless
capture many qualitative 2-design features in the limit of
large squeezing. Finally, we provide a unique generalization
of the so-called frame potential to CV systems, enabling the
quantitative verification of designs.

F. Experimental realizations of CV scrambling

In Sec. V, we propose and analyze a concrete experimental
realization of CV scrambling in a cavity-QED architecture,
where non-Gaussian unitaries are generated via the selective
number-dependent arbitrary phase (SNAP) gate [50,51]. Next,
we present concrete protocols for the measurement of both
individual and average OTOCs in CV systems. In addition, we
also present a CV analog of a teleportation-based protocol for
verifying scrambling [10,34,52]. Interestingly, while measure-
ment uncertainties may damage the teleported quantum state,
our CV teleportation protocol can be made fault tolerant by
using the Gottesman-Kitaev-Preskill (GKP) code (when the
squeezing parameter is sufficiently large).

Finally, in Sec. VI, we conclude by offering our perspective
on a number of exciting open questions and directions. Since
many detailed calculations are relegated to the Appendixes,
we provide a short description here:

(i) Appendix A summarizes key properties of basic Gaus-
sian unitaries.

(i) In Appendix B 1, we give some details of quasis-
cramblers. In Appendix B 2, we prove a quantum analog of
Liouville’s theorem, stating that the total volume of operator
distributions is preserved under Gaussian dynamics. This
suggests that quasiscrambling corresponds to an increase in
a coarse-grained and/or projected volume, while the total
volume in the 2N-dimensional phase space is conserved.

(iii) Appendix C discusses the effect of photon loss on
OTOCs.

(iv) Appendix D is dedicated to further discussions on
CV unitary designs from the perspective of the twice-
regulated finite-temperature frame potential introduced in
Sec. IVB.

II. GENUINE AND QUASISCRAMBLING

We begin by presenting a broad overview of scrambling
in DV and CV systems. Scrambling refers to delocalization
of quantum information over the entire system under uni-
tary dynamics U () = exp(—ifH(t)dt), where H(¢) is the
Hamiltonian of the system and can in principle be time de-
pendent. In terms of operators, an initially simple operator O
evolves to a more complex operator O(¢t) = UT(1)OU (1), e.g.,
local operators become highly nonlocal [4]. In an N-qudit DV
system (d = g" with g-state qudits), it is common to diagnose
scrambling by observing how a single-qudit Pauli operator P
evolves in time. Since Pauli operators form a complete basis—
LTr(PQ") = 8pg for P,Q € Pauli and 5 Y p p,u POPT =

Tr(O)I—the time-evolved P(¢) can be expanded as

P(y= Y fIQ:POIQ, Y IfFIQGPOIF =1, (4
0

Qe€Pauli

where the second constraint results from the unitarity of U (¢).
As such, |f[Q;P(t)]|* can be interpreted as a probability
distribution over Q for each P(t).

Scrambling in DV systems corresponds to the growth of
fIQ: P(¢)] such that the quantity |f[Q;P(¢)]|> for “high-
weight” Pauli operators becomes significant. Here the weight
of a Pauli operator Q quantifies the nonlocality of Q and
equals the number of qudits on which Q acts nontrivially.
Within this correspondence, we identify two different classes
of scrambling dynamics. Time evolution U is called quasis-
crambling if the operator distribution |f[Q; P(¢)]|* remains
concentrated on only a few Paulis O even as the weight of
these Paulis grows significantly. In contrast, time-evolution U
is called genuine scrambling if |f[Q; P(¢)]|> has support on
many high-weight Pauli operators for a generic low-weight
Pauli operator P(0).

Interestingly, these two classes of scramblers are related to
Clifford and non-Clifford unitary operators. Clifford operators
are unitary operators which transform Pauli operators into
Pauli operators; UPU" € Pauli for all P € Pauli. Examples
include the Hadamard gate and the control-NOT gate. Un-
der a random Clifford operator, the time-evolved operator
P(t) becomes a high-weight ~O(N) Pauli operator. However,
by definition, the operator distribution f[Q;P(t)] remains
concentrated on a single Pauli O = P(¢); hence, it is only
quasiscrambled. On the other hand, if U is a non-Clifford
operator, e.g., a Haar random unitary, the operator distribution
becomes almost uniform,

1
FIQPOI* ~ . Q#I, (5)

I
achieving genuine scrambling.

Many previous studies in quantum information literature
recognize random Clifford unitaries as scramblers since they
delocalize operators and create nearly maximal entanglement
when applied to arbitrary product states (see Refs. [3,53]
for instance). However, Clifford operators represent only a
very restricted subset of all possible time evolutions, and one
expects that many aspects of thermalization in many-body
quantum systems require more complex unitaries to capture.
Hence, we think it is important to distinguish two classes of
scramblers. A certain plausible definition of scrambling which
distinguishes two different classes was proposed in Ref. [10]
based on late-time asymptotic behavior of OTOCs.

We now turn our attention to CV systems. A central motif
of our work will be an analogy between Pauli operators in
DV systems and displacement operators in CV systems. In a
single-mode CV system (e.g., the simple harmonic oscillator),
the displacement operator shifts a coherent state by position &,
and momentum &, in phase space. It takes the form

D(&1, &) = expli(§2g — &1p)], (6)

where g and p are the canonical position and momentum
quadrature operators. Similar to Paulis, the displacement oper-
ators of an N-mode CV system are formed as tensor products
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FIG. 1. Operator spreading in two types of CV scrambling. (a) In
genuine scrambling, an initial displacement operator time evolves
into a sum of many displacements, spread throughout phase space.
(b) In quasiscrambling, displacements may move around phase space
but remain localized.

of local displacement operators, written as

N
D) = Q) D (¢x1, £x0), (7)

k=1

where DX (&2k—1, &21) 1s the mode k single-mode displacement
operator, and & € RN is a 2N-component vector of dis-
placements. Like Paulis, displacement operators form a com-
plete operator basis, obeying Tr(D(&)D(&)) = 7Vs(E + &)
and 1/7V [ d*N& D(§)AD'(§) = Tr(A)L.

Inspired by the similarities between displacement oper-
ators and Paulis, we will characterize scrambling in CV
systems by considering the time evolution of displacement
operators, D(&,;t) = U(t)TD(gl)U(t). The completeness of
displacement operators allows the decomposition

1
D(&;t) = n_N/dZNgz x[&5; D(&151)1D(—§,), )]

where x(§;A) = Tr[AD()] is known as the Wigner char-
acteristic function. Initially, the characteristic function
x[&;D(&;0)] = 7V8(&, + &) is highly localized in phase
space; scrambling in CV systems can therefore be character-
ized by the growth of x[&,; D(&,;1)]. As in the DV systems,
we identify two distinct classes of scrambling dynamics (vi-
sualized in Fig. 1). Time evolution U (¢) is quasiscrambling
if x[&,; D(&,;t)] remains highly localized in phase space but
spreads to multiple modes. Time evolution U(t) is genuine
scrambling if x[&,; D(&,;t)] spreads significantly over phase
space for generic choices of &,.

This separation of CV scramblers can be related to a
common classification of CV unitaries into Gaussian and
non-Gaussian operators. A complete introduction to Gaus-
sian unitaries can be found in Ref. [54]; we provide a brief
overview here. We begin by condensing notation, defining the
vector of quadrature operators x = (g1, p1, .- -, qn, py)- This
allows us to concisely write an N-mode displacement operator
as D(&) = exp (ix” &), defining the block diagonal matrix
Q= @szl (_O1 (1)). The product of displacement operators is
now given by the simple addition,

D()D(&,) = e E%D(E, + &), ©)

Gaussian unitaries are generated by Hamiltonians that are
second order in the quadrature operators. One can represent a
Gaussian unitary via its action on quadrature operators, which
takes the form

UT

S,deS,d =8x+d, (10)

where the unitary is labeled by a 2N-component displacement
d and a 2N x 2N symplectic matrix S, S&S” = Q. From this,
one can show that Gaussian unitaries transform displacement
operators into other displacement operators according to

U{ [D&)Us.a = exp(id” RE)D(S '), (11)

analogous to the action of Clifford operators on Paulis in
DV systems. As such, the Wigner characteristic function of
D(&,;t) remains highly localized under time evolution by
a Gaussian unitary, and so we identify Gaussian unitaries
as quasiscramblers. Genuine scramblers correspond to non-
Gaussian unitaries, generated by Hamiltonians that are third or
higher order in the quadrature operators. This can arise from
interactions, hard boundary conditions (e.g., quantum billiard
systems), or nonlinear gates such as the single-mode cubic
phase gate [55] or the Kerr effect [56] in quantum optical
experiment.

III. OPERATOR SPREADING IN GENUINE SCRAMBLING

In this section, we develop a basic formalism to character-
ize a time-evolved operator’s distribution in phase space as a
probe of genuine CV scrambling. We begin by demonstrat-
ing that one aspect of this distribution—its volume—can be
measured in two ways: via averages of time-ordered correla-
tion (TOC) functions of (generically nonlocal) displacement
operators and via the so-called frame potential, previously
used to study the complexity and pseudorandomness of DV
unitary ensembles [57]. While the two measures are identical
at infinite temperature, they differ when regularizing by a
density matrix, which will be necessary in CV systems. To
probe finer grained aspects of operator spreading, we turn
to OTOCs, establishing a precise relation between a time-
evolved operator’s phase-space distribution and its OTOC
with displacement operators. One consequence of this relation
is a constraint on OTOC decay: Specifically, the magnitude
of the OTOC can only decay during genuine scrambling
(non-Gaussian dynamics) and is strictly 1 in quasiscrambling
(Gaussian dynamics). Further, this relation prompts us to
consider more general averages of OTOCs over ensembles
of displacement operators. We show that average OTOCs
measure a coarse-grained density of an operator’s phase space
distribution; their change in time thus characterizes a “flow”
of the distribution. To conclude, we apply these tools to study
two specific non-Gaussian Hamiltonians, an exactly solvable
cubic potential and the chaotic Henon-Heiles potential, and
show that both models lead to operator spreading and OTOC
decay.

A. Phase-space volume and the frame potential

We begin by introducing our notion of an operator’s
“phase-space volume.” We show that in DV systems one
can define such a volume for time-evolved Pauli operators
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(roughly) by counting the number of Pauli strings with
nonzero weight when expanding the operator in the Pauli
basis. This can be probed by TOCs at infinite temperature or,
equivalently, the k = 1 frame potential. In generalizing this
to CV systems, one encounters various divergences due to
the lack of an infinite-temperature limit, as the CV system’s
Hilbert space is not bounded. To regulate this, we expand
our definition of phase-space volume to be with respect to a
normalized density matrix p. In sufficiently low-temperature
regimes, this coarse-grained volume behaves qualitatively
differently from the previous volume. We demonstrate this in
multiple examples for the specific case of a thermal density
matrix with respect to the number operator Hamiltonian.

1. Defining phase-space volume for CV systems

We first introduce an operator volume in DV systems.
Consider a system of N qudits, with total Hilbert space
dimension d = ¢". As Pauli operators form a complete basis,
the time evolution of a Pauli operator P may be decomposed
as P(t) = Zeraulif[Q;P(t)]Q. The coefficients f[Q; P(t)]
coincide with the TOC of P and Q with respect to the infinite-

temperature density matrix po, = 51,

1 +
F1Q; P()] = Ci(P(1), Q(0)) = C—lTr(P(t)Q'(O)) (12)

One can show that ZQ |f1Q; P()])? = 1. This allows one to
consider the ensemble of Pauli operators E[P(t)] = {Q|Q ~
|f[Q; P(t)])?}, defined by the normalized probability distri-
bution |f [Q; P()]]>. One can now define a volume of the
ensemble E[P(t)] corresponding to the number of Q with
significant |f[Q; P(t)]|*>. This can be made rigorous using
entropies of the distribution |f[Q;P(¢)]|*>. Specifically, the
exponential of the Rényi-2 entropy

1
> ocpauii [F1Qs PO1I*
provides a good measure of such a volume. The Rényi-2

entropy of the ensemble is related to the frame potential [57],
which we find corresponds to an inverse volume:

VOI(E[P(t)]) = 25Een =

13)

- )2 2 H—Si
Fepon = EvveepintlTr(U'V)|7} = d~27%vor, (14)

where Ey yv~gip) denotes the expectation value when U, V
are sampled independently from the ensemble E[P(¢)].

In generalizing this relation to CV systems, we encounter
one of our first obstacles in working with infinite-dimensional
systems: The traces used in DV expressions, regulated by
the infinite-temperature density matrix, are often infinite in
the CV context, where infinite temperature is not well de-
fined. For instance, when trying to characterize the volume
of a time-evolved displacement operator D(&;;¢), the analog
of f[Q; P(t)] would naturally be the characteristic function
x1& D(&,;1)]. However, the volume of the characteristic func-
tion is not well defined, as |x [&; D(&,;¢)]|* has infinite norm
[for example, at time z = 0, x ~ §(& — &,)]

To remedy such divergences, it is natural to consider TOCs
at a finite temperature,

Ci(&, &;1), = Tr[pD(&;1)D(§,)]. (15)

Expressed in terms of the operators’ characteristic functions,
the TOC can be viewed as x [&; D(&,;¢)] smeared over a width
in phase space determined by x[&; o],

Ci(&,&1),
1 o
= N—NdeNE x[EDE; )] e® %y (6 —&;p). (16)

For the sake of illustration, throughout the paper we will
frequently take p to be the thermal density matrix for the
number operator Hamiltonian, p,, ~ ®sz1 e‘ﬂ"m“i”k, which
we refer to as the “thermal density matr1x for convenience.
Here, the effective temperature ,3 =In(1 + )" is pro-
portional to the mean photon number per mode ng in the
CV limit ny, > 1. The characteristic function of the thermal
density matrix has a width ~1/ny, in phase space, x (&; O, ) =
exp[—(nm + 1/2)|¢ [?]. In the high-temperature limit (n4 >
1), this width becomes small, and C;(,, §,;¢), becomes
proportional to the unregulated y [&,; D(&,;1)].

Unlike their infinite-temperature counterparts, finite-
temperature TOCs possess a well-defined norm N, =
[ d&|Ci(&,, &5:1),1* = N Tr(p?). This allows us to proceed
similarly to the DV case and consider the ensemble of dis-
placement operators & = {D(&,)|&, ~ IC1(€,. £:1),12/N,,).
The volume of such an ensemble can be defined similarly to
Eq. (13),

e (Y N; 17
vol( m)—(@) [dEICI(&, &)l a7

In Appendix B2, we use this definition to provide quantum
analogs of Liouville’s theorem and the Kolmogorov-Sinai
entropy for Gaussian time evolution.

