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We put forward the idea of lattice quantum magnetometry, i.e., quantum sensing of magnetic fields by a
charged (spinless) particle placed on a finite two-dimensional lattice. In particular, we focus on the detection
of a locally static transverse magnetic field, either homogeneous or inhomogeneous, by performing ground-
state measurements. The system turns out to be of interest as a quantum magnetometer, since it provides
non-negligible quantum Fisher information (QFI) in a large range of configurations. Moreover, the QFI shows
some relevant peaks, determined by the spectral properties of the Hamiltonian, suggesting that certain values of
the magnetic fields may be estimated better than others, depending on the value of other tunable parameters. We
also assess the performance of coarse-grained position measurement, showing that it may be employed to realize
nearly optimal estimation strategies.
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I. INTRODUCTION

A quantum probe is a physical system, usually a micro-
scopic one, prepared in a quantum superposition. As a result,
the system may become very sensitive to changes occurring in
its environment and, in particular, to fluctuations affecting one
or more parameters of interest. Quantum sensing [1,2] is thus
the art of exploiting the inherent fragility of quantum systems
in order to design quantum protocols of metrological interest.
Usually, a quantum probe also offers the advantage of being
small compared to its environment and, in turn, noninvasive
and only weakly disturbing. In recent years, quantum probes
have been proved useful in several branches of metrology,
ranging from quantum thermometry [3–6] to magnetometry
[7–12], also including characterization of complex systems
[13–24].

In this paper, we address a specific instance of the quantum
probing technique, which we term lattice quantum magne-
tometry. It consists in employing a charged spinless particle,
confined on a finite two-dimensional square lattice (see Fig. 1)
in order to detect and estimate the value of a transverse
magnetic field, either homogeneous or inhomogeneous. Our
scheme finds its root in the study of continuous-time quantum
walks (CTQWs) [25,26] and their noisy versions [27–30] on
two-dimensional systems [31–34], but it does not exploit the
dynamical properties of the quantum walker, being based on
performing measurement on the ground state of the system.
Indeed, a charged quantum walker may be used as a quantum
magnetometer even when it is not walking since, as we will see,
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the ground-state quantum Fisher information (QFI) is non-
negligible in a large range of configurations. In addition, the
QFI has a nontrivial behavior (with peaks) as a function of the
field itself, suggesting that certain values of the magnetic field
may be estimated better than others. Those values may be in
turn tuned by varying other parameters, e.g., the field gradient,
making the overall scheme tunable and robust. Moreover,
focusing on a finite discrete system allows us to avoid the
infinite degeneracy of the continuous case ground state for
a homogeneous magnetic field (the so-called lowest Landau
level).

We also investigate whether measuring the position dis-
tribution on the ground state provides information about the
external field. Our results indicate that this is indeed the case,
and that position measurements, also when coarse grained,
may be employed to realize nearly optimal magnetometry. In
turn, as a possible implementation of our scheme we might
think of the quantum walk of a charged particle in an ion trap
lattice [35] or of an excitation in a ferromagnetic film [36].

As already mentioned above, in order to assess and com-
pare different estimation schemes, we employ the QFI as
figure of merit. This is a proper choice, since we address
situations where some a priori information about the field is
available, and a local estimation approach is thus appropri-
ate to optimize the detection scheme. We evaluate the QFI
through the ground-state fidelity and link it to the physical
properties of the system. In particular, we observe a rela-
tionship between the structure of the Hamiltonian spectrum
and the QFI obtained from a ground-state measurement, thus
linking precision to the spectral properties of the probe. We
also introduce a possible strategy to optimize this estimation
process by using a space-dependent magnetic field.
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FIG. 1. Schematic diagram of the probing technique discussed
in this paper. A charged spinless particle confined on a finite two-
dimensional square lattice is placed in a region subject to a locally
transverse magnetic field. The presence of the magnetic field alters
the eigenvectors and the spectra of the Hamiltonian, such that
information about the value of the field may be retrieved by per-
forming measurement on the particle in its ground state. We derive
the ultimate achievable precision and also assess the performance
of coarse-grained position measurement, showing that it may be
employed to realize nearly optimal estimation strategies.

