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Bound entangled (BE) states are strange in nature: a nonzero amount of free entanglement is required to create
them but no free entanglement can be distilled from them under local operations and classical communication
(LOCC). Even though the usefulness of such states has been shown in several information processing tasks,
there exists no simple method to characterize them for an arbitrary composite quantum system. Here we present
a (d − 3)/2-parameter family of BE states each with positive partial transpose (PPT). This family of PPT-BE
states is introduced by constructing an unextendible product basis (UPB) in Cd ⊗ Cd with d odd and d � 5.
The range of each such PPT-BE state is contained in a 2(d − 1)-dimensional entangled subspace, whereas the
associated UPB subspace is of dimension (d − 1)2 + 1. We further show that each of these PPT-BE states can
be written as a convex combination of (d − 1)/2 rank-4 PPT-BE states. Moreover, we prove that these rank-4
PPT-BE states are extreme points of the convex compact set P of all PPT states in Cd ⊗ Cd , namely, the Peres
set. An interesting geometric implication of our result is that the convex hull of these rank-4 PPT-BE extreme
points—the (d − 3)/2 simplex—is sitting on the boundary between the set P and the set of non-PPT states. We
also discuss consequences of our construction in the context of quantum state discrimination by LOCC.
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I. INTRODUCTION

Entanglement is one of the fundamental features of multi-
partite quantum systems. Though this very concept was rec-
ognized in the early days of quantum theory [1], its physical
meaning has remained elusive to date. The advent of quan-
tum information theory identifies quantum entanglement as a
useful resource for several information processing tasks (see
Refs. [2,3] and references therein). Thus, characterization,
detection, and quantification of quantum entanglement are of
practical relevance and it is one of the main objectives to
pursue research in quantum information theory.

It has been shown that the quantum separability problem,
i.e., to verify whether an arbitrary density matrix of a given
bipartite quantum system is entangled or separable, is an
NP-hard problem [4]. But we have some sufficient criteria to
detect entanglement of a given state. One such useful crite-
rion is negative partial transposition (NPT): given a bipartite
quantum state, if its partial transposition is negative then the
state is entangled [5]. However, positive partial transposition
(PPT) does not always guarantee separability; indeed there
exist PPT-entangled states [6].

Quantifying entanglement is another challenging aspect in
entanglement theory, and different operational as well as geo-
metric measures have been introduced so far for this purpose.
One such operationally motivated measure is entanglement of
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distillation [7–9]. It is defined as the optimal rate of obtaining
a pure entangled state (singlet state) given many (asymptoti-
cally large) copies of the noisy (impure) entangled state under
a sequence of local operations and classical communication
(LOCC). However, this measure is not faithful1 as it has been
shown that PPT entangled states are undistillable and hence
are also called bound entangled (BE) states [6]. These PPT-BE
states may not be the only type of BE states as it has been
conjectured that there may exist NPT-BE states [10,11].

During the past few years, the usefulness of PPT-BE states
has been extensively studied in different contexts, e.g., en-
tanglement activation [12,13], probabilistic interconvertibility
among multipartite pure states [14,15], universal usefulness
[16], secure key distillation [17–19], and quantum metrology
[20]. Their connections to quantum steering [21] as well
as to quantum nonlocality [22] have also been established.
However, due to the hardness of the quantum separability
problem there is no simple scheme to decide whether a given
state is PPT-BE or not. We only know some examples and
special constructions of such states [6,23–32]. One elegant
construction comes from the structure of unextendible product
bases (UPBs). It was shown that the normalized projector
onto the subspace orthogonal to the UPB subspace (subspace
spanned by a UPB) is a PPT-BE state [23,26].

In order to explore the geometry of the set of PPT-BE
states, researchers have considered following sets of density

1A faithful entanglement measure is strictly positive if and only if
the state is entangled.
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matrices: (i) the set S of all separable density matrices and
(ii) the set P of all PPT density matrices. Both sets are convex
and compact. These sets are identical for any two-qubit system
as well as for any qubit-qutrit system while for other systems
P strictly contains S . Clearly, S contains only the rank-1
separable density matrices (pure product states) as its extreme
points. However, except for the two-qubit and the qubit-qutrit
systems, P contains not only the extreme points of S but also
some additional extreme points. These new extreme points
are nothing but PPT-BE states, and identifying such PPT-BE
states is a troublesome task. Moreover, there exist some PPT-
BE states, called edge states, living on the boundary of the
set P and that of NPT states. To understand the extremely
complicated structure of P it is important to identify the
extremal PPT-BE states as well as the edge states. In the past
few years a considerable effort has been given to addressing
this question. A series of interesting results can be found in
Refs. [33–44]. In Ref. [33], entanglement witness operators
were constructed for edge states. In Ref. [34], it was shown
that for any bipartite system the ratio between the probabilities
of finding a PPT state in the interior of the set of PPT mixed
quantum states and at its boundary is equal to 2. Later in
Refs. [35–44] different methods were proposed to identify
the extremal PPT-BE states of the set P . In particular, Chen
and Đoković have shown that all rank-4 two-qutrit PPT-BE
states can be constructed from unextendible product bases
and all such PPT-BE states are extreme points of P [40]. For
a higher-dimensional system, the problem of identifying the
extremal PPT-BE states as well as the edge states becomes
more complicated; indeed very little is known so far. The main
goal of the present work is to understand the set P for higher-
dimensional systems by exploring new classes of extreme
points and edge states. In the following, we summarize the
main findings of this paper:

(i) We construct a UPB in Cd ⊗ Cd , where d � 5 and d is
odd. We also provide the tile structures corresponding to the
UPB. The cardinality of such a UPB is (d − 1)2 + 1 and the
corresponding entangled subspace is of dimension 2(d − 1).
The present construction is a generalization of the Tiles UPB
in C3 ⊗ C3, given in Ref. [23].