2. Phase-space volume and the CV frame potential

While the above satisfactorily defines the phase-space
volume of CV operators, we find it interesting to also gen-
eralize Eq. (14), which provides a powerful interpretation
of the frame potential as a phase-space volume. To do so,
we again require regulation by a density matrix p, which
we insert into the frame potential in two distinct ways,
providing phase-space interpretations for each. Further dis-
cussion of CV frame potentials is contained in Sec. IV B 3,
where they are used to verify unitary designs in CV
systems.

To begin, we consider the following finite-temperature
frame potential [57],

Fe(p)

For the thermal density matrix, this frame potential measures
the inverse volume of an ensemble smeared over distances
1/4/Mw, in units of 1 /ntNh. To see this, consider an individ-
ual term |Tr(p,, U'V)|? for displacements U = D(&,), V =
D(&,). One computes

=Eyy~e{ITr(p UTV)?}. (18)

[T (5, D& D)

. _ < 1
— e*(2nm+1)|§1*§2|2 ~ 1 if |§1 §2| ~ \/{1?’ (19)
0 & -&IZ Z
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FIG. 2. The finite temperature frame potential measures the vol-
ume of unitary ensembles (black dots) coarse grained over a distance
1/./ny in phase space (red), where ny, is the number of photons in the
thermal density matrix (proportional to the temperature). This leads
to different behavior for (a) sparsely distributed ensembles (high
temperature) vs (b) densely distributed ensembles (low temperature).

Hence, the thermal frame potential treats two sampled
displacements U, V as identical if they are within dis-
tance $1/./nm of each other. In the infinite-temperature

limit, this distance goes to zero, and one finds a
correspondence to our previous definition of volume
Eq' (17),

lim vol(€: 7,) = 1 ( 1 )N 1 0)

im vol(&; Py, ) = lim ( — ) ——.

Ngh—> 00 h gy —> 00 8nth fé‘l) (:bnm)

To further illustrate the connection between the finite-
temperature frame potential and volume, we examine two
example distributions, or ensembles, of unitaries, as de-
picted in Fig. 2. First, consider a discrete ensemble of M
displacement operators distributed sparsely in phase space
compared to 1/,/ny, shown in Fig. 2(a). Here, the only
nonzero contributions to the frame potential come from
U =V. This occurs a fraction 1/M of the time, giving
Fe =~ 1/M—intuitively, the smeared ensemble has a vol-
ume (1/./ny)*N per operator, which gives a volume M
in the units (1/n4)Y. Second, consider an ensemble of
displacement operators densely distributed with density w
over some volume V. Here, each displacement U receives
significant contributions from all operators within a 2N-
dimensional ball of radius 1/./ng about U. There are

~w(l/, /ng)™ such operators for each U, giving an inverse
volume

2N N
Folpu) ~ 2L ~(i) e

Vw Nth v ’

which is the inverse original volume, in the prescribed units.
These two limits, sparsely and densely distributed, may equiv-
alently be thought of as high- and low-temperature limits, as
the length scale 1/,/ny, by which the limits were defined is set
by the inverse temperature.

The volume interpretation of the frame potential also ex-
tends to continuous ensembles of displacement operators. We
present this for the particular case of a Gaussian-distributed
ensemble,

Dg,v = {DE&)|& ~ P5(&:&. V)], (22)

FIG. 3. Schematic of the volume measured by the frame potential
for two continuous ensembles of displacement operators (grey).
(a) For an ensemble with large widths A, A, > 1/ny, it reproduces
the traditional volume +/A;A,. (b) If the ensemble is narrow in some
quadrature, say, A; < 1/ny, it instead measures the coarse-grained
volume /X, /ny. Here, ny is the number of photons in the thermal
density matrix.

where Pg (-; &y, V) is a Gaussian distribution with mean &, €
R?M and covariance matrix V € R?M x R*N. The frame poten-
tial can be computed, giving

2N

1
5 ) = . @3
‘FDEO-V (p R ) g \/1 + 4)»@(27’lth +1) @9

where the eigenvalues A, of V give the squared width of
the Gaussian along the fth eigenvector. An intuitive notion
of volume would be the product of these widths, +/detV =
IL A/A¢. At high temperatures [ngAe > 1VE, see Fig. 3(a)],
we indeed find

; 1\Y 1

At lower temperatures, this correspondence does not hold.
Specifically, if ng, < 1/A, for some £ [shown Fig. 3(b)], their
contributions to the volume saturate to O(1 /nﬁ’]) constants.
As before, this is related to the smearing due to the finite
phase-space resolution of the low-temperature thermal density
matrix.

An alternative route to characterizing the volume of a CV
operator lies in a twice-regularized finite-temperature frame
potential, which we introduce in detail in Sec. IVB3 and
Appendix D. In the previous measure of volume, we inserted
p two separate times, once in the TOC and once in the
finite-temperature frame potential. Here, we instead consider
the ensemble of the unnormalized characteristic function, £ =
{D(&,)\&, ~ |x[& D(&,;1)]|*}, and measure its volume using
the twice-regularized frame potential

T(p) ~ Eyy~e(ITi(/oUT /P VIPL.  (25)

Intuitively, this frame potential both smears displacements
over the width of x[&, p], and weights operators by their
preservation of the low-energy subspace p, as detected by
Tr(/pU"/pU). For the thermal density matrix p,,, one
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= r 41 N .
computes /P, = (%) Py, With (nf + 1)? /n{ﬁ = (nm +
1)/ng, which gives

e[ V50 D' (61)V/Bu D(&2)]
_ [ (1t + 1 }
L+ D@+ 1)

 ex &P+ &P ox & — &Py + 1)
Pl 200, +1) %P Qn, + 1) '

(26)

As expected, this contribution is significant for nearby |&§; —
& | < 1/ /na displacements that approximately preserve the
subspace of Sny, photons, |1, 1&,| < /.

B. Operator spreading and OTOCs

As we have seen, an operators’ phase-space distribution
can be characterized by TOCs. However, such a characteri-
zation is not always convenient or well matched to physical
observables. For instance, once the phase-space volume of
an operator becomes large, its characterization will require
the measurement of a number of TOCs comparable to the
dimension of the relevant many-body Hilbert space, many of
which will involve highly nonlocal operators.

This motivates us to turn our attention to OTOCs. In ther-
malizing many-body systems, the decay of OTOCs detects the
spread of local operators in real space [6,8,9,24-29,43-47].
In few-body CV systems, OTOCs have also found use due to
their correspondence with diagnostics of classical chaos [37].

In contrast to previous work on OTOCs in CV systems,
we focus on OTOC:s of displacement operators. We begin by
establishing a precise Fourier transform-like relation between
these OTOCs and operator distributions in phase space. We
find that Gaussian and non-Gaussian unitaries, previously
distinguished by their ability to spread operators in phase
space, also have starkly different behavior on OTOCs. Gaus-
sian time evolution cannot cause the OTOC magnitude to
decay and can only change the OTOC’s phase—the decay of
OTOC:s thus serves as an indicator of non-Gaussian time evo-
lution. Extending the relation between OTOCs and operator
spreading, we show that the OTOC, when averaged over an
ensemble of displacement operators, measures a time-evolved
operator’s support in a ball, of designated width and center,
in phase space. This can probe operator spreading both in
real space, by averaging over local displacement operators, as
well as within the Hilbert space of a single mode, by varying
the average displacement of the ensemble. Later, in Sec. V,
we will discuss measurement schemes for both OTOCs and
average OTOCs, showing that both are efficiently measurable
using only Gaussian operations.

1. OTOC:s and operator spreading

We begin by deriving an explicit relation between an
operator’s distribution in phase space and OTOCs. Again, it
is helpful to first consider DV systems. OTOCs at infinite
temperature are defined as

1 .
Co(P(t), R(0)) = gTr[PT(nR‘ (OPHORO)].  (27)

Expanding P(r) = ZQ f1O; P(1)]10, we have

C(PO).RO) = Y IfIQ:POIPCxQ.R).  (28)

Qe€Pauli

Since Pauli operators commute up to a phase, QR = e?2xQR,
the OTOC of two Paulis C»(Q, R) = LTr(Q'RTOR) is an
overall phase. This allows the following the inverse transfor-
mation,

1
= 2 G RGR, Q) = 5o, (29)
RePauli

which can be proven by using the orthogonality of the phase-
space point operators [58]. Applying this to Egs. (28), we have

1
FIQPOIP = Y Ca(P().RONCAR. Q). (30)

R(0)ePauli

Thus, the probability distribution |f[Q; P(t)] |> can be ob-
tained from OTOC:S by a transformation similar to the discrete
Fourier transform. A relation akin to this one was previously
derived in Ref. [57].

In analogy to the DV case, we begin by introducing the CV
OTOC with respect to displacement operators,

Ca2(81,8251)p = Tr[pDT(gl;f)DT(Ez)D@l;f)D(Ez)]' (31

By using Eq. (8), this OTOC can be written in terms of the
characteristic function x [&; D(&,;1)] as

1 ; —2i(k,— T Qg
Ca(&1. 82:0)p = ﬁ/dZN‘;‘dZNge 2i(6,—8/2)" 28

x x*[&:DE ;0 x(E— & p)x[E:DE ;)]
(32)

similar to Eqgs. (28), but with the characteristic function
x(&; p) of p now acting as a transformation kernel. For
the thermal density matrix in the infinite-temperature limit,
one has x (& — &'; Py, ) x 8(§ — &) and achieves Fourier-like
relations between TOCs and the OTOC:

Co(E1, €231), / ANEICI(E,, E1), P (33)

IC1(&1, &30), 1> / dNECH (&, E1),8 % (34)

analogous to Eqgs. (28) and (30). At finite temperature, the
second of these becomes

/ PV, Bk b))

— / dZNg eiggszg’
X x*[&DE;Dx(E—E;p)x[E:DE;D]. (35)

For the thermal density matrix, this implies that the Fourier
transform of OTOCs addresses probability distributions

i idth ~—
coarse grained over a width L

We further illustrate this relation between OTOCs and
operator spreading with a brief example. Consider an op-
erator that spreads to have width V in phase space,
x[&D(&;t)] ~ exp[|€ — & |%/(2V)]. This leads to an OTOC
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Ca(&,, &551), ~ exp(—V|&,|%), where a larger phase-space
width implies greater decay of the OTOC.

2. Average OTOCs

We have seen that the decay of OTOCs detects the increase
in operator volume characteristic of genuine scrambling. In
this section, we demonstrate that OTOCs can also probe finer
grained aspects of operator spreading. Specifically, we show
that averages of OTOCs over ensembles of displacement
operators measure a coarse-grained distribution of a time-
evolved operator in phase space. We begin by reviewing the
use of average OTOCs to characterize real-space operator
spreading in DV systems. Following this, we turn to the
simplest example of a CV average OTOC, which detects the
amount that an operator has spread outside a ball of some
radius about the identity. We then generalize this and show
that the center of the ball, as well as its widths in every di-
rection of phase space, can be tuned by varying the ensemble
over which the OTOC is averaged. This heuristic geometrical
picture suggests a hydrodynamical interpretation of operator
spreading, where changes of OTOCs in time characterize a
flow of the operator’s distribution through the surfaces of these
balls. In Sec. IV A, we develop such a description for random
Gaussian circuits.

In DV systems, it is well known that averaging the OTOC
over ensembles of Pauli operators can detect operator spread-
ing in real space. For example, consider the probability that an
operator P(t) has nontrivial support on the jth qudit,

Wi= > IfI0: PO, (36)
QePauli : Q|;#I

where Q|; represents the Pauli operator content at jth qudit.
This can be rewritten in terms of OTOCs as [9]

1

RePauli : R=I®---I®R;®I---QI

G(P@),R), (37)

where R are single-qubit Pauli operators acting on the jth
qubit. This shows that the generic smallness of OTOCs,
namely those averaged over single-qudit Pauli operator, im-
plies higher weights in the operator spreading of P(t).

In CV systems, averaging the OTOC over ensembles of
displacement operators can probe operator spreading not only
in real space but also phase space. We define the average
OTOC over an ensemble £ of displacement operators as

Co(D(151), €), = Eyg [CD(E;51), V), ). (38)

There are two important regularizations in this OTOC to keep
in mind: the finite extent of ensemble £ and the density matrix
p. To gain insight on their effects, we begin with a fully
symmetric Gaussian ensemble of displacements,

D, = {D(#)|§ ~ P§(&n) = exp(—|&[*/n)/(xn)V}.  (39)

To understand the effect of the ensemble size n, consider
the average OTOC for an unspread displacement operator
D(&,;t) = D(&). One finds

C2(D(§), D,), = exp(—nl&|*), (40)

which is small unless |&] < 1/4/n. This suggests that, for an
arbitrary D(&,;¢) with characteristic function x[&; D(&,;1)],
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FIG. 4. The average OTOC measures the extent that an operator
(gray) has spread outside a ball of distance 1/4/n (black) in phase
space, after coarse graining over scales 1/,/ny (red). Here n is the
width of the ensemble that the OTOC is averaged over, and ny, is the
number of photons in the thermal density matrix.

significant contributions to the OTOC arise only from regions
|&] < 1/4/n. This is confirmed by an explicit calculation of
the average OTOC,

C(DE;30), ),

1 T
= v | dEdNE exp(—nlget

X x*[&;DE;DIx[E — & plx[&DE; D], (41)

where contributions are damped by the same exponential
factor exp (—n|&|?). On the other hand, the finite phase-space
resolution of p (i.e., the width of x[§ — &; p]) introduces mix-
ing between x*[£'; D(&;1)] and x[&; D(&,;1)], which serves
to coarse grain the operator’s phase-space distribution on a
scale set by p. For a thermal state p,,, this occurs for |§ —
| < 1/, /ng. Combining the two regularizations (Fig. 4), we
see that the decay of the average OTOC probes the extent
that the operator distribution, coarse grained by p, is spread
outside a ball of radius ~1/4/n about the identity (§ = 0).
Intuitively, one likely wants to set the coarse graining to be
on a scale smaller than the ball radius, 1/,/nn < 1/4/n.