The paper is structured as follows. In Sec. II we intro-
duce the system, i.e., its Hamiltonian and the shape of the
orthogonal static magnetic field. In Sec. III we introduce the
theoretical framework of our measurements, i.e., we provide
the main results and concepts of quantum estimation theory
(QET) used in this work and we study the feasibility of a
position measurement, whereas in Sec. IV we show the reason
why this system is of potential use as a magnetometer by
focusing on ground-state measurements. Section V closes the
paper with some concluding remarks, and possible outlooks.
In the Appendix we investigate the role of the lattice size.

II. PROBING SYSTEM

The quantum probe consists of a charged spinless particle
on a finite two-dimensional (2D) square lattice in the presence
of a locally transverse magnetic field. The lattice lays on the
xy plane and the magnetic field in the neighboring region
is parallel to the z axis. The finiteness of the system is
implemented by preventing the particle from hopping beyond
the boundaries (see Fig. 2). We set h̄ = q = d = 1, where
h̄ is the reduced Planck constant, q the electric charge, and
d the lattice constant. The lattice has size Nx × Ny, where
we denote, respectively, with Nx and Ny the total number of
sites in the x and y directions. We set Nx = Ny = 31, since a
(2n + 1) × (2n + 1) lattice has a properly defined center in
(n + 1, n + 1) (i.e., having n sites before and after itself along
the two orthogonal directions).

In the following we first discuss the details of the magnetic
field and then the Hamiltonian of this system. In particular, we
briefly describe the configurations we are going to consider,
with emphasis on the constraints arising out of the partic-
ular shape chosen for the inhomogeneous magnetic field. A

1 Nx

Ny

1

FIG. 2. Finiteness of the system, i.e., of the Nx × Ny square
lattice, is encoded in the allowed hopping paths, i.e., in the fact that
the particle cannot jump beyond the boundaries. In this work we
consider the hopping up to next-nearest neighbors. Here are some
relevant cases: in the middle of the lattice the hopping is allowed up
to next-nearest neighbors in both the directions; at the boundaries
the hopping beyond the ends is forbidden; in the second last site
along either or both of the directions the hopping to nearest neighbors
is preserved, while some paths toward next-nearest neighbors are
forbidden.

homogeneous magnetic field orthogonal to the xy plane

B = B0 k̂ (1)

can be obtained by choosing the symmetric gauge with the
vector potential defined as

A = B0

2
(−(y − y0), (x − x0), 0), (2)

where the magnetic field magnitude B0 is constant, and
(x0, y0) are the coordinates of the lattice center.

We are also interested in the study of space-dependent
magnetic fields. In particular, we will consider a magnetic
field profile constant along one axis (e.g., y) and varying along
the other, such that it reaches its maximum value in the middle
of the lattice—sites of coordinates (x0, y)—as shown in Fig. 3.
So, in order to get the desired magnetic field, we introduce a
function

f (x) = β − α|x − x0|, (3)

where α, β ∈ R+, which leads to the following generalized
expression for the vector potential:

A = f (x)

2
(−(y − y0), (x − x0), 0). (4)
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FIG. 3. (Top) Spatial dependence of the inhomogeneous mag-
netic field (B0 = 0.3, mx = 0.015) described in Eq. (5). It reaches
its maximum value B0 in the middle of the lattice, i.e., in the sites of
coordinates (x0, y). By moving away from it, it decreases linearly
[slope ±mx , with mx = tan(α)] along the x direction, while it is
constant along the y one. (Bottom) The couple of parameters (B0 =
0.3, mx = 0.035) must be chosen in a way that the reversal of B,
occurring when Eq. (7) holds, is avoided.

According to this definition, the analytical expression of the
magnetic field reads

B = (B0 − mx|x − x0|)k̂, (5)

where mx = 3α/2 is the gradient and B0 = β is the maximum
value of the magnitude of the magnetic field assumed on the
sites of coordinates (x0, y), i.e., in the middle of the lattice.
Notice that, having chosen a (2n + 1) × (2n + 1) lattice, the
magnitude of the magnetic field at the boundaries of the
lattice (along x) is the same. It should be emphasized that
such a magnetic field profile is fully characterized by the two
parameters B0 and mx, the homogeneous magnetic field being
just a special case for mx = 0.