(ii) We show that the PPT-BE state proportional to the full
rank projector onto the entangled subspace allows a convex
decomposition in terms of (d − 1)/2 rank-4 PPT-BE states
and hence is not an extreme point of the set P . Interestingly, it
turns out that the rank-4 PPT-BE states appearing in the above
decomposition are extreme points of the set P .

(iii) We further show that any convex mixture of the
aforesaid extreme points are edge states. Geometrically, a
(d − 3)/2 simplex is formed by the aforesaid (d − 1)/2 rank-
4 extreme points and the simplex resides on the boundary
between the set P and the set of NPT states. At this point
the result of Ref. [40] is worth mention. It turns out that
the entangled subspace corresponding to a two-qutrit UPB
contains only one edge state and hence it is also an extreme
point of P .

(iv) We study the cardinality of different locally indis-
tinguishable sets (both completable and uncompletable) of
orthogonal product states. We also discuss the merits of our
construction in the context of orthogonal mixed-state discrim-
ination by LOCC.

The paper is organized in the following way. In Sec. II we
provide the notations used here and discuss the prerequisite
ideas. In Sec. III we provide the main results where we first
briefly review the Tiles UPB in C3 ⊗ C3 and then present the
generalized Tiles UPB in C5 ⊗ C5 and Cd ⊗ Cd , respectively.
Then we provide the parametric family of PPT-BE edge states.
Finally, in Sec. IV we make concluding remarks with some
open problems for further research.

II. NOTATIONS AND PRELIMINARIES

A complex Hilbert space of dimension d is denoted by
Cd . To represent a non-null (unnormalized) vector, we use
the ket notation |v〉 ∈ Cd , while |ṽ〉 denotes the normalized
vector parallel to |v〉. A linear operator maps a vector |v〉 ∈ Cd

to another vector |v′〉 ∈ Cd . The rank of a linear operator
O : Cd �→ Cd is the dimension of its range denoted by R(O).
Given a set of vectors, S = {|v1〉, . . . , |vk〉} ⊂ Cd , their linear
span forms a subspace Span(S) := {∑k

i=1 αi|vi〉 | αi ∈ C, ∀ i};
sometimes we use the notation |∑k

i=1 αivi〉 ≡ ∑k
i=1 αi|vi〉.

The tensor product of two Hilbert spaces CdA and CdB

is denoted by CdA ⊗ CdB . Consider an n-dimensional sub-
space of CdA spanned by a set of orthogonal vectors {|ui〉}n

i=1
and an m-dimensional subspace of CdB spanned by {|vi〉}m

i=1.
We say that {|u1〉A, . . . , |un〉A} ⊗ {|v1〉B, . . . , |vm〉B} spans the
subspace Cn ⊗ Cm of CdA ⊗ CdB , where {|u1〉A, . . . , |un〉A} ⊗
{|v1〉B, . . . , |vm〉B} ≡ {|ui〉A ⊗ |v j〉B}n,m

i, j=1.
A convex set A is a subset of an affine space that is closed

under convex combinations; i.e., for any ai ∈ A,
∑n

i=1 piai ∈
A, where pi � 0, ∀ i and

∑n
i=1 pi = 1. A point b ∈ A is called

an extreme point of A if it cannot be expressed as a convex
combination of other points in A. The set of all extreme points
of A is denoted by E (A). A subset in Euclidean space is
called compact if it is closed (contains all limit points) and
bounded. According to the Krein-Milman theorem [45], any
convex compact set of a finite-dimensional vector space is
equal to the convex hull of its extreme points. Thus, this
theorem ensures that while maximizing a linear functional
over a convex compact set, it is sufficient to scan over only
the extreme points instead of the whole convex compact set.

Every quantum system is associated with a Hilbert space.
The state of a d-level quantum system is described by a
density matrix ρ which is a positive semidefinite, Hermitian,
trace-1 operator acting on Cd . The set of all these density
matrices D(Cd ) forms a convex compact subset of a real
Euclidean space R(d2−1). For the density matrices of rank 1,
i.e., ρ = |ψ〉〈ψ |, |ψ〉 ∈ Cd constitutes E (D).

A bipartite quantum system is associated with a tensor-
product Hilbert space H = HA ⊗ HB = CdA ⊗ CdB , where dk

is the dimension of Hk, k ∈ {A, B}. A quantum state ρAB ∈
D(CdA ⊗ CdB ) is called a separable state (or product state)
if it can be written as ρAB = ∑

i piρ
i
A ⊗ ρ i

B, where ρ i
k ∈

D(Cdk ), ∀ i, k; pi ∈ {0, 1} and
∑

i pi = 1. States that cannot
be expressed in this form are entangled. The set of all separa-
ble states S (CdA ⊗ CdB ) is also a convex compact set which
is strictly contained in D, i.e., S ⊂ D. Note that E (D) is
constituted by both pure product and entangled states while
only the pure product states constitute E (S ).

To certify entanglement of a bipartite state, the partial
transpose operation plays a crucial role. Partial transpose of
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a density matrix ρAB is denoted by ρ
Tk
AB, where Tk is the

transposition operation in a chosen basis with respect to the
kth party. If ρ

Tk
AB � 0, ρAB must be entangled [5]. However,

ρ
Tk
AB � 0 guarantees separability of a given density matrix

for the systems C2 ⊗ C2, C3 ⊗ C2, and C2 ⊗ C3. In fact, in
higher dimensions, there exist entangled states with positive
partial transpose [6]. For a composite Hilbert space, the states
having positive partial transpose again form a convex compact
set P (CdA ⊗ CdB ) (say), also known as the Peres set [35].
Clearly, S ⊆ P ⊂ D with set equality holds true for lower
dimensions, i.e., for any two-qubit and qubit-qutrit systems.
Thus, E (P ) is exactly the same as E (S ) in these dimensions
and E (P ) is strictly bigger than E (S ) for all other dimensions.
So, the nontriviality of characterizing E (P ) lies in the fact
that it contains not only pure product states but also some
additional PPT-BE states. One of the goals of the present work
is to understand these additional PPT-BE states of E (P ). Here,
these PPT-BE states are connected to UPBs, the definition of
which is given below.