From the analysis above, we see a clear distinction be-
tween volume characterization by the OTOC and the frame
potential. Namely, the frame potential measures the overall
volume of the coarse-grained operator spreading, whereas the
average OTOC measures the extent to which the operator
has spread outside the ball of radius 1/./n. Broadly, this
implies that the average OTOC decay earns contributions
only from operators with large displacements (compared to
1/4/n). This feature is intuitively favorable for characterizing
scrambling and operator growth in CV systems because larger
displacement operators are more complex, requiring larger
energy to implement.

One can also consider the average OTOC with respect to
more generic Gaussian distributions D¢, y defined in Eq. (22).
These detect the portion of a coarse-grained operator’s distri-
bution within a distorted ball of width(s) determined by V!
about a center &,. As such, in principle, the average OTOC can
measure a coarse-grained local probability density anywhere
in the phase space with tunable short-distance (~1/,/ng) and
long-distance (~1/4/n) cutoffs. Such measures include prob-
ing operator spreading in real space, by choosing the widths
of V to be large for modes inside some spatial region and
small otherwise. Finally, we note that our focus on Gaussian
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ensembles is not only analytically convenient; in Sec. V, we
show that such average OTOCs are naturally measured in
quantum optical experiments.

3. Measuring non-Gaussianity with OTOCs

We have seen that Gaussian and non-Gaussian dynamics
have different abilities to spread operators in phase space,
termed genuine and quasiscrambling. Separately, we showed
that operators’ phase-space distributions are related to OTOCs
via Eq. (32) [with Egs. (33) and (34) as limiting cases]. Here
we complete this triangle of relations, showing that decay of
the OTOC magnitude measures non-Gaussianity and operator
spreading.

Once again, we begin by constructing a measure of non-
Cliffordness for DV time evolution. Using the commutation
PQ = €/**¢ QP of Pauli operators, one can show that OTOCs
with respect to Paulis satisfy (P # I)

|C2(P(¢),R)| =1, VR e Pauli & U is Clifford,
<1, 3R € Pauli & U is non-Clifford. (42)

Hence, the decay of the amplitude of OTOCs is sensitive
to non-Cliffordness of U. This is another way to see why
Clifford unitaries should not be called genuine scramblers.
This prompts us to consider the sum of OTOC amplitudes as
a faithful measure of non-Cliffordness:

1

M = - 30 1CP@), BIP
P,RePauli
1
=2 2 lePolt
PePauli
1
=5 > volEPn (43)
PePauli

where decay of MPV from 1 indicates non-Clifford behavior
and where we use Egs. (13) to relate MP" to the phase-
space volume of time-evolved Pauli operators. This provides
an explicit relation among OTOCsS, operator spreadings, and
non-Cliffordness.

Analogous relations can be derived for CV systems. Us-
ing the commutation D(&,)D(£,) = e~ 2 D(&,)D(&, ), the
OTOC under Gaussian time evolution can be computed ex-
actly, giving the overall phase C2(§,, &,;1), = e 2878 2%
with magnitude 1. One can show that (§; # 0 and p full rank)

IC2(&1, &5:1),| = 1, V&, & U is Gaussian. (44)
< 1, 3§, & U is non-Gaussian. (45)

This suggests the following measure of non-Gaussianity,
MY = Eg g, 401021 E230), (46)

with respect to some ensembles of displacement operators
&1, &, where decay of M from 1 indicates non-Gaussian
behavior. In Sec. V, we present a measurement protocol of
this quantity. Interestingly, our proposed quantity MPV is
closely related to a recent work on the stabilizer test by Gross
et al. [59]; it is an interesting future problem to relate M to
an analogous Gaussianity test.

C. Examples of genuine scramblers

Having established a foundation for characterizing scram-
bling and operator spreading in CV systems, we now apply
these tools to two specific examples of non-Gaussian Hamil-
tonians: an exactly solvable cubic phase gate in Sec. IIIC 1
and the quantum chaotic Henon-Heiles potential [60-62] in
Sec. III C2. We show that both lead to operator spreading in
phase space and the decay of OTOCs. Each Hamiltonian is of
the form

N
HNG = pr/Zm + V(Q1, e
k=1

24N ) (47)

where the non-Gaussianity arises from a nonlinear potential
V(qi,...,qn). Such Hamiltonians encompass a variety of
many-body phases, as well as the few-mode billiard systems
often studied in quantum chaos. In addition to the examples
given here, in Sec. V we describe genuine scrambling oper-
ations suitable to be realized in present-day quantum optics
experiment.

1. Cubic phase gate

We begin with an analytically tractable toy model: a single-
mode Hamiltonian with a cubic potential V = ¢*/3!, in the
m — oo limit [55]. Here, we can solve exactly for the time-
evolved displacement operator D(«;t). We use the Hadamard
lemma

'Be™ = B+[A,B] + %[A, [A,Bll+---=B (48

and its straightforward extension e*f(B)e ™ = f(B), for
functions f(B) with a Taylor expansion. Taking ¢! = U (¢) =
exp (—iytq3/3!) and f(B) = D(«;t = 0), we find

D(a;t) = expli(Im(x)g — Re(a)p + the(oc)qz)]. 49)

To compute the OTOC, we apply the Hadamard lemma again,
obtaining

D¥(a:)D(B)D(et:1)
— ei(—Im(ﬁ)q-i—Re(ﬁ)lH-ZIm(a'ﬂ)+2WR6(0!)R6(19)q)’ (50)
which gives the OTOC
Cale, B1), = exp(i) x (2iytRe(a)Re(B); p). (51
Here, the phase factor is given by
0 = 2Im(a*B) + 2ytRe()Re(B)Re(a + B), (52)

and x (Re(&¢) + iIm(&); p) is the characteristic function of p.
For a thermal state p,, , we have

C2 (a’ ,8, t),b,,lh — eie672(2nm+1)(Re(cx)Re(ﬁ)t)Zyz ’ (53)

indicating a Gaussian decay of the OTOC in time. From this,
the operator’s phase-space distribution (diagnosed by TOCs)
can be calculated via Eq. (34). For large ng,, we have

|C1(0l, ,3,;1)17,,[]‘
~ §(Re(a) — Re(p")

[(Im(B') — Im(a) + ytRe(a)*]?
22ng + 1)y?Re(a)?

| 2

X exp |:— :| (&Z))
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FIG. 5. Time evolution under the Henon-Heiles potential. (a) The
initial (+ = 0) wave function is localized in the red circle with
momentum shown by the red arrow. Coloring displays the prob-
ability density of the final state (+ = 40z.), with blue indicat-
ing zero probability. Black dashed lines indicate contours V =
2Ve, Ve, Ve /2 of the potential, and time is measured in units of
t. = rc/+/2Ve/m. (b) The OTOC amplitude |C3""(«r, B31),,,),,| for
a two-mode coherent state y; = 0.15r¢ + i5/7Vc/40 cos(10°), y, =
ix/TVe /40 sin(10°) and displacement operators o = (1 —i)/4, 8 =
(14 1i)/4 on modes v, w € {1, 2}. The OTOC decay for a different
coherent state y; = 0.125r¢ + i0.3754/Ve c0s(20°), y» = 0.125r¢ +
i0.3754/V¢ sin(20°) and displacements « = (1 —i)/2, 8 = (0.4 +
0.37) exhibits similar behavior (not shown). In contrast, the OTOC
amplitude under Gaussian dynamics does not decay (blue).

We see that the imaginary part of D(«;t) spreads as a Gaus-
sian in phase space, while the real part does not spread (a
consequence of the simplicity of our Hamiltonian, which
commutes with g). The width of the operator distribution
increases linearly in ¢, according to

IIm(B")] >~ v2(2n4 + DIRe()lty. (55)

2. Henon-Heiles potentials

The previous example of a genuine scrambler was inte-
grable, to enable analytic treatment. To probe operator spread-
ing in a nonintegrable system, we consider the two-mode
Henon-Heiles potential

Vg, ) =U(q; +63)/2+ Maia2 — 43/3).  (56)

which has a long history of study in both quantum and
classical chaos [60-62]. We choose this potential partially
with an eye on experiment: Hamiltonians that are low-order
polynomials in ¢, p are likely easier to realize in quantum
optics experiment than those with hard cutoffs, such as billiard
systems. This potential has a local minimum at the origin, and
three saddle points at distance rc = U/A and energies V¢ =
U3 /6A? [see Fig. 5(a)]. The classical orbits are chaotic for en-
ergies above V¢ /2 [63]. In the quantum system, Refs. [61,62]
showed that initially local quantum states spread out in phase
space, eventually approaching an equilibrium distribution.
We numerically study the Henon-Heiles potential with
parameters m = 1/2,U = 1, x = 0.025. In agreement with
previous works [61,62], we observe that an initial wave
function localized in phase space spreads out over the entire
classically allowed spatial region V < V¢ [Fig. 5(a)]. To study
operator spreading, we numerically compute the OTOC for
pure coherent states, p = |y) (p|. In practice, we expect such

OTOC:s to replicate much of the behavior of OTOCs with
respect to the thermal density matrix, as, intuitively, all in-
formation about initial states other than their energy will be
forgotten at late times due to the chaotic dynamics. Moreover,
since the thermal state is a mixture of coherent states, p,, ~

[ dy* e Pwl?’ |y (p|, thermal OTOCs can be obtained ex-
actly from an average over coherent-state OTOCs. As shown
in Fig. 5(b), the OTOC for a coherent state with energy ~V¢
quickly decays on a timescale ~t, = r¢//2Vc/m, roughly
the time required to move from the origin to a saddle point
for the classical Hamiltonian. To verify the generic nature
of this decay, we computed the OTOC for a different initial
state of similar energy, with respect to different displacement
operators, and observe similar behavior. Finally, as a coun-
terpoint, we also compute the same OTOCs for a Gaussian
potential, V(qy, g2) = U (q% + q%) /2. As expected, the OTOC
amplitude remains unity, indicating no genuine scrambling.

IV. OPERATOR DISTRIBUTIONS IN QUASISCRAMBLING

In this section, we attempt to learn more about genuine
scrambling dynamics by studying guasiscrambling systems.
Although we were able to exactly numerically simulate gen-
uine scrambling Hamiltonians in Sec. I[II C, we were limited
to few-mode Hamiltonians due to the exponential complexity
of a many-mode Hilbert space. In contrast, quasiscrambling
(Gaussian) time evolution can be efficiently simulated—with
N modes, one only needs to keep track of the 2N x 2N
symplectic matrix S.

It is initially surprising that quasiscrambling can teach us
anything about general scrambling systems, and we begin
Sec. IV A by briefly elaborating on the sense in which qua-
siscrambling unitaries are, and are not, capable of scrambling.
Following this, we explore random circuits of Gaussian uni-
taries on both single (Sec. IVA 1) and many (Sec. IVA?2)
mode systems. Unlike DV random circuits [24-29,43,44],
we find that the accessible single-mode CV Hilbert space
grows exponentially in time, related to a tunable parameter,
the squeezing, of the Gaussian operation. This in turn leads a
squeezing-dependent ballistic spreading of operators in many-
mode circuits, as well as an unusual quadratic growth of
entanglement entropy. To theoretically capture these results,
we introduce a hydrodynamical model of operator spreading
that is accurate in the low-squeezing regime.

In DV systems, the expectation that quasiscrambling ran-
dom circuits can mimic aspects of actual physical systems
is justified by the notion of unitary designs. In Sec. IV B,
we adapt the definition of unitary designs to CV systems.
We provide explicit results for CV 1-designs formed by
displacement operators and analogs of 2-designs formed by
Gaussian unitaries. CV designs necessarily involve cutting off
an ensemble of unitaries at some finite extent, which we show
can lead to ensembles that mimic design behavior on certain
subspaces of a Hilbert space, but not the entire space.

A. Random Gaussian circuits

Before addressing operator spreading in random Gaussian
circuits, we find it useful to discuss the extent that such
systems can scramble. As we have seen, quasiscrambling
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FIG. 6. Rough illustration of quasiscrambling and the quantum
Liouville’s theorem. While the global volume of an ensemble D)’ (¢)
of time-evolved displacement operators (yellow) remains fixed under
time evolution by a Gaussian unitary U (¢), the projected volume on
the mode v (measured via an average over local displacements; red)
and the coarse-grained volume (roughly, the number of boxes the
ensemble occupies) may increase.

unitaries cannot increase the volume of displacement opera-
tors in phase space. In Appendix B2, we prove a quantum
Louiville theorem that expands this nonincrease to volumes of
ensembles of displacement operators. Interestingly however,
Gaussian dynamics can squeeze such ensembles so that their
phase-space volume appears to increase after coarse graining
by a density matrix p, as depicted in Figs. 3(b) and 6.

Hints of this scrambling power were in fact already present
when we considered average OTOCs. While quasiscrambling
unitaries cannot cause any individual OTOC to decay, they can
randomize the OTOC phase; when averaging many OTOCs,
this leads to decay just as does genuine scrambling [64]. In
what follows, we will be interested in averaging over the time
evolution itself (i.e., the random circuits), but similar themes
hold.

1. Single mode: Growth of the accessible local Hilbert space

We begin by studying random Gaussian circuits on a single
mode. In DV systems, a single-qudit circuit would seem
trivial—the product of Haar random unitaries is also Haar
random, and so sequential applications of them would have no
interesting dynamics. In contrast, the set of CV Gaussian uni-
taries is unbounded, and to choose a random unitary we must
cut off this ensemble using a finite squeezing parameter. The
squeezing is not invariant under composition of Gaussians; we
will study its increase in time and this increase’s effect on the
size of the accessible Hilbert space.

Borrowing terminology from quantum optics, we decom-
pose a general N-mode Gaussian operation into a product
of passive linear optics operations and squeezing operations.
This is known as the Euler decomposition and takes the form

Us = UKUS({rk})UL' &)

The passive linear optics operations preserve photon number
and are described by symplectic orthogonal matrices K, L €
SpO(N). Single-mode squeezing operations, which increase
and decrease photon number by mixing creation and an-
nihilation operators of each mode k, are characterized by
their strengths r; and represented by the diagonal matrix

50F ---Theory
o 40} v Mean /,{
R= Ao Variance .°
E 30' ,/,
= 207 /,X
(U
0 T ! . v
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FIG. 7. (a) Increase of the mean and variance of the total
squeezing ri* for a single-mode Gaussian circuit, with individual
squeezings drawn from a uniform distribution in [0, 1/2] (other
distributions exhibit similar behavior). Each data point is calculated
from 2000 samples. At large 7', the mean and variance are equal
and close to the theoretical prediction % ZLI (rf) = (1/24)T (black
dashed line). (b) Scaled probability density function of the log-
normal distribution for ¢’7". The mean/variance ratio equals 1 (black,
dashed), 5 (blue, dotted), 10 (red), 50 (purple, thick), and 100
(orange, thick), from bottom to top.