The spatial dependence of the inhomogeneous magnetic
field and the magnetic length play a crucial role in defining
the interval of fields investigated. The upper limit is given by
the magnetic length lB, which is the fundamental characteristic
length scale for any quantum phenomena in the presence of a
magnetic field [37], and which is defined as follows:

lB :=
√

h̄

qB
. (6)

According to our units (h̄ = q = d = 1) the magnetic length
reads lB = B−1/2. For B > 1 the magnetic length becomesw
smaller than the lattice constant d , hence we consider only
B0 < 1. The lower limit, instead, is due to the need of avoiding

the reversal of the magnetic field (see bottom panel of Fig. 3),
which occurs when

B0 < mxL, (7)

where L := maxx(|x − x0|) = 15, in our system. In conclu-
sion, we consider B0 ∈ [mxL, 1].

The Hamiltonian describing a charged spinless particle in
an electromagnetic field reads [38]

H = 1

2m
(p − qA)2 + qφ, (8)

where q is the charge and m the mass of the particle, φ and
A are the scalar and vector potential, respectively. The former
is set to zero in this work since we are interested in having
the magnetic field only. These potentials are defined by the
following relations:

E = −∇φ − ∂A
∂t

, (9)

B = ∇ × A, (10)

where E and B are the electric and magnetic field, respec-
tively. To have a magnetic field parallel to the z axis, one can
choose the vector potential A = (Ax(x, y), Ay(x, y), 0).

The Hamiltonian describing such a system on a lattice is
obtained by introducing a space discretization of Eq. (8), i.e.,
by discretizing the xy plane into a square lattice. Since we are
considering a lattice, we have to express derivatives with finite
difference and this, in turn, corresponds to discretizing the
space. We adopt a five-point finite difference formula [39] to
express derivatives and, according to this choice, we are able
to write the analytical expression of the resulting Hamiltonian:

H = −J
Nx,Ny∑
j,k=1

{[
−5 −

(
Ax

j,k
2 + Ay

j,k
2
)]

| j, k〉〈 j, k|

− 1

12

[
1 + i

(
Ax

j−2,k + Ax
j,k

)]| j, k〉〈 j − 2, k|

+2

3

[
2 + i

(
Ax

j−1,k + Ax
j,k

)]| j, k〉〈 j − 1, k|

+2

3

[
2 − i

(
Ax

j+1,k + Ax
j,k

)]| j, k〉〈 j + 1, k|

− 1

12

[
1 − i

(
Ax

j+2,k + Ax
j,k

)]| j, k〉〈 j + 2, k|

− 1

12

[
1 + i

(
Ay

j,k−2 + Ay
j,k

)]
| j, k〉〈 j, k − 2|

+2

3

[
2 + i

(
Ay

j,k−1 + Ay
j,k

)]
| j, k〉〈 j, k − 1|

+2

3

[
2 − i

(
Ay

j,k+1 + Ay
j,k

)]
| j, k〉〈 j, k + 1|

− 1

12

[
1 − i

(
Ay

j,k+2 + Ay
j,k

)]
| j, k〉〈 j, k + 2|

}
, (11)

where | j, k〉 (with j = 1, . . . , Nx and k = 1, . . . , Ny) denotes
a position eigenvector, i.e., a state describing the particle
localized on the site of coordinates ( jd, kd ). Analogously,
the components of the vector potential have to be intended as
Ax(y)

j,k = Ax(y)( jd, kd ). The parameter J is a constant and, after
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restoring the fundamental constants and parameters, it reads
J = h̄2/(2md2). We set m = 1/2 and thus J = 1.