Definition 1. Consider a bipartite quantum system H =
CdA ⊗ CdB . A complete orthogonal product basis (COPB) is
a set of orthogonal product states that spans H while an
incomplete orthogonal product basis (ICOPB) is a set of
pure orthogonal product states that spans a subspace HS of
H. An uncompletable product basis (UCPB) is an ICOPB
whose complementary subspace H⊥

S contains fewer pairwise
orthogonal pure product states than its dimension. A UPB
is a UCPB whose complementary subspace H⊥

S contains no
product states.

Note that H⊥
S , in the case of a UPB, is a fully entangled

subspace. Here, we denote such a subspace as HE . Bennett
et al. showed that the normalized projector onto the subspace
HE for a given UPB is a PPT-BE state [23]. These PPT-BE
states are known to be edge states as they reside on the
boundary between the set of PPT-BE states and that of the
NPT states. In the following, we recall the mathematical
definition of an edge state [33].

Definition 2. A PPT-BE state δAB is an edge state if and
only if there exists no product state |ϕA〉|ϕB〉 and ε > 0, such
that δAB − εP(|ϕA〉|ϕB〉) is positive or does have a PPT, where
P(·) denotes the one-dimensional projection operator.

A necessary and sufficient criterion for an edge state is
given in Ref. [33]. We recall that criterion in the following
remark.

Remark 1. A PPT-BE state δAB is an edge state if and only
if there exists no |ϕA〉|ϕB〉 ∈ R(δAB), such that |ϕA〉|ϕ�

B〉 ∈
R(δTB

AB), where |ϕ�
B〉 is the complex conjugate of |ϕB〉.

Obviously, any PPT-BE state belonging to E (P ) is an edge
state, but the converse is not true in general. Still, identifying
the edge states is important to decipher the complicated geo-
metrical structure of the set P . This is another aspect of the
present study. In particular, we provide a parametric family of
edge states and the number of parameters increases linearly
with the dimension of subsystems.

Another important aspect of UPBs is that they ex-
hibit the phenomenon quantum nonlocality without entan-
glement [46] and hence the orthogonal pure product states
within a UPB cannot be perfectly distinguished by LOCC
[23,26]. Suppose that no party can perform nontrivial and

orthogonality-preserving measurement2 [47–49] in order to
distinguish a set of orthogonal pure product states. Then
this guarantees that the states of the given set cannot be
distinguished perfectly by LOCC. Indeed, not even a single
state from that set can be perfectly identified by such mea-
surements. Again, in the context of orthogonal mixed-state
discrimination, UPBs play a crucial role. It has been shown
that any state supported in HE cannot be conclusively dis-
tinguished from the mixed state proportional to the projector
onto the UPB subspace [50]. Our construction leads to a
few interesting observations regarding the state discrimination
problem by LOCC.

III. RESULTS

Finding all the extreme points of the set P of a given
system CdA ⊗ CdB is a highly nontrivial task. This is because
of two reasons: first, identifying a PPT-BE state is itself a
nontrivial job, and then determining whether such a PPT-BE
state is an extreme point of the set P is the second hurdle.
Leinaas and co-authors, for the first time, derived a necessary
and sufficient condition for uniquely identifying the extreme
points of P [35]. However, the useful implication of their
condition requires an algorithmic search to detect any such
point. Subsequently, this method has been studied in several
bipartite and multipartite systems [36,37]. Later, these works
motivated Chen and Đoković to come up with an analytical
approach to explore the nontrivial extreme points of P [40].
In particular, using the techniques of projective geometry, they
proved that any rank-4 PPT-BE state in C3 ⊗ C3 is an extreme
point of P . As an immediate extension of this result, we give
the following lemma.

Lemma 1. Consider a rank-4 PPT-BE state ρAB of CdA ⊗
CdB with dA, dB � 3. Assume that the range of ρAB is sup-
ported in H′

A ⊗ H′
B, where H′

A (H′
B) is a three-dimensional

subspace of CdA (CdB ) and in H′
A ⊗ H′

B, the tensor product
is the induced version of “⊗” used for the full Hilbert space
CdA ⊗ CdB . Then the state ρAB is an extreme point of the set P
of CdA ⊗ CdB .

Proof. In contradiction to the statement of the above
lemma, let us assume that ρAB is not an extreme point of
P . Therefore, ρAB allows at least one decomposition of the
form ρAB = pηAB + (1 − p)η′

AB, where p ∈ (0, 1) and ρAB �=
ηAB, ρAB �= η′

AB, and ηAB �= η′
AB. The ranges of ηAB and

η′
AB are fully contained in the range of ρAB. Consider the

projector P′ onto the subspace H′
A ⊗ H′

B. P′σP′ = σ , for
σ ∈ {ρAB, ηAB, η′

AB}; therefore, P′ρABP′ = pP′ηABP′ + (1 −
p)P′η′

ABP
′, which contradicts the result of Chen et al. [40] that

any PPT-BE state of rank 4 in C3 ⊗ C3 is an extreme point.
�

Next we construct a (d − 3)/2-parameter family of PPT-
BE states in Cd ⊗ Cd for odd d and corresponding UPBs.

2If not all the positive operator-valued measure (POVM) elements
describing a measurement are proportional to the identity operator
then the measurement is a nontrivial measurement. Moreover, while
distinguishing a given set of orthogonal states if the postmeasure-
ment states remain pairwise orthogonal then it is an orthogonality-
preserving measurement.
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FIG. 1. Tile structure of a UPB in C3 ⊗ C3.

Our construction is a generalization of Tiles UPB in C3 ⊗ C3

introduced by Bennett et al. [8]. So, before presenting our
main results we first briefly review different aspects of the
Tiles UPB in C3 ⊗ C3.