S{re}) = @szl Diag(e’™®, e7'*). This squeezing operation
multiplies a state’s width in the g; quadratures by e¢’* and in the
pr quadratures by e~ "*. (See Appendix A for a more in-depth
introduction to Gaussian operations.)

In our single-mode Gaussian circuit, we consider a se-
quence U;, Us, ..., Ur of random Gaussian unitaries. We
take the passive linear optics operations K, L of each unitary
to be distributed uniformly according to the Haar measure,
and the squeezing strengths r; (at time step 7) to be small,
drawn from some probability distribution P(r;). We study the
growth of the total squeezing r\** of the compounded unitary
UrUr_;...U;. Averaging over angles, we find that the mean

and variance of r{?" increase as

<r¥)3r1> = (r%") + %(V%H)v (58)
var(r;f’jrl) = var(ry') + %(”%+1)~ (59)

After many time steps, this approaches a normal distribu-
tion rift ~ N (i, 0?) with equal mean and variance, u =
o? = Zszl (rtz/2) =T (rtz/2). We verify this numerically in
Fig. 7(a).

We can also track the time evolution of a displacement
operator D(«(t)) under the random Gaussian circuit. At large
squeezing, the amplitude of a typical evolved displacement
is dominated by the displacement’s component on the axis
amplified by ¢’*. From our previous results, the factor e’
obeys a log-normal distribution LN (T (rt2 /2y, T (rt2 /2)), and
so the amplitude obeys

()] ~ LN (n = T (r}/2) 1 (0)], 0* = T (r7 /2) [ (0)]?).
(60)
This resembles a constant distribution in the range

|2 (0)]e~ T /2 < ja(t)] < |a(0)|eT<rf/2> [shown in Fig. 7(b)].
The phase-space volume ~(e’"i/?)? available to the

062334-11



ZHUANG, SCHUSTER, YOSHIDA, AND YAO

PHYSICAL REVIEW A 99, 062334 (2019)

4
\

’
4

-6 -5 -4 -3-2-10 1 2 3 4 5 6

Y 4
1
1
4

FIG. 8. Schematic of the local random Gaussian circuit for 13
modes. The orange rectangles are random two-mode passive linear
optics (beamsplitters and phase shifters) and the blue squares are
random single-mode squeezers. The red dashed line shows the light
cone of mode 0.

time-evolved displacement operator increases exponentially
in time.

Squeezing’s effect on states parallels its effect on dis-
placement operators. Note that, for large squeezing, the num-
ber of photons in a state typically increases as n — €27 n
(as seen by writing n = a'a ~ ¢* + p* — ¥ ¢* + e p* ~
€2"n). Therefore, over different circuit realizations, the time-
evolved state will have some chance to be in any of the
~(eT/2)2 . states of photon number <(e”*/2)2n, and
hence our claim that the size of the Hilbert space accessible
to the system grows exponentially.

2. Many modes: Ballistic propagation

We now turn to the effect of squeezing in many-mode
random Gaussian circuits. Again owing to the Euler decom-
position of Gaussian unitaries in Eqs. (57), we construct a
general many-mode circuit by interleaving layers of single-
mode squeezing and layers of multimode passive linear optics
(i.e., beam splitters and phase shifters), as shown in Fig. 8. To
capture the behavior of locally interacting physical systems,
we take the passive linear optics operations to be nearest
neighbor (decomposable into nearest-neighbor beam splitters
and single-mode phase-shifting operations). Each of these is
described by a two-mode Gaussian unitary Uy, ,, where Ly, ,
is a random symplectic orthogonal matrix. Each time step
also includes single-mode squeezing of amplitudes r, , drawn
uniformly from the interval [0, R].

We characterize operator spreading in these circuits us-
ing the average OTOC. Specifically, we consider the time
evolution of an initial displacement D) (localized on
mode 0) under an ensemble Cy of random Gaussian circuits.
This gives rise to an ensemble of displacements D%(a;¢) =
({UTD°(«)U (@)U (t) ~ Cg}. We measure the support of
this ensemble on mode x with the OTOC

C(D%(e:1). D7), = Egpocan [ exp (=183, + &,11))]-
(61)

averaged over both DO(w; 1) and a local displacement ensem-
ble D, of width n. Per Sec. II1 B 2, decay of the average OTOC

indicates that significant portions of time-evolved displace-

ments are distributed outside the ball of radius —= about the

NG
identity on mode x.

For low squeezing R, operator spreading in the random
Gaussian circuit can be captured by a simple hydrodynamical
equation. The central object of this equation is the amplitude
squared of the operator on the mode x, f(x, ) = &, + &, ;.
To motivate the hydrodynamical description, note that, in the
absence of squeezing, the total amplitude F (1) = f dx f(x,t)
is conserved due to the orthogonality of the matrix S [see
Eq. (57)]. In this regime, random beam splitters lead to
diffusion of f. Introducing single-mode squeezing breaks
conservation of F and leads, on average, to its exponential
growth. Together, these suggest the hydrodynamical equation

& f(x, 1) =Do;f(x,1)+ cpf(x,1), (62)

where we denote the average of f over the circuit ensemble as
f(x, t) and introduce the diffusion constant D and the growth
exponent cg. Solving this equation, we find that an initially
local operator F(x,0)=38(x) spreads according to

2
Xp (_x_ + th>. (63)

- 1
fan= e 4Dt

4n Dt
From Eq. (61), the growth of Z leads to decay of the OTOC,
which becomes sizable when f ~ 1. This decay spreads bal-
listically with a wave front x/(t) = vpt, where we define the
butterfly velocity

vg = /4Dcx. (64)

Intriguingly, this relation between the butterfly velocity and
the diffusion constant closely resembles that found for a
coupled SYK chain [7,28] and weakly interacting diffusive
metal [16], if one identifies the single-mode growth exponent
cg with the Lyapunov exponent.

We verify our hydrodynamic model numerically on a sys-
tem of 2L + 1 modes, indexed by integers from [—L, L]. The
total operator amplitude » indeed grows exponentially, with a
growth exponent proportional to the squeezing cg ~ R; see
Fig. 10(a). The variance in position (x?) increases linearly
in time, consistent with diffusive behavior at D = 1/2. We
numerically extract the wave front x(¢) by finding the farthest
mode with average OTOC <0.5. The wave front spreads
ballistically with a squeezing-dependent butterfly velocity, as
shown in Figs. 9 and 10(c). For small cg, this velocity agrees
with the hydrodynamical relation Eq. (64).

At larger squeezing cg ~ 1, the butterfly velocity satu-
rates to a maximum value of 1, and our hydrodynamical
description does not apply. This maximum velocity is set
by the nearest-neighbor coupling of the circuit, and we can
capture this saturation by taking this discreteness into account.
Note that, averaged over circuit realizations, a beam splitter
between modes x and x 4 1 acts to average the values of
f on each mode: f(x,t+1)= f(x+ 1,1+ 1)=[f(x,1)+
?(x 4+ 1,1)]/2. Under this process, an initially local f will
spread as a binomial distribution. Combining with squeezing,
we predict

—_ . t 1
f(x, 1) =Bi(t,x)e™ = <)_C N L)E e, (65)
)

062334-12



SCRAMBLING AND COMPLEXITY IN PHASE SPACE

PHYSICAL REVIEW A 99, 062334 (2019)

Ti 1me

100, 0.5
50 ‘

—100 100 —100 100 —100
Mode index

FIG. 9. Average OTOC in the random Gaussian circuit, for a
thermal density matrix ng, =5, as a function of both space (x
axis) and time (in units of 10, y axis). The butterfly velocity in-
creases to its upper bound of 1 as the squeezing is increased [R =
0,0.2,0.4,0.6, 0.9, 2, from panels (a)-(f)]. Each average is obtained
from 100 samples.

From this, we can solve for the butterfly velocity using only
the approximation ¢ >> 1 [but not the further approximation
x7(t) < t, which would reproduce the Gaussian of Eq. (63)].
As shown in Fig. 10(c), this indeed more accurately captures
the squeezing dependence of the butterfly velocity [65].

In addition to operator spreading, entanglement growth is
a key diagnostic of scrambling in many-body systems. To
study it in our model, we bipartition the system at position
x and calculate the entanglement entropy S(x, t) between the
left and right subsystems as a function of time. As shown in
Fig. 11, for a system initially in the vacuum product state, we
find that the average entanglement growth across the center
cut h(t) = S(0,t) is quadratic in time ~t2, in contrast to
the linear growth characteristic of DV systems [66]. We can
understand this in terms of the exponential growth of the
accessible Hilbert space found in Sec. IV A 1. In DV system:s,
the hard cutoff of the local Hilbert space means that qudits
near the cut quickly become maximally entangled across
the cut; the linear growth ~¢ arises from a ballistic spread
of entanglement with faraway modes. In the CV case, one
still receives this ballistic factor of ¢, in addition to a factor

© |f
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FIG. 10. Hydrodynamical description of the many-mode random
Gaussian circuit. (a) The total operator amplitude F increases expo-
nentially in time, with growth exponent proportional to the squeezing
(R=0,0.1,...,0.9, from red on bottom to blue on top). (b) The
variance in position (x?) grows linearly in time, indicating diffusive
behavior. (c) These combine to give a ballistic spread of the OTOC
decay, with a squeezing-dependent butterfly velocity vg. The black
dashed curve is the hydrodynamical prediction vg = +/4Dcg, the red
dashed curve is the binomial analysis, and black dots are numerics.
Each average is obtained from 100 samples.

800

—~
-~

=
s 400

0

—100 —50 0 50 100
T

FIG. 11. The entanglement entropy S(x,?) for a random Gaus-
sian circuit with L =201 modes and squeezing R=0.2 (t =
0, 80, 160, ..., 800, 880, from bottom curve to top). The entropy
initially increases quadratically in time and then begins to saturate
to S(x, t) ~ t(L — |x]).

t ~ log,(e®") from the growth of already-entangled modes.
In a finite-size system, at some time 7 ~ L all modes will
contribute to entanglement across the cut, and we expect this
growth to saturate to a linear behavior S(x, 1) ~ (L — |x]).
This is seen in Fig. 11, although we are limited in system
size and evolution time due to the increased ill conditioning
of the state’s covariance matrix (used for efficient numerical
simulation of Gaussian evolution) under squeezing.

In addition to the average entanglement, we study its
fluctuations across circuit realizations, as measured by the

standard deviation w(r) = /[S(0, ) — h(t)]*. In DV systems,

such fluctuations are predicted to lie in the Kardar-Parisi-
Zhang (KPZ) universality class [66], scaling with time as
~t!/3 In contrast, in Fig. 12 we observe fluctuations scaling
linearly with time ~t. We suspect that this arises from a
dominance of fluctuations in squeezing over KPZ fluctuations
but postpone a full theoretical model to future work.

B. CV unitary designs

In DV systems, the utility of quasiscrambling random
circuit models is justified by an assumption that aspects of
physical systems can be modeled by local, Haar random
unitaries [47,67-71]. When applicable, this assumption has
incredible power—it can be rigorously shown that averages
over Haar random unitaries can be replicated by much simpler
unitary ensembles, known as unitary k designs. By simulating

® 60 A® 1
r / r PR 4
, Sl 4 =
S f’/ = =
= 80 I a‘ S 2 [ ‘f
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FIG. 12. (a) Average entanglement entropy A(#) across the center
cut (black dots) and a quadratic polynomial fit 0.1¢ + 0.001¢? (gray
line). (b) Fluctuation w(z) of the entanglement entropy (black dots)
and a linear polynomial fit 0.014¢ (gray line). Each point is obtained
from 1000 independent samples for R = 0.2 and L = 400. Error bars
indicate standard deviations.
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the system using the simpler k designs (or computing the
Haar averages explicitly), one encounters a rare opportunity
to study quantum chaotic behavior in an analytically and
numerically tractable setting [24-29,43,44].

In DV systems, a unitary k design is defined as distribution
of unitaries that replicates the kth moments of the Haar
ensemble [72-74],

Eelf(U, UM = Epga[ £ (U, U] (66)

for any polynomial f(U,U") of order <k in U, U'. Designs
represent a hierarchy of increasingly random behavior, which
has been tied to the complexity of unitary ensembles [57].
They can also inform our understanding of scrambling in
systems with a notion of locality: Local randomization of
the system, as diagnosed by TOC:s, is captured by 1-designs,
while entanglement generation and operator delocalization are
captured by 2-designs [57]. In DV systems, it is well known
that the set of all Pauli operators form a 1-design and Clifford
operators form a 2-design.

The extension of unitary designs to CV systems is ini-
tially unclear, as there is no Haar ensemble in an infinite-
dimensional system. Despite this, we notice that averages
over Haar unitaries can remain well defined in the CV limit.
To see this, note that the Haar expectation of f(U, U ) can
be computed power by power, which leads to an equivalent
definition of a unitary k design:

Ee[U% ® UN™] = B [U @ UH®],  (67)

where the operator U®* @ (U T)®k acts on 2k copies of the
original system. This reformulation is convenient because the
right-hand side (RHS) can be computed explicitly; it is found
to be a sum of permutation operators between the 2k system
copies, with coefficients that depend on the dimension d [57].
We use this to define a CV k design as an ensemble which
satisfies Eqs. (67) in the limit d — oo, keeping only lowest
order terms in 1/d.

In Secs. IV B 1, we use this definition to show that displace-
ment operators form a CV 1-design. Intriguingly, previous
work has indicated that Gaussian states cannot form a CV
state 2-design [49]; in Sec. IVB2, we show an analogous
result for Gaussian unitaries, arising from the need to regulate,
or cut off, CV unitary ensembles. For 1-designs, regular-
ization naturally leads to ensembles that replicate “energy-
constrained” random behavior. For 2-designs, regularization
relates to the squeezing of the Gaussian unitaries, and we find
that scrambling by Gaussian unitaries necessarily increases
the energy (defined roughly, by the choice of regularization) of
the system. Intriguingly, large-squeezing Gaussian unitaries
do exhibit some similar behavior to 2-designs in DV systems.

To verify CV designs, in Sec. IVB3 we adapt a DV
quantity which measures closeness to Haar randomness, the
frame potential, to CV unitary ensembles. We find that the DV
finite-temperature frame potential [57] has no nontrivial lower
bound for CV systems, owing to the potentially infinite size of
CV ensembles. To remedy this, we define a twice-regulated
frame potential, which only receives contributions from uni-
taries that approximately preserve a low-energy subspace.