The expression of H in Eq. (11) fits the usual interpre-
tation of the Hamiltonian describing a CTQW [40] and it
is consistent with the one given in Ref. [41]. In this case
it would describe the CTQW of a charged spinless particle
on a finite 2D square lattice. The hopping of the walker is
described by projectors onto different position eigenvectors.
For example | j, k〉〈 j, k| is the tunneling from site ( j − 1, k) to
site ( j, k), and the associated tunneling amplitude depends on
the vector potential. Moreover, the on-site energy (associated
with projectors onto the same state) depends quadratically on
the magnitude of the vector potential.

III. ESTIMATION PROCEDURE

In this section we introduce some theoretical tools to
optimize the estimation of a parameter, say λ, which, in our
case, is the magnitude B0 of the (in)homogeneous magnetic
field. Let us consider the family ρλ of the possible states
of our probe, labeled by the parameter λ, which constitutes
the quantity to be estimated. The main goal is to infer the
value of λ by measuring some observable quantity over ρλ.
To this aim one performs repeated measurements on identical
preparations of the system and then processes the outcomes
(x1, x2, . . . , xM ) in order to obtain an estimator for the pa-
rameter, λ̂ = λ̂(x1, x2, . . . , xM ). The figure of merit usually
adopted to assess the precision of an estimator is the variance
Var(λ) = Eλ[λ̂2] − Eλ[λ̂]2. In the case of unbiased estima-
tors, the variance is equal to the mean square error of the
estimator, V (λ) = Eλ[(λ̂ − λ)2]. The Cramèr-Rao inequality
gives a lower bound for the estimator variance

V (λ) � 1

MF (λ)
, (12)

where M is the number of measurements and F (λ) is the
Fisher information (FI) defined as

F (λ) =
∫

dx p(x|λ)[∂λ ln p(x|λ)]2, (13)

where p(x|λ) is the conditional probability of obtaining the
outcome x when the value of the parameter is λ. In quan-
tum mechanics, according to the Born rule, such conditional
probability is written as p(x|λ) = Tr[�xρλ], where {�x},∫

dx �x = I, are the elements of a positive operator-valued
measure. In order to achieve the ultimate bound to precision
as posed by quantum mechanics, the FI must be maximized
over all possible measurements. This procedure can be done
by introducing the symmetric logarithmic derivative (SLD)
Lλ as the operator satisfying the equation Lλρλ + ρλLλ =
2∂λρλ. The ultimate bound of the precision of any estimator
is expressed by the quantum Cramèr-Rao bound

V (λ) � 1

MH (λ)
, (14)

where H (λ) = Tr[ρλL2
λ] is the so-called quantum Fisher in-

formation. Indeed, it can be proved that the FI of any quantum
measurement is bound by the QFI, i.e.,

F (λ) � H (λ). (15)

When the condition F (λ) = H (λ) holds, the measurement is
said to be optimal. An optimal (projective) measure is given
by the spectral measure of the SLD which, however, may not
easy to implement practically.

In this work we deal with pure states and we are interested
in estimating a single parameter. This leads to the following
simple expression for the QFI:

H (λ) = lim
δλ→0

8(1 − |〈ψλ|ψλ+δλ〉|)
(δλ)2

. (16)

For a given λ, a large value of the QFI implies that the
quantum states |ψλ〉 and |ψλ+δλ〉 are statistically more dis-
tinguishable than the same pair of states for a value λ cor-
responding to smaller QFI. This confirms the intuitive picture
where optimal estimability (diverging QFI) is reached when
quantum states are sent far apart upon infinitesimal variations
of the parameter.

Besides the SLD, the natural choice for an observable
providing information about the field is the position. We
consider the two observables X and Y such that

X | j, k〉 = jd | j, k〉 and Y | j, k〉 = kd | j, k〉, (17)

where d is the lattice constant and {| j, k〉} is the orthonormal
basis of the position eigenvectors. We measure the compatible
pair of observables (X,Y ) and, in order to assess the perfor-
mance, we evaluate the ratio

R(λ) = F (λ)

H (λ)
∈ [0, 1] (18)

between the position FI F and the QFI H , respectively, given
in Eqs. (13) and (16), in the light of Eq. (15). This ratio tells
us how much the FI of a given measurement is close to the
QFI, which is achieved when R = 1. We perform a ground-
state measurement, then the probabilities entering Eq. (13)
are straightforwardly given by the square modulus of the
projections of the ground state onto the position eigenvectors.
The Hamiltonian in Eq. (11) is already written in the basis of
position eigenvectors, thus the components of the ground state
are actually the projections we need.