A. Tiles UPB in C3 ⊗C3

The orthogonal pure product states forming the Tiles UPB
in C3 ⊗ C3 are given below (see Fig. 1):

|ψ1〉 = |0〉|0 − 1〉, |ψ2〉 = |2〉|1 − 2〉,
|ψ3〉 = |0 − 1〉|2〉, |ψ4〉 = |1 − 2〉|0〉,
|S〉 = |0 + 1 + 2〉|0 + 1 + 2〉. (1)

The states are written without the normalization coeffi-
cients and throughout the paper we follow this convention
unless stated otherwise. We say a subspace spanned by the
product states forming a UPB is a UPB subspace (HU ).
The subspace orthogonal to HU contains no product state
and hence is an entangled subspace (HE ). The normalized
projector on HE is given by

ρ3 = 1

4

(
I3 ⊗ I3 −

4∑
i=1

|ψ̃i〉〈ψ̃i| − |S̃〉〈S̃|
)

, (2)

where In denotes an n × n identity matrix, and |ψ̃i〉’s and |S̃〉
are normalized states of that given in Eqs. (1). We use the
subscript ρ3 to indicate that it is a density matrix on C3 ⊗ C3.
Since HE contains no product state, ρ3 is an entangled state.
To prove the positivity of ρ3 under partial transpose we make
use of the following observation taken from Ref. [10].

Observation 1. Under transposition on Alice’s side any
pure product state |αA〉〈αA| ⊗ |αB〉〈αB| becomes |α∗

A〉〈α∗
A| ⊗

|αB〉〈αB| and hence a set of orthogonal product states is
mapped into another set of orthogonal product states.

This guarantees the positivity of ρ3 under partial transpo-
sition. If we remove the state |S〉 from Eqs. (1), the remaining
four states together with the following five product states form

FIG. 2. Tile structure of a UPB in C5 ⊗ C5.

a COPB:

|ψ5〉 = |0〉|0 + 1〉, |ψ6〉 = |2〉|1 + 2〉,
|ψ7〉 = |0 + 1〉|2〉, |ψ8〉 = |1 + 2〉|0〉,
|ψ9〉 = |1〉|1〉. (3)

When the state |S〉 is considered with the set of states
{|ψi}4

i=1, it stops inclusion of any the above states from
forming a COPB. In other words it plays the role of “stopper”
to construct the UPB. Using the states of Eqs. (3) one can
construct four pairwise orthogonal entangled states {|φi〉}4

i=1
that span HE . One such construction is given as follows:

|φ1〉 = |ψ5〉 + |ψ6〉 − |ψ7〉 − |ψ8〉,
|φ2〉 = |ψ5〉 − |ψ6〉 + |ψ7〉 − |ψ8〉,
|φ3〉 = |ψ5〉 − |ψ6〉 − |ψ7〉 + |ψ8〉,
|φ4〉 = a1(|ψ5〉 + |ψ6〉 + |ψ7〉 + |ψ8〉) + a2|ψ9〉. (4)

Note that the orthogonality of the states {|ψi〉}4
i=1 with that of

Eqs. (4) is immediate from construction. The orthogonality of
{|φi〉}3

i=1 with |S〉 is also ensured due to the construction but to
make |φ4〉 orthogonal to |S〉 we need to fix the values of a1, a2

accordingly. Now the PPT-BE state of (2) can be rewritten
as ρ3 = 1/4

∑4
i=1 |φ̃i〉〈φ̃i|. With reference to this context, it is

quite worthy to mention that ρ ′
3 = ∑4

i=1 pi|φ̃i〉〈φ̃i| is an NPT,
where pi’s are probabilities (excluding the case when all pi’s
are equal) [40]. Indeed all such states are one-copy distil-
lable [51]. Next we generalize this tile structure to higher-
dimensional Hilbert spaces and explore different intriguing
aspects of such generalization.

B. Tiles UPB in C5 ⊗ C5

In C5 ⊗ C5, it is possible to construct a COPB based on
the tile structure given in Fig. 2. If we choose a suitable
stopper |S〉 ∈ C5 ⊗ C5 and remove the product states that
are not orthogonal to |S〉 then the remaining states of the
COPB along with |S〉 form a UPB in C5 ⊗ C5. Such a UPB is
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given by

|ψ1〉 = |0〉|0 − 1 + 2 − 3〉, |ψ2〉 = |0〉|0 + 1 − 2 − 3〉,
|ψ3〉 = |0〉|0 − 1 − 2 + 3〉, |ψ4〉 = |4〉|1 − 2 + 3 − 4〉,
|ψ5〉 = |4〉|1 + 2 − 3 − 4〉, |ψ6〉 = |4〉|1 − 2 − 3 + 4〉,
|ψ7〉 = |0 − 1 + 2 − 3〉|4〉, |ψ8〉 = |0 + 1 − 2 − 3〉|4〉,
|ψ9〉 = |0 − 1 − 2 + 3〉|4〉, |ψ10〉 = |1 − 2 + 3 − 4〉|0〉,

|ψ11〉 = |1 + 2 − 3 − 4〉|0〉, |ψ12〉 = |1 − 2 − 3 + 4〉|0〉,
|ψ13〉 = |1〉|1 − 2〉, |ψ14〉 = |3〉|2 − 3〉,
|ψ15〉 = |1 − 2〉|3〉, |ψ16〉 = |2 − 3〉|1〉,

|S〉 = |0 + 1 + 2 + 3 + 4〉|0 + 1 + 2 + 3 + 4〉. (5)

Note that the cardinality of a UPB depends on the choice of
stopper state. We say the product states that are not orthogonal
to the stopper |S〉 but are orthogonal to all the other states in
Eqs. (5) are missing states. The missing states {|ψi〉}25

i=17 are
given by

|ψ17〉 = |0〉|0 + 1 + 2 + 3〉, |ψ18〉 = |4〉|1 + 2 + 3 + 4〉,
|ψ19〉 = |0 + 1 + 2 + 3〉|4〉, |ψ20〉 = |1 + 2 + 3 + 4〉|0〉,
|ψ21〉 = |1〉|1 + 2〉, |ψ22〉 = |3〉|2 + 3〉,
|ψ23〉 = |1 + 2〉|3〉, |ψ24〉 = |2 + 3〉|1〉, |ψ25〉 = |2〉|2〉.