Although higher designs remain largely unknown in both
DV [75-77] and CV systems, we note that our differentiation

between quasi- and genuine scrambling matches that between
2-designs and higher designs. Specifically, the volume of
operators, measured by either the fourth power of the TOC or
the OTOC squared, consists of four copies each of U and U".
Its Haar average, corresponding to a large phase-space volume
of unitary time-evolved operators, is therefore replicated by
(k > 4) designs.

Before proceeding, we contrast our work with previous
results on unitary designs in CV systems. Reference [78]
proposes to construct a CV 1-design by using the number
and phase operators as generators; however, as they point out,
their construction relies on a finite-dimension Hilbert space
cutoff. Another proposal, Ref. [79], defines Haar randomness
and k designs in CV systems using the isomorphism between
unitary matrices U (N) and orthogonal symplectic matrices
SpO(2N), the latter describing operations in passive linear
optics. This approach only encompasses Gaussian operations
without squeezing and is not suited to capture chaotic behav-
ior in interacting CV systems.

1. CV 1-design

We begin with a brief review of 1-designs in DV systems.
For k = 1, Egs. (67) becomes

1
EelU®U' = 7 S (68)
where the swap operator S., interchanges the copies of the
system acted on by U and UT. By rearranging indices, one
can also define 1-designs by any of the equivalent conditions:

Eg[lUAUT] = éTr(A)I, (69)
Es(Tr(UTA U] = %A, (70)
Es[U ® U*] = |EPR) (EPR], (71)

where A is an arbitrary operator on the system and |[EPR) =
\/Lg >0y 18)*, with {|i)} a complete basis of states, is an EPR
pair between two copies of the system. Moreover, as seen
from Eqs. (70), all four definitions are equivalent to requiring
that £ forms a complete operator basis. Pauli operators, as a
complete operator basis, thus form a DV 1-design.

The equivalence of 1-designs and complete operator bases
immediately suggests a uniform ensemble of displacement
operators as a candidate CV 1-design. Indeed, displacement
operators satisfy similar relations

N
(%) / d*NeD(&) @ DT (&) = S, (72)

N
(%) /dZN;:D(g)ADT(g) = Tr(A)I. (73)

However, this ensemble is not normalized, because of the in-
finite volume of phase space. This compensates for the factors
of 5 in Egs. (68)—(70), which go to zero in the CV limit.
Regularizing this ensemble, in addition to being convenient,
is also physically motivated. For example, the dynamics of
a Hamiltonian system will be constrained by energy, and we
should not expect an unbounded ensemble of displacements

062334-14



SCRAMBLING AND COMPLEXITY IN PHASE SPACE

PHYSICAL REVIEW A 99, 062334 (2019)

to mimic typical scrambling behavior. To regularize this, we
consider the Gaussian ensemble D), of displacements, defined
in Eq. (39). Gaussians are natural due to their stability under
addition, which suggests that sequential applications of ran-
dom displacements will asymptotically approach a Gaussian
distribution. The ensemble ID,, satisfies

lim nN[ d*™EPJ (& n)D(E)AD' () =Tr(A)l,  (74)

lim an a?NEPS(EMDE @D (&) =S,  (75)

lim | @& PS(&m)DE) ® D*(§) = [EPR) (EPR|,  (76)
where the operator A has a well-defined characteristic func-
tion, the conjugate D*(&) flips the signs of the displacement’s
momentum quadratures [80], and the CV EPR pair is defined
as [EPR) = limg_.oo Y, e #" |n) |n) /N (Ns chosen for nor-
malization) [82].

Intriguingly, at finite n, analogs of Eqs. (74)—(76) still hold
for states with mean photon number ng < n. For example,
nV [ d*N& PS(&n)D(§) ® D' (§) will act as the swap operator
on the subspace of <n photons but not for higher photon
number (we verify this in Sec. IV B 3 and Appendix D). This
can be understood intuitively. As we have seen, a thermal den-
sity matrix p,, can resolve distances 1/,/ny, in phase space.
To swap such states, the ensemble needs to have nontrivial
commutation ~e® % [sce, e.g., Eq. (9)] with displacements
of this minimum distance |§)| ~ 1/,/nn. This occurs when
€| 2 1/1&| or /n 2 /nu. We speculate that these regulated
designs may arise naturally when approximating scrambling
quantum dynamics. For example, time evolution under a
static Hamiltonian will generally be energetically restricted
to some subspace of the total Hilbert space. Approximating
scrambling behavior in such systems would require operators
which respect this subspace.

The regulated CV 1-design arises naturally in physical
contexts. We briefly discuss two such examples. In CV
state tomography [83,84], one aims to estimate the den-
sity matrix p of an unknown quantum state through its
characteristic function x(&; p) = Tr[pD(£)]. In reality, one
can only perform a finite number of measurements and can
therefore only estimate x(&; ) in a certain region of phase
space. Conventionally, one chooses to sample & according
to a Gaussian distribution, obtaining the reconstruction p’ ~
[d*& PS(&n)Tr[pD(§)ID(—§), which suffers from Gaus-
sian additive noise of strength 1/n [85]. A second application
of CV 1-designs concerns designs for quantum states. In DV
systems, a state 1-design is obtained by applying a unitary
1-design to a computational basis state. For CV systems, an
analogous procedure gives a Gaussian distributed ensemble
of coherent states. This ensemble has important applications
in quantum information processing. For instance, it can be
used as a basis of encoding states to achieve the classical
capacity of one-mode bosonic Gaussian channels [85] or in
CV quantum key distribution protocols [86].

2. CV 2-design

In DV systems, the set of Clifford unitaries forms a 2-
design [57]. They obey a defining equation analogous to

Eq' (68)3
Es[(U®U)AWU @ U™

1
= |:ITr(A) + S, Tr(S,A)

1 1
— JATH(SA) - EITr(SeA)]. (77)

It is insightful to observe the action of this quantum channel
on Pauli matrices A = P; ® P5:

Esl(U@U)PL®P, (U ®UM)

IQI ifPp=P=1I;
=175 puPOP ifP =P #I, (78)
0 if P; # P,.

Intuitively, a random Clifford unitary transforms a nonidentity
Pauli matrix to any other nonidentity Pauli with equal proba-
bility (along with the constraint P; = P,).

In the CV case, we take the d — oo limit and keep the
leading order of Eq. (77) as the definition of a 2-design [87],

Es(U®U)AUT @ U]
e %[ITr(A) + S.Tr(SLA)]. (79)

We begin by exploring a particular ensemble &, of Gaussian
unitaries that comes close to satisfying this definition. To
define this ensemble, it is helpful to decompose a given
Gaussian into the product of a quadratic operation and a dis-
placement, U = D(d /2)Us, and Euler decompose the former
as S = KS({r;})L, with single-mode squeezings of strength
r; (see Sec. IV A 1). When acted on a displacement operator
A = D(&)) ® D(&,), Eq. (79) leads to a sum over a distribution
of transformed displacements D(S&,) ® D(S&,), similar to
Egs. (77) and (78). A Gaussian distribution over d gives this
distribution a factor of §(&, — &,), analogous to the DV re-
quirement P, = P,. The distribution is rotationally symmetric
if K, L are Haar distributed. Finally, we take the squeezings
r; =r to be large. In the many-mode limit, one can show
(via the central limit theorem) that this gives displacements
approximately Gaussian distributed, with a width e"|&,| pro-
portional to the initial displacement &;. Concretely, we find

Eg [(U®*) D(&)) ® D(&,) (U™®)]

~ 8(E + &) f d*NEPS(&; ¢, ID(E) @ D' ()], (80)

a CV analog of Eq. (78).

The relation Eq. (80) is close to the 2-design definition,
Eq. (79). When &, = 0, both have a RHS proportional to the
identity. When &, # 0, the RHS of Eq. (80) is proportional to
a SWAP operator on subspaces with less than ~¢”|&, | photons
(see our discussion in Sec. IV B 1). However, the constant
of proportionality for the latter is off by a displacement-
dependent factor of 1/(e"|&,|)V. This arises from the fact
that, wherever a displacement D(§) is transformed to, the
displacement D(c &) is transformed to a displacement ¢ times
as large (because Gaussian unitaries act linearly on &). The
width of the transformed displacements’ distribution must
then be proportional to |§,|, leading to the prefactor 1/&,|V.
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FIG. 13. Distribution of entanglement entropy S after applying
random unitaries drawn from &, on the two-mode vacuum state, for
various squeezing strengths r, scaled by its (squeezing-dependent)
maximum S,,,,, which equals the entropy of a thermal state with
mean occupation number cosh(2r) — 1. Each distribution contains
10* sampled unitaries. Light to dark color corresponds to increasing
squeezing: r = 1 (yellow), r =5 (red), r = 10 (blue), and r = 15
(black).

This prefactor is similar to that found in Ref. [49], when
considering an ensemble of single-mode Gaussian states.

It is unclear how physically fundamental this discrepancy
is. Arguing for its physicality is that it seems as if it would
arise in any soft regularization of CV systems. For instance,
when regularized by the thermal density matrix p,, , informa-
tion about the state is contained in displacements as small
(low energy) as & ~ 1/./ny and as large (high energy) as
& ~ /ny. If the lowest-energy operator is evolved to a high-
energy operator by some elements of the 2-design, then the
product of many low-energy operators (which form a larger
displacement, i.e., a higher energy operator) must be taken
to an operator of even higher energy, outside of the subspace
defined by p,, . This seems to suggest that it is necessary for a
2-design to increase the energy and dimension of the effective
CV Hilbert space, leading to the energy-dependent prefactor
1/1&,|N. On the other hand, this restriction may be unique to
the linear action of Gaussian unitaries on displacements, and
it is an open question whether an ensemble of non-Gaussian
unitaries can satisfy Eq. (79).

Nevertheless, 2-designs are interesting in many-body
physics because they can model physical processes, and the
ensemble &, does possess these more qualitative properties.
For instance, a key characteristic of a 2-design is the ability
to generate entanglement. In DV systems, a typical Clifford
unitary applied to a product state will generate near maximal
entanglement between any two subsystems. In CV systems,
we numerically investigate the entanglement generated by the
ensemble &, by applying a randomly sampled Gaussian on an
initially unentangled two-mode system in a pure state [88].
We find that the entanglement generated grows linearly with
the squeezing r and concentrates around the maximum value,
as shown in Fig. 13. This is expected, as entanglement is pro-
portional to the logarithm of the number of states accessible
to each subsystem, which increases ~e?" under squeezing.

We also find that time evolution in the many-mode ran-
dom Gaussian circuit in Sec. IVA2 converges to & (with

asymptotically increasing squeezing) at long times, demon-
strating that &, can capture operator growth and OTOC decay
as observed in those circuits. The displacement amplitudes
can be seen to be Gaussian distributed locally due to the beam
splitters, with typical width e*’//2L + 1 as t — oo. The
single-mode circuit in Sec. IVA 1 does not asymptotically
converge to &, although this is less surprising since our argu-
ments for £, were valid only in the many-mode limit. Instead,
we observe that a displacement D(«(z)) is time evolved such
that its amplitude obeys a uniform distribution, which gives a
distribution P(«) ~ 1/|«| for the displacement.

3. Finite-temperature frame potential

In DV systems, the closeness of a unitary ensemble to a
k-design is measured by the kth frame potential [57],

Fe =Eyy~elITe(UTV) ). (81)

The frame potential is 1 for a trivial ensemble and decays to
a minimum k!/d?* when £ is a k-design. A finite-temperature
generalization of the frame potential also exists [57], which
takes the form

FR(p) = By yee{|Tr((0) UTV) ) (82)

and decays from 1 to a p-dependent constant ~1/d?*.

We begin our discussion of CV frame potentials by demon-
strating the obstacles encountered when applying DV frame
potentials to CV unitary ensembles. A naive application of
Eq. (81) to CV unitaries, say, displacements U = D(§;,),V =
D(&,), is ill defined due to traces diverging like ~[5(&§, —
&,)1**. When discussing operator volumes in Sec. 11 A2,
we regulated these divergences with a density matrix p, via
the finite-temperature frame potential Eq. (82). Unfortunately,
since the frame potential is only lower bounded by O in the
CV case, it is not clear how to use its decay to make sharp
statements about an ensemble’s validity as a k-design. For
instance, for our candidate 1-design D, we find

Ty (Bu) ~ (1/Knnn)", (83)

which indeed approaches 0 as n — oco. However, ensembles
which are not 1-designs lead to similar decay. Consider two
such ensembles: the sphere of displacements with fixed ampli-
tude D, = {®)_, DF(/ne®)|6; ~ [0, 2]} and the ensemble
of phase shifts R = {®1}’:1UR(9/)|91< ~ [0, 2m]}. We find

FE () ~ (1 kefrng), (84)
T () ~ (1/kn )" (85)

In particular, the frame potential for D, decays to 0 as n —
00, just as it does for the 1-design D,,. For k = 1, this can be
understood through Sec. IIT A 2. The finite-temperature frame
potential measures the ensemble’s inverse volume in phase
space—it will decay to O as long as this volume increases
to infinity, regardless of whether the ensemble approaches a
1-design. This suggests that we may be asking the wrong
question: To be a 1-design on the entire Hilbert space, the en-
semble must have infinite phase-space volume, and accurately
capturing this volume will necessarily be difficult.

Motivated by our regularization of 1- and 2-designs, we
instead seek to characterize whether a unitary ensemble can
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form a design on a particular, low-energy subspace, defined
by some density matrix p. To do so, we introduce a new
twice-regulated frame potential that weights unitaries based
on their preservation of this subspace. This takes the form (see
Appendix D)

1o 12k
[edU [.aV |TrUT p V p=
[k! [, dU [TUT pi U pi ]
S 1
~HO{ph)

It has no upper bound but decays to a strict nonzero
lower bound determined by the entropies of p, H®({p;}) ~

k!Trp%Zk. As we saw in Sec. III A2, at kK = 1, this frame
potential measures the inverse coarse-grained volume of
displacements obeying |&| < ./nn. This volume is upper
bounded by ~nﬁ’1, leading to the nonzero lower bound of
the frame potential. In Appendix D, we show that the frame
potential measures an operator distance between the left-hand
side (LHS) and RHS of Eq. (67), with respect to the density
matrix p.