In addition, we investigate the performance of coarse-
grained position measurement, i.e., whether position measure-
ment is robust when the resolution of the measurement does
not permit us to measure the probability associated with a
single site of the lattice. To this purpose, we define square
grains of size g × g, where g = 1, 3, 5, 10 denotes the number
of sites forming the side of the cluster (see Fig. 4). We keep as
reference H and compute F at different g by rewriting Eq. (13)
in terms of grain probabilities rather than site probabilities.
This may done as follows: let us denote a generic site as
s := ( j, k) and a grain, i.e., a cluster of sites, of size g × g
as Gg. Notice that these clusters are disjoint (Gg ∩ G′

g = ∅).
Then we compute the FI as

Fg(λ) =
∑
Gg

P(Gg|λ)[∂λ ln P(Gg|λ)]2, (19)

where

P(Gg|λ) =
∑
s∈Gg

p(s|λ) (20)
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FIG. 4. A coarse-grained position within the Nx × Ny = 31 × 31
square lattice is defined as a (g × g)-sized cluster of sites, where g =
1, 3, 5, 10.

is the grain probability and p(s|λ) is the site probability, i.e.,
the conditional probability of finding the walker in the site s
when the parameter takes the value λ. Clearly, for g = 1, grain
probability corresponds to site probability.

IV. GROUND-STATE QUANTUM MAGNETOMETRY

In this section we focus on ground-state measurements
in order to assess the behavior of this system as a quantum
magnetometer, i.e., as a probe to estimate the magnitude of the
magnetic field acting on it. To this aim we compute the QFI
via Eq. (16): the parameter λ to be estimated is the magnetic
field magnitude B0, whereas |ψλ〉 and |ψλ+δλ〉 are the system
ground states corresponding to magnetic field magnitudes B0

and B0 + δB > B0, respectively.

A. Homogeneous magnetic field

To understand whether our system is of potential use
as a quantum magnetometer, we first consider a static ho-
mogeneous magnetic field (mx = 0). We compute the QFI
for different values of B0, and the position FI to assess its
performance and to study which values of the parameter, if
any, can be better estimated (see top panel of Fig. 5).

The first observation is that the QFI (solid black line H) is
nonvanishing in the whole magnetic field interval considered,
showing that estimation of the field may be indeed obtained
from ground-state measurement. Then, we notice that even
if the position FI (dashed colored lines F ) is smaller than
the QFI, it has the same order of magnitude. In particular, it
decreases for increasing the grain size g, but it still preserves a
structure analogous to that of the QFI. The behavior of the FI
is more clearly depicted in the bottom panel of Fig. 5, where
we see that the ratio R = F/H moderately decreases as the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.05 0.1 0.15 0.2

R

B0

g=1
g=3
g=5

g=10

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2
B0

H
F g=1
F g=3
F g=5

F g=10

FIG. 5. Quantum Fisher information H , position Fisher infor-
mation F (at different grain size g) (top) and their ratio R = F/H
(bottom) as a function of the magnitude B0 of the static homogeneous
magnetic field (mx = 0). Notice that in the top panel H (0) > 0,
whereas F (0) = 0 ∀ g.

grain size increases. Yet, for g = 1, F overlaps very well the
curve of H , as proved by the fact that the ratio R is close to
1 in the whole interval of B0 considered. In order to compare
the results of Fig. 5 to those of the corresponding continuous
infinite case (no lattice), it is worth evaluating the QFI of
the ground state of Eq. (8) (for φ = 0 and symmetric gauge).
Assuming zero angular momentum, the wave function of the
ground state for the case of a homogeneous magnetic field B
is (q = h̄ = 1)

ψc(x, y) =
√

B

2π
e− B

4 (x2+y2 ) , (21)

and according to Eq. (16) Hc(B) = B−2, which is exactly the
behavior observed in the top panel of Fig. 5 for large values
of B0. Therefore, the first remarkable effect due to the finite
discretization is the appearance of a maximum instead of a
divergence for vanishing B0. Notice also that H (0) > 0.