(6)

Note that, in case of the COPB, each tile of the outermost
layer corresponds to four pairwise orthogonal product states
while each tile of the inner layer corresponds to two pairwise
orthogonal product states, and the middle one corresponds to
the state |ψ25〉 = |2〉|2〉. Because of the nonorthogonality with
the stopper, one has to remove a pure product state from each
tile in order to build the UPB. Hence, there are 17 states in
the present UPB. This construction is different from that of
Ref. [26].

Clearly, the states {|ψi〉}16
i=1 of Eqs. (5) and the states

{|ψi〉}25
i=17 of Eqs. (6) together form a COPB in C5 ⊗ C5. Such

a class of COPB in Cd ⊗ Cd and their local indistinguisha-
bility is discussed in Ref. [52]. Notice the structure given in
Fig. 2. To include an orthogonal product state in any of the
tiles, the new state must be orthogonal to the existing states
of that tile and the stopper |S〉. But it is not possible and
hence guarantees the unextendibility. Next, we construct the
entangled basis {|φi〉}8

i=1 that spans the entangled subspace
HE of C5 ⊗ C5:

|φ1〉 = |ψ17〉 + |ψ18〉 − |ψ19〉 − |ψ20〉,
|φ2〉 = |ψ17〉 − |ψ18〉 + |ψ19〉 − |ψ20〉,
|φ3〉 = |ψ17〉 − |ψ18〉 − |ψ19〉 + |ψ20〉,
|φ4〉 = a3(|ψ17〉 + |ψ18〉 + |ψ19〉 + |ψ20〉)

+ a4(a2(|ψ21〉 + |ψ22〉 + |ψ23〉 + |ψ24〉) − a1|ψ25〉),

|φ5〉 = |ψ21〉 + |ψ22〉 − |ψ23〉 − |ψ24〉,
|φ6〉 = |ψ21〉 − |ψ22〉 + |ψ23〉 − |ψ24〉,
|φ7〉 = |ψ21〉 − |ψ22〉 − |ψ23〉 + |ψ24〉,
|φ8〉 = a1(|ψ21〉 + |ψ22〉 + |ψ23〉 + |ψ24〉) + a2|ψ25〉. (7)

The states {|φi〉}8
i=1 are pairwise orthogonal by construc-

tion. The pairwise orthogonality also holds when we consider
{|ψi〉}16

i=1 of Eqs. (5) and {|φi〉}8
i=1 of Eqs. (7) together. Except

|φ4〉 and |φ8〉 the other states of Eqs. (7) are also orthogonal
to the stopper |S〉 by construction. But to make |φ4〉 and |φ8〉
orthogonal to |S〉 the coefficients ai are chosen judicially. The
PPT-BE state corresponding to the UPB of Eqs. (5) is of
rank 8. The explicit form of the state is given by

ρ5 = 1

8

(
I5 ⊗ I5 −

16∑
i=1

|ψ̃i〉〈ψ̃i| − |S̃〉〈S̃|
)

(8)

= 1

8

8∑
i=1

|φ̃i〉〈φ̃i|. (9)

From Observation 1 it follows that ρ5 is a PPT state. Fur-
thermore, ρ5 is supported in an entangled subspace comple-
mentary to a UPB subspace. Therefore, according to Remark
1 it is an edge state. Note that the PPT-BE state corresponding
to the Tiles UPB of C3 ⊗ C3 is not only an edge state but
also an extreme point of the set P of C3 ⊗ C3 [40]. In the
following we show that ρ5 is not an extreme point of the set P
of C5 ⊗ C5, though it corresponds to a Tiles UPB.

Theorem 1. The PPT-BE state ρ5 allows a decomposition
of the form ρ5 = 1

2σ1 + 1
2σ2, where both σ1 and σ2 are rank-4

PPT-BE extreme points of the set P of C5 ⊗ C5.
Proof. Rewriting Eq. (9), we get ρ5 = 1

2 ( 1
4

∑4
i=1 |φ̃i〉

〈φ̃i|) + 1
2 ( 1

4

∑8
i=5 |φ̃i〉〈φ̃i|), where we take σ1 ≡ 1

4

∑4
i=1

|φ̃i〉〈φ̃i| and σ2 ≡ 1
4

∑8
i=5 |φ̃i〉〈φ̃i|. Both σ1 and σ2 are entan-

gled as their ranges are contained in HE . In particular, the
range of σ2 is contained in a two-qutrit subspace (of C5 ⊗ C5)
spanned by {|1〉A, |2〉A, |3〉A} ⊗ {|1〉B, |2〉B, |3〉B}. In fact, σ2

can be written as

σ2 = 1

4

(
I′

3 ⊗ I′
3 −

16∑
i=13

|ψ̃i〉〈ψ̃i| − |S̃′〉〈S̃′|
)

, (10)

where |S′〉 = |1 + 2 + 3〉|1 + 2 + 3〉 and I′
3 is defined as

I′
3 := |1〉〈1| + |2〉〈2| + |3〉〈3|. (11)

Observation 1, while employed in Eq. (10), ensures the
positivity of σ2 under partial transpose. Since σ2 turns out
to be a rank-4 PPT-BE state of C5 ⊗ C5, then according to
Lemma 1, σ2 is an extreme point of the set P of C5 ⊗ C5.