We can use the twice-regulated frame potential to verify
our regularized 1-design. We find

142 2

)~ {[ +2 (/)] } -
1+ 4 (nn/n)

which indeed decays to its lower bound for n >> ng. We

postpone evaluation of the k£ = 2 frame potential for the large-
squeezing Gaussian ensemble &, to future work.

TP p) =

(86)

T, (B, (87)

V. EXPERIMENTALLY VERIFYING SCRAMBLING

Here, we consider the experimental detection of scram-
bling in CV systems. We begin in Sec. VA with the im-
plementation of the scrambling dynamics themselves, pro-
viding concrete, precisely controllable schemes to realize
genuine scrambling dynamics using the so-called SNAP gate
in a cavity-QED architecture. We numerically simulate these
dynamics when possible and mention open questions which
may be addressed by experiment. Turning toward detection,
in Sec. VB we introduce concise measurement schemes
for TOCs, individual OTOCs, and average OTOCs. These
schemes rely only on Gaussian operations, as well as the abil-
ity to experimentally implement the (possibly non-Gaussian)
scrambling operations U(¢) and U (). Unfortunately, all of
these schemes are prone to confusing scrambling with deco-
herence and experimental error, a problem well known in DV
systems. We address this in Sec. V C by introducing a robust
teleportation-based measurement scheme, adapted from that
in Ref. [52].

A. Experimental realization of scramblers

In this section, we present concrete proposals for the ex-
perimental realization of CV genuine scrambling dynamics.
While we can numerically simulate these models in single-
and few-mode systems, many questions arise that are beyond
the scope of exact numerics and are ripe for experimental
input. For instance, the implementation of genuine scrambling
random circuits could probe the accuracy of our conjecture in

Sec. IV A, that quasiscrambling circuits can replicate aspects
of OTOC decay and operate spreading in genuine scrambling.
Additionally, our proposal will also prove apt for probing
scrambling in number-conserving CV systems, which may
behave qualitatively different from the nonconserving models
of Sec. IV A.

Measuring scrambling behavior (as discussed in the fol-
lowing Secs. VB and V C) will necessarily entail the precise
implementation of not only the scrambling unitary U, but
also either its inverse U' or its conjugate U*, requiring a
high amount of experimental control. Additionally, realizing
genuine scrambling requires strong non-Gaussian operations.
Candidate experimental platforms for detecting CV scram-
bling should feature both of these properties and might include
nonlinear crystals, cavities [50,92,93], and optical Floquet
systems [94].

For concreteness, we focus on cavity-QED architectures.
All Gaussian operations (displacements, beam splitters, and
squeezing operations) can be implemented in these sys-
tems [93]. Furthermore, non-Gaussian effects are typically
much stronger than in other platforms. We focus on a particu-
lar non-Gaussian gate that has already been implemented, the
so-called selective number-dependent arbitrary phase (SNAP)
gate [50,51]. Diagonal in the photon-number basis, it takes
the form

oo
Sv{.1) =Y e In) (nl, (88)
n=0
where the phase 6, € [0, 27) of the n-photon number state
can in principle be controlled arbitrarily. The SNAP gate can be
experimentally realized using a cavity coupled to a transmon
qubit, with the Hamiltonian

H = w.d'atwyle){e|+xa'ale) (e|+Q(t)e™ " |e) (g| + c.c.,
(89)

where a is the annihilation operator of the cavity, |g) (|e)) is
the ground (excited) state of the qubit, and c.c. is the complex
conjugate of the last term. When the qubit frequency shift x
is larger than both the qubit and cavity transition line widths
wy, W, and the drive Q) = Q,(t)e™™X" is weak, one can
apply a phase selectively to the n-photon state |n)(n|, i.e.,
lg, n) — € |g, n), while keeping all other states invariant. A
drive composed of multiple frequencies n allows the indepen-
dent implementation of multiple such phases, realizing the
SNAP gate. In experiments reported by Ref. [50], phases for
up to n = 11 are precisely controlled. With a cavity lifetime
~50 us, qubit relaxation times ~20-30 us, and x ~ MHz,
this allowed the implementation of up to 15 SNAP gates with
fidelity >0.96 per gate.

The SNAP gate can simulate a variety of effective cavity
Hamiltonians. For example, the Kerr nonlinearity Kg(?) =
exp (—itH?) with H> = (p* + qz)2 is realized via a single
SNAP gate with time-dependent phases 6, = —t(4n + 2)*. In
fact, when combined with Gaussian operations, the SNAP gate
is universal for the realization of all Hamiltonians polynomial
in quadrature operators [96]. While in principle this allows
one to realize the Henon-Heiles potential and the cubic phase
gate of Sec. III C, such Hamiltonians generically require long
sequences of fast SNAP gates, which may prove less feasible
for experiment.
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FIG. 14. OTOC amplitude |C,(«, B;1)y,| for a time-dependent
single-mode random SNAP gate Sy(¢) (black), for « =2+ 2i, 8 =
2 —2i, y = 8. Blue lines indicate the times of the TOC snapshots
in Fig. 15. For contrast, the OTOC amplitude does not decay under
Gaussian dynamics (red).

With near-term experiments in mind, we introduce several
genuine scramblers composed of only a moderate number of
SNAP gates. We begin by studying operator spreading in the
phase space of a single mode, under a single time-dependent
SNAP gate. As an example, we consider the random SNAP
gate Sy(t) = Z:io e™ " |n) (n|, with energies w, distributed
uniformly in [0, 27) [95]. Typical of genuine scrambling
behavior, we find numerically that OTOCs decay to small
values in O(1/27) time and remain small afterward (see
Fig. 14). To visualize the operator spreading responsible for
this decay, one can calculate and plot the square of the
TOC |Ci(«, }3;t)|y>|2 [see Eq. (15)], shown in Fig. 15(a). As
anticipated, the TOC spreads to occupy a larger phase-space
volume on a timescale similar to that of the OTOC decay.
For contrast, under time evolution by a Gaussian Hamiltonian
H' = p? + ¢°, the OTOC amplitude is fixed at unity, and the
TOC remains localized in phase space [Fig. 15(b)].

Moving forward, we consider the use of SNAP gates to
study genuine scrambling in multimode systems. Such be-
havior is tremendously difficult to numerically simulate due
to the exponential size of the multimode Hilbert space and
would benefit greatly from experimental input. As a first
example, the inclusion of SNAP gates in random circuit models
like those in Sec. IV A would break the Gaussianity of the
dynamics, and allow one to study operator spreading and
entanglement formation of generic locally interacting CV

-50 5 505 505 =505

Re[s]

FIG. 15. (al)—(el) Snapshots of the phase space distributions of a
displacement operator o = 2 + 2i under the time-dependent random
SNAP gate Sy(t), as measured by the TOC |C, (oz,,B;t)mlz, with
y = 8 (blue indicates zero TOC). Time increases from left to right
[t/m =0,0.1,0.2, 1, 2, from (al)—(el); see Fig. 14]. (a2)—(e2) For
contrast, the distribution remains localized under Gaussian dynamics
(H' = p* + ¢*). All plots share the same x and y axes, the real and
imaginary parts of 8, respectively.
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FIG. 16. (a) Simple two-mode model of a SNAP gate random
circuit. The center block represents a random beam splitter. (b) The
average OTOC amplitude [@ = (1 +0)/2,B=(1—-0)/2, i =y =
2] under after the circuit, for both single-mode scrambling (w = v =
1, blue square) and multimode scrambling (w = 1, v = 2, red trian-
gle), as a function of the beam splitter transmissivity cos> 6. Dashed
curves indicate standard deviations. Each data point is averaged over
100 samples.

systems. In addition, SNAP gates conserve photon numbers and
are thus particularly well suited for probing CV scrambling
in the presence of conservation laws. To this end, one might
consider a random circuit of only passive linear optics and
SNAP gates (no squeezing), organized similarly to Fig. 8, with
SNAP gates replacing single-mode squeezing operations. It
would be interesting to observe these circuits’ entanglement
growth in time: Since number conservation seems to forbid
the squeezing-induced Hilbert space growth of Sec. IV A,
one might guess that conservation laws cause the system to
saturate to DV-like behavior S ~ ¢, in contrast to our previous
result S ~ 2.

For instructive purposes, we numerically simulate the
simplest of such multimode, number-conserving circuits: a
single-layer circuit on a two-mode system, as shown in
Fig. 16(a). The circuit consists of a beam splitter with trans-
missivity cos 6 sandwiched between four random SNAP gates,
each with phases independent and identically distributed (iid)
uniformly in [0, 27). To characterize operator spreading,
we compute the amplitude of the OTOC with respect to
single-mode displacement operators, averaged over the ran-
dom SNAP gates. As expected, the OTOC strongly depends
on 6, which controls the mixing of the two modes [see
Fig. 16(b)]. At 6 =0, there is no mixing between modes,
and so |C2]‘2(a,,3;t)| =1. At 6 = /2, mode 1 and mode
2 are swapped, giving |C21’1(oz, B;t)| = 1. The mixing is
maximized at § =z /4. Somewhat surprisingly, this value
maximizes not only two-mode scrambling (i.e., it minimizes
|C21’2(a, B;1)|) but also single-mode scrambling (i.e., it also
minimizes |C21’1((x, B;0).

The experimental realization of genuine scrambling cir-
cuits would also enable a powerful check on our assumption in
Sec. IV A, that aspects of genuine scrambling could simulated
using averages over quasiscrambling systems. For example,
we consider a quasiscrambling analog (Fig. 17) to our previ-
ous SNAP gate circuit (Fig. 16), with squeezing operations of
strength r instead of SNAP gates. In Appendix B 1, we com-
pute the circuit’s average OTOC @(n; 1), = C_Z(Df,’(t), DY)
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FIG. 17. (a) A two-mode Gaussian analog to the random SNAP
gate circuit of Fig. 16, where the SNAP gates are replaced with
single-mode squeezing of strength » = 1. (b) The average OTOC
(n = 1) for single-mode (w = v = 1, blue dashed) and multimode
(w =1, v =2, red) scrambling, as a function of the beam-splitter
transmissivity cos” 6.

[Fig. 17(b)]. We find qualitatively similar behavior to the
(nonaveraged) OTOC of the random SNAP gate circuit, sup-
porting our assumption. Nonetheless, some deviation is ob-
served at the minimally mixing values 6 = 0, 7 /2. We spec-
ulate that this is due to the additional conservation of the
individual modes’ photon numbers at these values in the SNAP
gate circuit, which may inhibit OTOC decay and complicates
this particular comparison.

B. Measurement of TOCs and OTOCs

The most direct way to measure the amplitude of TOCs
and OTOCs is to sequentially apply the operators in the
correlation function to a state and measure the probability
to remain in that state. For instance, to measure the TOC
| (IUTD(&,)UD(&,)|y) |>, one would apply D(&,), then U,
then D(&,), then U' and then measure the probability to
be in state |y). This is depicted for TOCs and OTOCs in
Figs. 18(a) and 18(c). For simplicity, we consider correlations
with respect to a coherent state |y). The probability to be in the
coherent state can be measured by performing a displacement
D(—y) and measuring the probability to be in the vacuum
state.

One can measure TOCs and OTOCs themselves, and not
just their amplitudes, using a control qubit and an inter-
ferometric scheme similar to Refs. [97,98]. As shown in

measure
Vacuum
roj ectlon

7 —DE) |—.—|D(€1)|-.-|D
Iv —|D(£2 |'.'|D(51>F.19<*52)<—€1MD

wu I
T
ML

FIG. 18. Measurement protocols for (a) the TOC amplitude
ICi (&), &)1 |2, (b) the TOC Cy(£,, &;1)y), (c) the OTOC ampli-
tude |C2(&,, &), 1%, and (d) the OTOC Cy (&, &51) 1)

measure
Vacuum
projection

Figs. 18(b) and 18(d), here one initializes the control qubit in
the state (|0) + |1))/+/2 and performs different operations on
the CV system given different states of the control qubit. The
complex-valued TOC/OTOC is found by measuring X + i,
where X, Y are Pauli operators on the control qubit.

Finally, we present a concise scheme to measure aver-
age OTOCs, as introduced in Sec. III B2. The only change
from our individual OTOC schemes is that we now use
an ancillary mode, prepared in the Gaussian state |yp) ~
f_oooo dqe’%qz/ AZ|q) (expressed in the position basis), to per-
form the ensemble of displacements on the CV system of
interest [99]. This is done using the SUM gate,

[¥0)

; (90)
) [SUM]
which acts on quadrature operators as
91— q1,  p1—> p1— P2, oD
92— q1+q2, p2— p2. 92)

This implements a displacement D(g) with probability
~e~4/A* (shown by tracing out the ancilla). Average OTOCs
require one to sample pairs of displacement operators D(§)
and D(—§) in a correlated manner, which can be achieved by
using the same ancilla for each displacement of the pair [100].

C. Robust teleportation-based protocol

In this section, we turn our attention to a theoretical and
conceptual question concerning the verification of scrambling.
While OTOCs can characterize the phenomena of scrambling
when measured perfectly, they are sensitive to experimental
noise and decoherence, challenging the experimental mea-
surement of scrambling [52]. For instance, loss and thermal
noise, the most common imperfections in optical systems,
both cause the OTOC to decay just as scrambling time evo-
lution would (see Appendix C). It is therefore desirable to
characterize scrambling in a way which clearly distinguishes
scrambling from such errors.

A robust verification protocol of scrambling has been re-
cently proposed [52] and experimentally realized [34] for DV
systems. This protocol draws inspiration from ideas in quan-
tum gravity and can be viewed as a many-body generalization
of quantum teleportation [10]. Here, we briefly describe a
similar teleportation-based protocol for CV scrambling. For
simplicity, we restrict our attention to measuring scrambling
by Gaussian unitaries, where the protocol will succeed with
probability unity assuming no experimental error [101].

We begin our analysis with the ideal, error-free case and
demonstrate our protocol’s robustness to error after. We seek
to characterize quasiscrambling by a Gaussian unitary U
acting on two CV modes. Figure 19 displays the setup for
the teleportation-based protocol. Initially, the system is pre-
pared in two Einstein—Podolsky—Rosen (EPR) pairs on modes
(2,2') and (1’, R) whereas an arbitrary quantum state |v) is
prepared on 1. For a later purpose, it is convenient to use
the stabilizer formalism to characterize EPR pairs. For a two-
mode system with position and momentum operators (q, p),
(¢, P'), the CV EPR pair |EPR) is defined asthe P = Q0 =0
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FIG. 19. Schematic of the teleportation-based protocol for ro-
bustly measuring CV scrambling. An initial state |¢) and two CV
EPR pairs are time-evolved under the unitary of interest U and its
conjugate U*. After, a pair of modes 2,2" are measured via the
operators ¢, — ¢, and p, + py. The measurement outcome is used to
error correct the original state, and the teleportation fidelity serves as
a robust measure of information scrambling between modes 1 and 2
by U. In the presence of measurement uncertainties and imperfection
in EPR preparations, the GKP encoding enables error correction.

eigenstate of operators
P=p+p. Q=q—4. (93)

Note that this corresponds to the infinite squeezing limit of the
two-mode squeezed state.