In Fig. 6 we illustrate the behavior of the QFI: it is
dependent on the magnetic field and the region of high QFI
suggests that some values can be estimated more efficiently
than the others. Indeed, as it can be seen from Eq. (16), high
values of QFI denote that a slight change in the parameter
of interest greatly affects the ground state, in a way that
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FIG. 6. Quantum Fisher information H (dashed red line) and
lower-energy spectrum (solid blue line) as a function of the mag-
nitude B0 of the static homogeneous magnetic field (mx = 0).

|〈ψλ+δλ|ψλ〉| < 1. The same interval of B0 characterized by
a high QFI is also where the system partial energy spectrum,
i.e., the lowest Hamiltonian eigenvalues, shows the more
complex dependence on B0. In other words, the discretization
is making the energy spectrum at low B0 more structured
and, in turn, much more sensitive to small changes in the
value of B0. On the contrary, for large B0 we approach a
situation of quasi-degeneracy of continuous states and the
system becomes overall less sensitive.

B. Inhomogeneous magnetic field

The interesting features shown by the QFI for a static
homogeneous magnetic field (mx = 0) are further investigated
here by considering a static inhomogeneous magnetic field
(mx > 0). In this case, as we notice in top panel of Fig. 7,
the QFI (solid black line H) is still non-null within the whole
interval of magnetic field considered. The position FI does not
follow the behavior of the QFI for low B0 but it does it in
correspondence with the peak of the QFI. Also in this case we
show the ratio R = F/H in the bottom panel of Fig. 7.

As it may be seen looking at Fig. 8, the QFI peak occurs for
the value of B0 such that the lowest energy eigenvalues present
an avoided crossing phenomenon, such that the behavior of
the QFI may be interpreted in terms of the structure of a
two-level effective system. Indeed, in systems with parameter-
dependent Hamiltonians, small perturbations may induce rel-
evant changes in the ground state of the system, and this
behavior is emphasized in the presence of level anticrossing.
Summarizing from [10], we have that for a two-level system
with (generic) Hamiltonian of the form

H2 = ω0σ0 − �(λ)σ3 + γ (λ)σ1 , (22)

where σk (with k = 0, . . . , 3) denote the Pauli matrices, the
QFI H (λ) may be written as

H (λ) = 16

(
�

h+ − h−

)4

[∂λ(γ /�)]2 , (23)

where h± are the eigenvalues of H2.
In Fig. 9 we plot the QFI as a function of B0 for different

values of the gradient mx. These results clearly show that
for any value of the parameter B0 to be estimated, there is
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FIG. 7. Quantum Fisher information H , position Fisher infor-
mation F (at different grain size g) (top) and their ratio R = F/H
(bottom) as a function of the magnitude B0 (value in the lattice
center) of the static inhomogeneous magnetic field (mx = 0.015).

a gradient value mx which maximizes the QFI. Therefore
estimability performances can be enhanced by a proper choice
of mx. In other words, the system may actually be employed
as a quantum magnetometer, since it allows us to estimate
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magnetic field (mx = 0.015).
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FIG. 9. (a) Quantum Fisher information H , (b) position Fisher
information F at grain size g = 1, and (c) their ratio R = F/H
at varying magnitude B0 (value in the lattice center) of the
static inhomogeneous magnetic field for different values of the
gradient mx .

the magnetic field magnitude B0 starting from a ground-
state measurement, which can be optimized by choosing
the optimal gradient mx. We stress again that the estimation
of B0 and the prior knowledge of mx are enough to fully
describe the magnetic field shape. We notice here that the
complementary problem of gradient magnetometry has been
recently addressed [42] with atomic ensembles, showing that
achieving the precision bounds requires the knowledge of
the homogeneous part of the field. The correlation between
the QFI maxima and the structures of the energy spectrum
can be exploited by considering the possibility of obtaining
information about the energy spectrum starting from the
QFI, or vice versa by investigating the energy spectrum in
order to gain information about the QET properties of the
system.