To show the positivity of σ1 under partial transposition, we
rewrite it as

σ1 = 1

4

(
I5 ⊗ I5 − I′

3 ⊗ I′
3

−
12∑

i=1

|ψ̃i〉〈ψ̃i| − |S̃〉〈S̃| + |S̃′〉〈S̃′|
)

. (12)

A similar argument as in the case of σ2 applies to the above
expression for σ1 and ensures the positivity of σ1 under partial
transposition. Then, applying the mapping |1〉 → |0〉, |2〉 →
|1 + 2 + 3〉, |3〉 → |4〉 (for both Alice and Bob) to Eq. (10),
we get σ2 → σ1. This reveals the fact that the range of σ1 is
contained in a two-qutrit subspace (of C5 ⊗ C5) spanned by
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{|0〉A, |1 + 2 + 3〉A, |4〉A} ⊗ {|0〉B, |1 + 2 + 3〉B, |4〉B}. There-
fore, according to Lemma 1, σ1 is an extreme point of the set
P of C5 ⊗ C5. This completes the proof. �

Please note that the two-qutrit subspaces of C5 ⊗ C5 men-
tioned in the above theorem (in which the ranges of states σ1

and σ2 are respectively contained) are not orthogonal; they
have exactly one-dimensional overlap. As already discussed
in Sec. III A, the entangled subspace of the Tiles UPB in
C3 ⊗ C3 contains only one PPT-BE state which is also an
extreme point of P . Interestingly, for our construction in
C5 ⊗ C5, there exist three PPT-BE states ρ5, σ1, and σ2. Here,
σ1 and σ2 are extreme points of P as shown in Theorem 1
while ρ5 is an edge state but not an extreme point. Indeed,
in the following corollary we give a one-parameter family of
PPT-BE states that are edge states. The range of all these states
is contained in the same entangled subspace HE as that of ρ5.

Corollary 1. Consider a one-parameter family of states
of the form σ (p) := pσ1 + (1 − p)σ2, where p ∈ [0, 1] and
σ1, σ2 are same as those used in the proof of Theorem 1. All
of these states are PPT-BE edge states.

Proof. Any convex mixture of PPT states is again a PPT
state, either a PPT-BE state or a separable state. As R(σ (p))
is contained in the fully entangled subspace HE , σ (p) must
be a PPT-BE state. Moreover, Remark 1 guarantees it to be an
edge state. �

Another important point is that if the Tiles UPB of C3 ⊗ C3

is trivially extended to a higher-dimensional Hilbert space (by
adding suitable product states) then it is always possible to get
a new UPB [53]. Such a UPB contains D − 4 product states,
where D is the net dimension of the extended system. Thus,
if someone wants to construct a UPB in C5 ⊗ C5 preserving
the tile structure of C3 ⊗ C3, it is then always possible to get a
new UPB that contains 21 pure product states. This extension
is trivial in the sense that the PPT-BE state corresponding to
the higher-dimensional UPB is of the same rank as the old
one. We, therefore, can say that our construction of Tiles UPB
in C5 ⊗ C5 is a “nontrivial extension” of the Tiles UPB in
C3 ⊗ C3. In the following lemma, it is shown that a nontrivial
extension imposes a constraint on the cardinality of such a
new UPB.

Lemma 2. Preserving the tile structure of the UPB in C3 ⊗
C3, if one constructs a new UPB in C5 ⊗ C5 then it is not
possible to get a UPB with n pure product states, where n =
18, 19, 20.

Proof. We suppose that it is possible to construct a UPB
in C5 ⊗ C5 with 18 pure product states, i.e., n = 18. We
also assume that the tile structure of the UPB in C3 ⊗ C3 is
preserved. These result in a PPT-BE state ρ ′

5 of rank 7 which
can be written as ρ ′

5 = 1
2σ ′

1 + 1
2σ2, where σ ′

1 is a PPT-BE state
of rank 3 (see Theorem 1). But rank-3 PPT-BE states do not
exist [54,55]. A similar argument holds for n = 19, 20. �

C. Tiles UPB in Cd ⊗Cd

We now generalize the results of the previous section for
a system in Cd ⊗ Cd with d being odd. For this purpose,
we first describe the tile structure given in Fig. 3. In this
figure, there are two types of layers: type I and type II. Type I
corresponds to the central layer which contains only one tile.
We label this central tile by k = 0. On the other hand, all other

FIG. 3. Tile structure of a UPB in Cd ⊗ Cd .

layers are type-II layers, each of which contains four tiles. We
label these type-II tiles by k = 1, . . . , (d − 1)/2, where the
outermost layer is labeled by k = (d − 1)/2 and the innermost
layer is labeled by k = 1. Now to construct the tiles UPB,
we accumulate 2k − 1 pairwise orthogonal pure product states
from each of the four tiles of the kth layer belonging to type
II (for k = 1, 2, . . . , (d − 1)/2). Clearly, from the kth layer,
we take 4(2k − 1) states. In this way, we accumulate (d − 1)2

states in total. Along with these states, we add a stopper
|S〉 = |0 + 1 + · · · + (d − 1)〉|0 + 1 + · · · + (d − 1)〉. These
result in a UPB of cardinality (d − 1)2 + 1. In Table I, we
give explicit forms of the states taken from each layer (type
II) in order to construct the UPB. We label these states by
{|ψi〉}(d−1)2

i=1 .
The stopper |S〉 blocks exactly one state from each of the

four tiles of the kth layer of type II for k = 1, 2, . . . , (d −
1)/2, and also blocks the state of the central layer. So,

TABLE I. Explicit forms of the states taken from each layer (type
II) in order to construct the UPB.