Next, we apply U on (1,2), and its complex conjugate U*
on modes (2, 1"). While the protocol works with an arbitrary
quasiscrambling unitary, we simplify our treatment by consid-
ering the following family of quasiscrambling unitaries:

p1—> mpr+ (m+ 1)pa, g1 — mg1 — (m— 1Dqa,
p2 — (m—1pr+mpy, g — —(m—+ 1)q +mgy, (94)

where m is arbitrary real number. When m # 0, —1, 1, ob-
serve that U delocalizes any single-mode displacement oper-
ators to a two-mode displacement operator, the criteria for a
nontrivial quasiscrambler. It is convenient to write the above
transformation in the following, inverted manner:

mpy — (m+ 1)py — p1, mq +(m—1)g, — qi,
—(m—1p1 +mpy — p2, (m+ g1 +mgy — q. (95)

The unitary U contains squeezing since the total amplitude
of displacements changes. The amount of squeezing ¢” ~ m
plays an important role in fault tolerance of the teleportation
protocol, as we will see later.

After applying U and U*, we measure (2,2") with the
following operators:

On =q —qy. (96)

We send the measurement outcomes Q»»> and P>y as a classi-
cal message to R. By applying the inverse transformation from
Eq. (95), att = 0, we have

Py = [—(m — D)p; +mpy] + [—(m — D)pr + mpa1,
o7
02 = [(m+ Dq1 +mqz] — [(m + Dgi +mgxr].  (98)
Since p; + p, = 0 and g, — g» = 0, we arrive at

Py = —(m—1)(p1+p}) Q= (m+1)(q1 —qr).
99)

Py = p> + po,

Hence, the protocol teleports the following state on R:

Qo Py
D|:<m+ 1 m— 1)]'1/[)’

which is just a state shifted from |). Since this shift can be
corrected using the classical message, this protocol teleports
the quantum state |/).

While we have focused on a particular family of quasis-
cramblers, our treatment generalizes to generic quasiscram-
bling unitaries U that delocalize single-mode displacement
operators. Namely, we can show that the teleported state is
|Y) up to displacements that can be undone using knowledge
of the measurement result.

So far we have assumed that all implementations of the
protocol are perfect. In actuality, one might incur errors due
to decoherence, or a mismatch between the experimentally
implemented unitaries U, U*. This protocol is robust to both
of these effects, as discussed in great detail for DV systems in
Ref. [52]. There are also further imperfections unique to the
CV limit. For example, it is not possible to prepare perfect CV
EPR pairs, and one must approximate them with two-mode
squeezed states. In addition, measurements of Q,» and Py
will involve some uncertainty.

Both of these imperfections lead to unknown displacement
errors on the teleported state, and, at a calculational level,
appear similar to inserting some density matrix p in the tensor
contractions corresponding to the EPR pair and measurement.
This link to finite-temperature scrambling, as well as exper-
imental relevance, motivate us to qualitatively address when
teleportation can succeed despite these imperfections. We
consider the above protocol for a general N-mode Gaussian
unitary Ug (taking displacements & — S&, where S is a sym-
plectic matrix), in the presence of a measurement error, i.e.,
one recorded (Qyy, P»») but actually measured (Qzy, Pryr) +
A&. Imperfections due to an imperfect EPR pair—a two-
mode squeezed state of ~ngpgr photons—are treated similarly:
They arise from the fact that small displacements D(A&)
leave the state unchanged for A& < 1/,/ngpr. To see these
errors’ effects, one can compute the displacement D(Az) on
|[4) that would have given rise to the measurement error:
A& =8, ,,Az, where S ,, is the 2 x 2 submatrix of S between
mode 1 and the measured mode m. Because of the error,
the protocol decodes the wrong state, off by a displacement
Az. However, as we have seen, small displacements are only
distinguishable from the identity operation on subspaces of
greater than 1/|Az|> photons. Therefore, if |y) has Sny
photons, the error has no effect when /iy, < 1/|Az|. Since
an N-mode unitary with single-mode squeezing ¢’ has ele-
ments of typical magnitude ~e”/+/N, the protocol can only
teleport states of photon number /iy < €'/ (v/N|A&|) [102].
This makes sense: A state |) is described by displacement
operators separated by distance ~1/,/ny in phase space.

This translates to a distance ~(¢"/+v/N) x (1/ J/My) on the
measured mode after application of U. Our teleportation
constraint implies that we can only teleport states when this
phase-space distance is resolvable despite the imperfections,
(¢"/V/N)x(1/ Jiy)>AE.

We also hope to make the teleportation protocol fault
tolerant to these imperfections by using quantum error

(100)
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correction. Gottesman et al. have proposed a way of encoding
a finite-dimensional qudit into a single oscillator. This error-
correcting code, called the GKP code, enables us to correct
small displacement errors. Suppose we prepare a qudit input
state and encode it into mode 1 via the GKP encoding. For
simplicity, we consider the error from faulty measurements
and assume that O, and P,y suffer from uncertainties AQ5y
and AP»y. When the quantum state is teleported to R, it
suffers from displacement noises D(gg) and D(pg) of |ggr| ~

292 and |pg| ~ fn[:ﬂl’ . By using the GKP code, displacement

er;l;rolrs can be corrected if m is sufficiently large, and thus the
teleportation protocol can be made fault tolerant. We remark,
however, that the aforementioned protocol does not suppress
errors from the imperfect EPR preparations on (2,2") and
(1, R).

Observe that the induced error can only be suppressed
when the squeezing m is large. There appears to be an in-
triguing relation between the amount of squeezing and the
amount of teleported information. This leaves an interesting
future problem concerning the upper bound on the informa-
tion capacity under energy constraints. Another relevant fu-
ture problem concerns the relation between this protocol and
the average OTOC. For the quasiscramblers in Eq. (95), the
average OTOCs becomes small as m increases. Hence, in the
presence of measurement uncertainties, the smaller average
OTOC:s enables larger amount of fault-tolerant teleportation.

VI. DISCUSSIONS AND CONCLUSIONS

We have mainly focused on developing tools and a general
framework for characterizing scrambling and complexity in
CV systems. The key idea is to introduce a density matrix
that represents the Hilbert space of interest, which leads to a
smooth regularization of various quantities. Throughout the
paper, we choose a thermal density matrix p,, —other choices
may lead to different coarse-graining procedures at short
distances and cutoffs at long distances. Below, we conclude
the paper with a few comments and a discussion of open
problems.

First, we describe the scenarios where a CV treatment is
most suitable. The CV regime is (i) large local Hilbert space
or (ii) smoothly cutoff local Hilbert space. The relevant notion
of locality is determined by the operators with which we wish
to probe the system and does not necessarily have to agree
with the UV lattice cutoff of the system. Notably, these condi-
tions can hold even for large but finite-dimensional systems,
whenever the quantum states under study are associated with
a wide range of energy scales. More specifically, consider
a Hamiltonian measuring some energy H,, with eigenstates
|Ey), 1 <n<N. When N is large and the relevant states
o have a distribution (E,|p|E,) spread out over a range of
energies E,, and decaying smoothly toward those states with
larger energies, a CV description applies.

Next, we address open problems and future directions in
the study of CV scrambling.

(1) The first set of open problems relates to our understand-
ing of genuine scrambling. Most important, the speed and sat-
uration of operator volume increase characterized by OTOC
decay requires further study. For displacement-operator-based
OTOCs, the connection between the initial decay and the

Lyapunov exponent in classical chaotic systems can be further
explored. This may lead to a deeper understanding of different
classes of non-Gaussian unitaries. Related to this, it would
be interesting to numerically investigate the effects of the
small but finite mass term m in the cubic phase gate model
in Sec. IIIC. Eventually, one hopes to derive bounds on
operators’ volume increase when the system is constrained by
certain conservation law.

(i1) The second set of open questions concerns our under-
standing of local random Gaussian circuits. In Sec. IVA?2,
we identified a quadratic growth of entanglement and linear
increase of fluctuation for such systems, arising from an
increase in the accessible local Hilbert space. However, a
full theoretical model that explains the deviation from the
KPZ scaling still needs to be developed. Such a model could
deepen our understanding of scrambling dynamics in general
CV systems.

Additionally, extending the study in Sec. V A on models
with photon number conservation law to a larger scale may
deepen our understanding of conservation laws’ consequences
for scrambling dynamics. Performing the SNAP gate-based
experiment proposed in Sec. V A would be very instructive on
this open problem, as numerical simulation becomes difficult
for greater than a few modes. For state-of-art experimental
platforms, the realization of this experiment is plausible in the
near future. Adding squeezing to such system would also al-
low the verification of the theoretical results, and assumptions,
in Sec. IV A 2. Our work lays a solid theoretical foundation for
such experimental studies.

(iii) The third set of open questions regards the construc-
tion of CV unitary k designs. We still understand very little
about higher designs in the CV case. Evaluating the new frame
potential in Eq. (D7) for k > 2 and more general ensembles,
as well as relating it to notions of complexity, are important
future directions. Additionally, in light of our findings on
Gaussian 2-designs, it remains an open question whether there
exists a more appropriate definition of higher CV designs that
is compatible with soft-energy regularization. Nevertheless,
our CV 1-design and 2-design analog may still be useful
for applications such CV state tomography (1-design) and
compressed sensing (2-design) [103].

(iv) Another interesting future problem concerns the def-
inition of a size for time-evolved operators at finite tempera-
ture. In DV systems at infinite temperature, the size of opera-
tors O(t) corresponds to the average number of qubit supports
in the Pauli decomposition of O(t). As discussed in Sec. III,
the size of O(¢) can be measured by OTOCs. However, the
notion of the size of operators O(¢) becomes ambiguous at
finite temperature since OTOCs depend on p. An important
question is to how to define the size of operators in the
presence of p at finite temperature in a physically meaningful
manner. In a recent work on the operator growth in the SYK
model [104], a possible definition of the finite temperature
size of O(t) is proposed. Namely, the authors argued that the
size should be defined by subtracting the thermal background,
i.e., as the difference between the support of p'/40(t)p'/*
and p'/2. They showed that the Lyapunov growth of OTOCs
corresponds to the exponential growth of this difference.

On the other hand, in Sec. III, we have argued that ther-
mal TOC and OTOC measure coarse-grained volumes of the
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operator spreading where the resolution of the phase space is
set by p. Specifically, we saw that a thermal state p,,, induces
a Gaussian blurring of the phase space. One concrete open
question concerns the connection between their proposal of
subtracting the thermal background and our results developing
the notion of coarse graining. Here, we present a heuristic
argument while postponing rigorous discussions to the future
work. Recall that the size of the operator can be counted
by the number of qubits. The coarse-grained volume V in
the phase space roughly corresponds to a /V-state quantum
spin, so it can be embedded in %log2 V qubits. So, one may

assign % log, V as the size of the operator. The coarse-grained
volume V depends on the scale of the resolution set by p.
Letting an approximate radius of the spreading be R and
the resolution be 8, the volume is V = R2 /82, the size will
be given by %(log2 R —log, §). Hence, we may interpret the
second term as the thermal background.

(v) A final set of open questions is on the connection
to resource theory. It is well known that universal quan-
tum computation requires non-Clifford operations, since Clif-
ford operations admit efficient classical simulations accord-
ing to the Gottessman-Knill theorem. It would therefore
be interesting to assign a resource theoretic interpretation
of Zerau“ |f[Q: P(t)]|*, thereby relating quantum compu-
tational power to scrambling and decay of OTOCs. Simi-
larly, in CV systems, the preservation of OTOC amplitude
by Gaussian unitaries (quasi scramblers) and the decay of
OTOC amplitude caused by non-Gaussian unitaries (genuine
scramblers) might lead to a new resource theory framework
for non-Gaussianity [105-110]. Finally, there has also been
some recent interest in characterizing the complexity of Gaus-
sian CV states relevant for quantum field theory [111]; we
speculate that our general approach, based upon frame poten-
tials and OTOC decays, can be applied toward a more broad
characterization of the complexity of states in field theories.

We conclude by summarizing our work and clarifying a
number of distinctions between our work and prior stud-
ies. Scrambling in CV systems has been studied in a num-
ber of seminal previous works [37-42], where OTOCs for
quadrature operators and number operators are explored in
the context of specific example Hamiltonians. These studies
revealed that the OTOC with quadratures operators can en-
able a quantum-classical correspondence within the Ehrenfest
time [37,42]. In this paper, we attempt to understand scram-
bling in CV systems from a quantum information theoretic
perspective: (i) We give general interpretations of TOCs and
OTOC:s in terms of operator spreading. (ii) We investigate
the scrambling dynamics of generic local circuits based upon
a CV analog of 2-designs. (iii) Our choice of displacement
operators in OTOCs not only enables a quantum-classical
correspondence in phase space, but also enables OTOCs to be
measurable in quantum optical experiments. (iv) We provide
an experimental blueprint for probing scrambling in cavity
QED systems.
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APPENDIX A: BASIC GAUSSIAN UNITARIES

We begin by giving some examples of symplectic matrices
corresponding to Gaussian unitary operations [54].
(1) Single-mode phase rotation:

cosf  sinf
RO = <— sinf  cos 9)' (AD
(2) Single-mode squeezing:
e 0
S(r)= ( 0 e’)' (A2)
(3) Two-mode beam splitter:
I J1—nl
By={ 7 : A3
() (_ T ) (A3)
where I is the 2 x 2 identity matrix.
(4) Two-mode squeezing:
__ (cosh(r)I  sinh(r)Z
S2(r) = (sinh(r)Z cosh(r)1 )’ (A4

where Z is the 2 x 2 Pauli matrix.