V. CONCLUSIONS

In this work, we have studied a charged spinless particle
on a finite 2D square lattice in the presence of a locally
transverse magnetic field. The Hamiltonian has been de-
rived from a spatial discretization of the Hamiltonian of the
corresponding system in a plane, and the time-independent
Schrödinger equation has been solved exactly by numerical
diagonalization for a lattice size 31 × 31. Our focus has been
on the potential use of the quantum features of this system
as quantum magnetometer. In particular, we have analyzed
its performance in the estimation of a transverse magnetic
field, either homogeneous or inhomogeneous, by performing
measurements on the system’s ground state.

Our results show that the system is of interest from the
metrological standpoint: the ground state QFI for the magnetic
field is non-negligible in a large range of configurations. We
have first seen this behavior for the case of a homogeneous
magnetic field, and then for a space-dependent magnetic field.
In particular, we have found that the QFI shows peaks at spe-
cific values of the magnetic field and of its gradient, making
it possible to optimize the estimation strategy by properly
tuning the value of the latter. To gain insight into the origin of
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FIG. 10. Study of the peaks of the quantum Fisher information
for different lattice sizes N × N , where N = 2n + 1, in the case of
a static homogeneous magnetic field (mx = 0). (Top) QFI H as a
function of the magnitude B0 of the static homogeneous magnetic
field for different lattice sizes. (Bottom) Position and height of the
peak of the QFI as a function of the lattice size. Increasing the lattice
size makes the peak sharper and higher and makes it occur at lower
values of B0. This approaches the result expected in the limit of an
infinite lattice.

062330-7



LUCA RAZZOLI et al. PHYSICAL REVIEW A 99, 062330 (2019)

the QFI peaks, we analyzed the structure of the Hamiltonian
spectra, and found that the relation between the QFI peaks
and the values of magnetic field at which they occur may be
understood in terms of avoided crossing phenomena between
the two lowest Hamiltonian eigenvalues.

We also studied the performance of position measure-
ments. In the case of ground-state measurements the cor-
responding FI provides a quite good approximation to the
QFI, showing an analogous peak structure. In particular, for
a homogeneous magnetic field the FI overlaps very well
the QFI. For an inhomogeneous magnetic field the FI re-
produces the behavior of QFI at least in the neighborhood
of QFI peak. Concerning robustness, we found that if one
is not able to perform measurements at site resolution but
one has access to coarse-grained measurement only at level
of clusters of sites, the FI decreases as the grain size in-
creases. On the other hand, the FI has the same order
of magnitude of the QFI and preserves a peak structure
analogous to QFI, proving the robustness of this kind of
measurement.

In conclusion, our results show that effective quantum
sensing of magnetic fields is possible using a charged spin-
less particle on a finite two-dimensional lattice. In partic-
ular, ultimate bounds to precision may be approached by
position measurement on the ground state of the system,
which is also robust against coarse graining, i.e., reduction of
resolution.
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APPENDIX: ROLE OF LATTICE SIZE

In this Appendix we investigate the role of the lattice size in
determining the position and the height of the peak of the QFI
in the case of a static homogeneous magnetic field (mx = 0),
as shown in Fig. 10. In the top panel we observe that as the size
of the lattice increases, the peak gets sharper and higher and it
occurs at lower values of the magnetic field. In fact, this result
approaches the limit of an infinite lattice, which in turn, for an
infinitesimal lattice parameter, should recover the continuum.
For the latter we know that the QFI is Hc(B) = B−2, i.e., it
shows a divergence in B = 0. In the bottom panel it is shown
the dependence of the position and the height of the peak of
the QFI on N = 2n + 1, which defines the lattice size as N ×
N . In particular, we observe that, in our range of lattice sizes,
the position of the peak scales as ∼N−1.905, while its height as
∼N3.923. This result provides a better insight into the behavior
of the QFI shown in the top panel. In particular, it tells us that
in the limit of N → ∞ the position of the peak is zero and its
height diverges, as expected for the infinite continuous case.
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