Value of States (ω = e
π i
k , i = √−1,

k k′ = 1, . . . , 2k − 1)

(d − 1)/2 |0〉|
d−2∑
j=0

ω jk′
( j)〉, |d − 1〉|

d−1∑
j=1

ω jk′
( j)〉

|
d−2∑
j=0

ω jk′
( j)〉|d − 1〉, |

d−1∑
j=1

ω jk′
( j)〉|0〉

(d − 3)/2 |1〉|
d−3∑
j=1

ω jk′
( j)〉, |d − 3〉|

d−2∑
j=2

ω jk′
( j)〉

|
d−3∑
j=1

ω jk′
( j)〉|d − 3〉, |

d−3∑
j=2

ω jk′
( j)〉|1〉

...
...

1 |(d − 3)/2〉|(d − 3)/2 − (d − 1)/2〉
|(d + 1)/2〉|(d − 1)/2 − (d + 1)/2〉
|(d − 3)/2 − (d − 1)/2〉|(d + 1)/2〉
|(d − 1)/2 − (d + 1)/2〉|(d − 3)/2〉
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TABLE II. Missing states used to construct a set of orthogonal
entangled states that spans HE .

k Missing states (t = (d − 1)2)

(d−1)
2 |ψt+1〉 = |0〉|0 + 1 + · · · + (d − 2)〉

|ψt+2〉 = |d − 1〉|1 + 2 + · · · + (d − 1)〉
|ψt+3〉 = |0 + 1 + · · · + (d − 2)〉|d − 1〉

|ψt+4〉 = |1 + 2 + · · · + (d − 1)〉|0〉
(d−3)

2 |ψt+5〉 = |1〉|1 + 2 + · · · + (d − 3)〉
|ψt+6〉 = |d − 2〉|2 + 3 + · · · + (d − 2)〉
|ψt+7〉 = |1 + 2 + · · · + (d − 3)〉|d − 2〉

|ψt+8〉 = |2 + 3 + · · · + (d − 2)〉|1〉
...

...

1 |ψd2−4〉 = |(d − 3)/2〉|(d − 3)/2 + (d − 1)/2〉
|ψd2−3〉 = |(d + 1)/2〉|(d − 1)/2 + (d + 1)/2〉
|ψd2−2〉 = |(d − 3)/2 + (d − 1)/2〉|(d + 1)/2〉
|ψd2−1〉 = |(d − 1)/2 + (d + 1)/2〉|(d − 3)/2〉

0 |ψd2 〉 = |(d − 1)/2〉|(d − 1)/2〉

to form a COPB, these (2d − 1) missing states along with
the aforementioned (d − 1)2 orthogonal states are required.
Here, the entangled subspace HE is of dimension 2(d − 1).
Obviously, the density matrix ρd , proportional to the full rank
projector onto HE , is of rank 2(d − 1). However, to construct
a set of orthogonal entangled states that spans HE , we use the
missing states as shown earlier. The missing states are listed
in Table II.

Next, we construct the set of entangled states that spans
HE . These states are given in Table III. For the last states
of each row, the coefficients are chosen in a way to make
the state orthogonal to the stopper. Observe that the layer
with k = 1 and that with k = 0 represent five missing states.

TABLE III. The set of entangled states that spans HE .

Entangled states (l = 2d − 2)

|φl−3〉 = |ψd2−4〉 + |ψd2−3〉 − |ψd2−2〉 − |ψd2−1〉
|φl−2〉 = |ψd2−4〉 − |ψd2−3〉 + |ψd2−2〉 − |ψd2−1〉
|φl−1〉 = |ψd2−4〉 − |ψd2−3〉 − |ψd2−2〉 + |ψd2−1〉
|φl〉 = a1(|ψd2−4〉 + |ψd2−3〉 + |ψd2−2〉 + |ψd2−1〉) + a2|ψd2 〉
|φl−7〉 = |ψd2−8〉 + |ψd2−7〉 − |ψd2−6〉 − |ψd2−5〉
|φl−6〉 = |ψd2−8〉 − |ψd2−7〉 + |ψd2−6〉 − |ψd2−5〉
|φl−5〉 = |ψd2−8〉 − |ψd2−7〉 − |ψd2−6〉 + |ψd2−5〉
|φl−4〉 = a3(|ψd2−8〉 + |ψd2−7〉 + |ψd2−6〉 + |ψd2−5〉) + a4|φ⊥

l 〉
...

|φ1〉 = |ψt+1〉 + |ψt+2〉 − |ψt+3〉 − |ψt+4〉
|φ2〉 = |ψt+1〉 − |ψt+2〉 + |ψt+3〉 − |ψt+4〉
|φ3〉 = |ψt+1〉 − |ψt+2〉 − |ψt+3〉 + |ψt+4〉
|φ4〉 = ad−2(|ψt+1〉 + |ψt+2〉 + |ψt+3〉 + |ψt+4〉) + ad−1|φ⊥

8 〉

Using these five missing states we construct four orthogonal
entangled states given in the first row of Table III. Taking an
equal mixture of these four states we construct a mixed state
σ(d−1)/2. Clearly, σ(d−1)/2 is an entangled state as its range
is contained in HE . Moreover, following the same procedure
as in the case of Theorem 1, it can be shown that σ(d−1)/2 is
indeed a PPT-BE state.

Thereafter, we consider the missing states of the layer with
k = 2. Again, using these states we construct three entangled
states given in the second row (first three states) of Table III.
The last state of the same row is formed by taking a linear
combination of two states: the first state is chosen making it
orthogonal to the other three states of this row and the second
state is chosen making it orthogonal to the last state of the
previous row. The coefficients a3 and a4 (in the second row)
are chosen in a way that the state becomes orthogonal to the
stopper |S〉. Using these entangled states we again construct
another PPT-BT state σ(d−3)/2. In this way this process is
repeated up to the outermost layer (k = (d − 1)/2) and up to
PPT-BE state σ1.

We are now ready to present Theorem 2, which is a
generalized version of Theorem 1. The proof of Theorem 2
is straightforward from the above discussion.