Next, we list some useful identities for displacement op-
erators and Gaussian unitaries, all of which have analogs for
Pauli operators and Clifford unitaries in DV systems [112].
The completeness of displacement operators follows from

Tr(D(E)D(E)) = nV8(E + &)
and
A=1/z" / dNg x (£ A)D(-¥),

when x (&; A) exists. These properties give rise to the identity

1 .
— / d*E Tr[D(§)A]Tr[D'(§)B] = Tr(AB),  (A5)
i
proven in Ref. [113]. Finally, we note that a Gaussian op-
erations corresponds to a linear coordinate transform of the
Wigner characteristic function,
X (& UsaAU{ ) = x(S7'& A) exp(id” &), (A6)

which follows from the action of Gaussian unitaries on dis-
placement operators, and is proved in Ref. [109].
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APPENDIX B: OPERATOR DISTRIBUTIONS AND OTOCS
IN QUASI SCRAMBLERS

1. Volume and average OTOCs

Consider an initial ensemble £ of displacement operators.
Under quasiscrambling time evolution by a Gaussian unitary
U (t), these displacement operators will evolve into different
displacements, which form a new ensemble £(f). Our goal
is to develop a probe of £(¢) via OTOCs. For this purpose,
let us introduce a formal definition of the average OTOC
for quasiscramblers. Given a pair of displacement operator
ensembles & and &,, we define the average quasiscrambling
OTOC:

Ci(E1.E2)p = Byng e, Te[pVIWIVWIL (B

When characterizing time evolution, £ may be regarded as
the time-evolved distribution of interest, e.g., &, = £(¢), while
&, is a probing distribution. The necessity of considering an
average OTOC is understood from the fact that the amplitude
of individual OTOCs for Gaussian time evolution is always
unity.

Although this average quasiscrambling OTOC bears great
similarity to that of genuine scramblers in Eq. (38) of the
main text, there is a subtle difference. For genuine scram-
blers, D (§,;¢) and D(&,;1) are usefully decomposed as sums
of displacement operators using the characteristic functions
x*[€] and x[£']. Because of the density matrix o, the average
genuine scrambling OTOC receives contributions for & # &'
This is not the case for quasiscramblers, where we sample the
same displacement operator for U' and U. This implies that
the average quasiscrambling OTOCs does not depend on p.
The p dependence is recovered when considering thermally
regulated OTOCs, but detailed discussions of this are beyond
the scope of this paper.

As with genuine scramblers, the average OTOC is closely
related to operator distributions. For instance, consider an
arbitrary ensemble of displacement operators Dp(.y [with
probability distribution P(-)] and a Gaussian probe ensemble
& =D, [defined in Eq. (39) in the main paper]:

Co(Du, Dpy)p = Eyep, w~,, Tr[oV W VW] (B2)
= Egp([exp(—nl€[*)]. (B3)

This average quasiscrambling OTOC therefore measures the
extent of the operator spreading with a Gaussian coarse grain-
ing of familiar width 1/,/n in phase space.

In fact, an explicit correspondence between these average
OTOCs and the frame potential can be derived when the
distributions of interest are Gaussian distributions with zero
mean. For example, consider the zero-mean ensemble Dy y in
Eq. (22) in the main paper to be our “time-evolved” ensemble
&1. One can show that

2N
_ 1
CDMoy,Dy), =1 | ——. (B4)
r E VT+ 2xn

where A,’s are the eigenvalues of the matrix V. In particular,
if n = 2(2ny, + 1), comparing it with Eq. (23) in the main text
we have

C_Z(DO,V’ ]D)n)p = ]:DEo-V (Ibnm)~ (BS)

One important advantage of using average OTOCs over
the frame potential is that OTOCs can measure not only the
ensemble volume but also volumes of ensembles projected
onto subspaces of the 2N-dimensional phase space (Fig. 6
in the main text). For instance, if one sets & to be a Gaus-
sian ensemble of displacement operators localized on certain
mode w, DY = {D"(&)|& ~ Py (& n) = exp (—[&*/n)/(wn)},
we have

_ 1
C(Dyy, DY) = , (B6)

T 200n) (14 204)

where A{, Ay are the eigenvalues of the covariance matrix
projected onto the mode w subspace, V2, 2,+1. This enables
us to define the projected volume on mode w as

1 1
ol*(€) = lim (o= )= B7
vol™(£) = lim, <2n>C2(€,D}f)p B0

in analog to Egs. (20) and (13) in the main text. Note that the
limit n — oo only applies to the probe ensemble.

It is worth looking at a few simple examples. Consider
average OTOCs of the form

Cy V1), = C(DY (1), DY), (BS)

where displacement operators are chosen to be Gaussian
distributed on modes w, v at ¢ = 0, and D} evolves to DY (¢)
under a Gaussian unitary U. First, we look at single-mode
cases w = v.

(i) For U composed only of displacements and phase
rotations, we have

1
1 4+n2
This includes the case where U is an identity operator and
indicates the fact that displacements and phase rotations leave

the mean-zero ensemble D} (¢) invariant.
(ii) For single-mode squeezing of strength r, we compute

1
V1 +n* +2n?cosh(2r)’

so that the average OTOC decays as the squeezing increases.
This demonstrates the increase of the coarse-grained volume
measured by finite-temperature OTOCs under Gaussian time
evolution.

Next, we consider the multimode cases.

(iii) Passive linear optics. Let 1, , be the transmissivity
between the two modes w, v. We have

1
(1+n,.m2)
When n,,, = 1, the passive linear optics act as a SWAP gate
and C;"*(n;1), = 1/(1 + n?). For generic passive linear op-
tics, a typical transmissivity between the two modes 1,,, ~
1/+/N decreases with the system size, and so the decay of the
average OTOCs becomes less significant. This is specific to
the case of the passive Gaussian (i.e., free boson) dynamics.

(iv) For two-mode squeezing of strength » between modes
w, v, we find

G i), = 1/[1 + sinh(r)n*].

CYV(nt), = (B9)

CY P (nit), = (B10)

Cyl(nst), = (B11)

(B12)
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As the amount of squeezing increases, Cy " (n;t), ~ e
decreases exponentially.

—2|r|

2. Quantum Liouville’s theorem

While genuine scrambling (via non-Gaussian unitaries) is
necessarily of a quantum nature, quasiscrambling (via Gaus-
sian unitaries) admits a description by a classical Hamiltonian
dynamics, since a single phase-space point stays localized.
This observation motivates us to generalize the classical Li-
ouville’s theorem to Gaussian quantum dynamics.

In classical mechanics, Liouville’s theorem asserts that
phase-space volume is preserved under Hamiltonian dynam-
ics. (Although conserved, this volume may nonetheless stretch
and distort over time—a key feature of classical chaos.) To
formulate an analog to the classical theorem, let us consider
an arbitrary ensemble Dp(., of displacement operators, with
probability distribution P(-). We are interested in the volume
of the time-evolved ensemble Dp(.y(7). To be rigorous, we
consider the volume of operator distributions as defined in
Eq. (20) in the main text. Noticing that volume is given by
an integration over £, of a function of §~'& [see Eq. (17) in
the main text], and using det (§) = 1, we immediately have
the following theorem:

Quantum Liouville’s theorem. The phase space volume of
a general ensemble of displacement operators is preserved if
U (t) is a Gaussian unitary.

Despite its simplicity, this theorem provides interesting
lessons. First, since the theorem indicates that there is no
volume increase for Gaussian dynamics, one might wonder
why Gaussian quasiscramblers can transform displacements
into larger displacements. Indeed, given the fact that OTOCs
are sensitive to volume growth, the decay of the average
OTOC appears to contradict the theorem. The resolution is
that average OTOCs with respect to local modes measure
projected volumes. The projected volumes on local modes
may indeed increase in the presence of large squeezing (Fig. 6
in the main paper), even if the volume in the entire 2N-
dimensional space is fixed.

Second, this theorem only applies to the infinite-
temperature limit; as seen in the main text, the “coarse-
grained” volumes measured at finite temperature may not be
preserved. The coarse-grained volume also has a nice corre-
spondence to the Kolmogorov-Sinai (KS) entropy in classical
Hamiltonian dynamics. Similar to the coarse-grained volume,
the KS entropy counts the number of coarse-grained phase
space boxes of the phase-space volume, which increases for
generic chaotic dynamics.

Another interesting implication of this theorem concerns
the characterization of quantum chaos in CV systems. The
theorem implies that any non-Gaussian effect will lead to
some change in the volume. Although the volume may either
decrease or increase depending on U and the initial state, we
expect that the volume will generically increase for chaotic
non-Gaussian dynamics. We speculate that if the volume of
operator distributions is a monotonically increasing quantity,
it may possess a similar intuition to the second law of en-
tropies.

APPENDIX C: OTOC IN PRESENCE OF LOSS

In this section, we quickly demonstrate that OTOCs decay
in the presence of a loss channel, i.e., decoherence (for a
detailed discussion of this in DV systems, see Ref. [52]).
Consider a unitary channel p — U'(¢)pU(¢) combined with
a thermal loss channel. Suppose the loss happens before the
unitary, so that

D" (a;1) = U (@) N¥ (D" (@)U (1). (C1)

This channel maps x — ,/nx + /1 — nx,, where x. are
quadrature operators for an ancilla in thermal state pg with
mean photon number Ng. To obtain how operators evolve
under the loss channel, we consider the trace

Tra(Da()N," (pa))
= Tra(Da(@)TreUsz (s ® pe)Uyg )
= TrETrA(UATE’ﬂDA(a)UAE,nPA ® PE)
= TrTra(Da(y/ne)Dp (/1 — na)ps ® pr)
= x(Rey/T — na, Imy/1 — nat; pg)Tra(Da (/1) pa)

= expl—(1 — m)|al*@Ng + 1)/2]Tra(Da(y/1@)pa),
(C2)

where we have used the Stinespring dilation of a pure loss
channel. Thus, for a single-loss channel

N (D(@)) = exp[—(1 — n)la*2Ng + 1)/21D( /7).
(C3)
From this, we expect that the OTOC decreases exponentially
in presence of loss and noise. The actual decay depends on
the specific scheme used to measure the OTOC, but a rule-
of-thumb estimation by considering two lossy noisy channel
gives CY" (@, B:0)r Iy, ~ exp[—(1 — mla2@Ng + D).

APPENDIX D: TWICE-REGULATED FRAME POTENTIAL

In the main text, we employed a generalization of a once-
regulated finite-temperature frame potential from DV systems
to characterize ensembles of CV unitaries. Despite the fact
that it provides us with a quantitative understanding of vol-
umes of distributions, there were two drawbacks to this frame
potential. First, it is lower bounded by zero even though p is
a quantum state with finite entropy. This implies that no nor-
malized distribution of unitaries can saturate the lower bound,
despite the fact that our Hilbert space of interest is regulated
by p and may be finite. This concern also relates to a second
drawback: When seeking an appropriate definition for CV
designs, it may be more physical to consider ensembles of uni-
taries that approximately preserve a chosen density matrix p.
In this section, we construct a new, twice-regulated frame po-
tential, which solves both of these drawbacks by weighting the
contributions from unitaries based on their preservation of p.

Our guiding principle in constructing the new frame poten-
tial is the definition in the main text of CV unitary k designs,

062334-24



SCRAMBLING AND COMPLEXITY IN PHASE SPACE

PHYSICAL REVIEW A 99, 062334 (2019)

as the d — oo, limit of Eq. (67). For general £, this gives
dlingo dk IE'-EHaar{U(X)k ® (UT)®k} = ZSQ (Wﬂ ® Wnil)’

(DD
where lower order contributions in d are neglected (this can be
derived from equations in Ref. [57]). Here, W, performs the
permutation 7 on the k-copied Hilbert space H®* and S, is
the swap operator between the two copies of H®* [one acted
on by U®* and one acted on by (U)®].

The new frame potential seeks to characterize how closely
the above expectation value over an ensemble £ resembles the
Haar value. To do so, we will view the CV operators, and in-
tegrals over them, as “vectors” in a higher dimensional space
and measure the distance between them with a prescribed
inner product. Define the following:

") = Epaar (U @ (U, (D2)

1€) = N Eg (U @ (UT)®F), (D3)

with some appropriate normalization constant A/ which will
be specified later. We take the inner product between operators
Oy, O, on the 2k-copied Hilbert space H®* to be

(01]10,) = Tr(O! B, O, ), (D4)

with respect to positive Hermitian operators (e.g., density

matrices) P, = [(,oﬁ)@’k ® (pﬁ)@)k]. One can show that this
satisfies all properties of an inner product if p is full rank. If
p is not full rank, it satisfies the properties of a semidefinite
inner product. It can also be viewed as the usual matrix inner
product of the low-energy weighted operators Pk1 20, Pk1 2
and P> 0, P2,

The inner product provides a natural distance measure
with which to compare £ and H, miny |||E) — |[H)|*> =
miny [(E] — (H|][|E) — |H)] = 0. Here we minimize over
the normalization constant A such that the distance is min-
imum. After some calculations, we arrive at

>0, (D5)

1
min [||1€) — [H)II* = HP(p) — —— >
N T (p)

where
HO(p) = k1Y | Te[We (o) (p3) '], (D6)
T
. 1 2k
(kD) Eyee[Tr(UTp'*U p!/6)1F]2
Note that H*®)(p) depends only on p. Observing
1
(k)
T '(p) = HO() (D8)

we recognize Jg(k)(p) as the frame potential. For k = 1, 2, we
find the following lower bounds:
HO(p) =2+ 2Tr(p"?)".

HV(p) =1, (D9)

We would like to emphasize that the density matrix p
reflects the Hilbert space of interest. Namely, when the frame
potential achieves its lower bound, the ensemble £ is CV k
design with respect to p. As a trivial example, for a pure state
p = |¥) (¥, the lower bound is saturated for any ensemble
(the only operator on a single-state Hilbert space is the iden-
tity, and so all unitary designs are trivial).

The new frame potential can be used to verify CV k
designs. As an illuminating example, we calculate the k = 1
CV frame potential for our 1-design candidate D, on a thermal
state p,, of mean photon number ny. We obtain

jug)%,)(ﬁ’nm) _ |: (1 +n+ 2nyp)?

N

1
- "0 | >1=—, (DI0
(1+n)2+4nnth:| - qoe P10

where N is the number of modes. It is illuminating to examine
two limits: n >> ny,, where the ensemble D, contains an
approximate basis for all operators acting on the subspace of
<ny, photons, and n < ny,, where it does not. For the latter,
the frame potential scales as (ng,/n)Y and continues decreas-
ing as we increase the size n of the ensemble. Once n 2 ny,
the frame potential algebraically saturates to its lower bound
of 1, up to terms of order (1/n) and (ng,/n)?, confirming again
that lim,,—, «cID,, is a proper CV 1-design.
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