Theorem 2. The PPT-BE state ρd allows a decomposition
of the form ρd = 2

(d−1)

∑(d−1)/2
k=1 σk , where σk’s are rank-4

PPT-BE extreme points of the set P of Cd ⊗ Cd .
Note that the range of any σk is contained in two-qutrit

subspaces of Cd ⊗ Cd . For example, the two-qutrit subspace
corresponding to σ(d−1)/2 is spanned by {|(d − 3)/2〉A, |(d −
1)/2〉A, |(d + 1)/2〉A} ⊗ {|(d − 3)/2〉B, |(d − 1)/2〉B, |(d +
1)/2〉B}; the two-qutrit subspace corresponding to σ(d−3)/2 is
spanned by {|(d − 5)/2〉A, |(d − 3)/2 + (d − 1)/2 + (d +
1)/2〉A, |(d + 3)/2〉A} ⊗ {|(d − 5)/2〉B, |(d − 3)/2 + (d −
1)/2 + (d + 1)/2〉B, |(d + 3)/2〉B}, and so on. A corollary to
the above theorem is stated as the following.

Corollary 2. Consider a (d − 3)/2-parameter family of
states of the form σ ( �p) := ∑(d−1)/2

k=1 pkσk , where �p is a proba-
bility vector of dimension (d − 1)/2 and σk’s are the same as
in Theorem 2. All these states are PPT-BE edge states.

In Ref. [36], the authors conjectured that the rank of
an extremal PPT-BE state in Cd ⊗ Cd with full local ranks
is always greater than or equal to 2(d − 1). In the above
corollary, if all pk’s are nonzero then the edge states of rank
2(d − 1) have full local ranks. Furthermore, it is an open
problem whether 2(d − 1) is also the minimum rank for any
edge state to possess the property that it has full local ranks.

D. State discrimination by LOCC

The study of UPB results in another interesting aspect
called “quantum nonlocality without entanglement,” where a
set of bipartite product states allows local preparation but the
set cannot be perfectly distinguished by LOCC [23,26,46].3

3Very recently, a nontrivial multipartite generalization of this phe-
nomenon is reported, where a set of multipartite product states allow
local preparation but for perfect discrimination all the parties must
come together or an entangled resource across every bipartite cut is
required [56–58].
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As already mentioned, a trivially extended UPB from C3 ⊗
C3 to C5 ⊗ C5 contains 21 pairwise orthogonal pure product
states [53]. But, our nontrivial construction in C5 ⊗ C5 con-
tains 17 pairwise orthogonal pure product states. Both the triv-
ial and the nontrivial constructions exhibit the phenomenon
called quantum nonlocality without entanglement. Thus, it
is impossible to perfectly distinguish all the states within a
UPB by LOCC only. However, our nontrivial construction
attributes a notable property compared to the trivial one. In the
case of trivial extension it is always possible to distinguish few
states perfectly from the UPB by orthogonality-preserving
LOCC. But in our case, not even a single state can be perfectly
distinguished by such LOCC. This clearly indicates a stronger
notion of local indistinguishability. Such a notion is also cap-
tured by all the higher-dimensional UPBs constructed in this
paper. Note that the analogous notion of local indistinguisha-
bility has also been studied for multipartite systems [59]. Now,
one may raise the question whether, to exhibit this notion, it
is necessary to consider all 17 states of the present UPB in
C5 ⊗ C5. Interestingly, the answer is negative as it is possible
to choose 9 states among these 17 states that can exhibit the
aforesaid stronger notion. One possible choice of such 9 states
is {|ψ2〉, |ψ5〉, |ψ8〉, |ψ11〉, |ψ13〉, |ψ14〉, |ψ15〉, |ψ16〉, |S〉}
given in Eqs. (5). In order to distinguish this set by LOCC, at
least one party has to start with a nontrivial and orthogonality-
preserving measurement. However, it can be shown that such
a measurement does not exist for the present set. The proof
follows from the argument given in Refs. [47,48]. Notice that
from each tile (except the central tile) of Fig. 2, we take
only one state and then we add the stopper and this results
in a UCPB with cardinality 9 in C5 ⊗ C5. Another interesting
construction is the following: It is possible to construct a set
of 14 states that also exhibit the above-mentioned notion but
this set can be extended to a COPB. One such set of 14
states can be formed by excluding the states |S〉, |ψ6〉, and
|ψ12〉 from the UPB of Eqs. (5). A similar construction of a
completable set of locally indistinguishable states also follows
from Refs. [60,61]. However, the cardinality there will be
higher than 14. Both the UCPB and the set that is extendible
to a COPB can be realized in Cd ⊗ Cd .

Our construction also leads to an interesting observation
in the context of orthogonal mixed-state discrimination. It is
known that any state supported in the entangled subspace HE

cannot be distinguished unambiguously from the normalized
projector onto the UPB subspace [50]. In C3 ⊗ C3 there exists
only one such state which is again PPT [40]. However, our
construction ensures that there exists more than one PPT-BE
state in Cd ⊗ Cd (with d � 5 and d odd) that cannot be
distinguished unambiguously from the normalized projector

onto the UPB subspace. In particular, the states σ ( �p) defined
in Corollary 2 possess the above feature.

IV. DISCUSSIONS

Our construction of PPT-BE states is based on Tiles UPBs.
Theses UPBs can be thought of as a generalization of Tiles
UPB in C3 ⊗ C3. However, for higher dimensions the struc-
ture is more intriguing than the simplest case. For example,
the entangled subspace in C3 ⊗ C3 contains only one PPT-BE
state—the equal mixture of any orthonormal basis of that
entangled subspace—in other words, the state proportional
to the projector onto the entangled subspace is that PPT-BE
state. All other states corresponding to unequal mixtures of the
projectors of pure states forming an orthonormal basis of the
entangled subspace are NPT [40]; indeed they are distillable
[51]. But our construction shows that for a higher-dimensional
system, the entangled subspace contains a parametric family
of PPT-BE states. Here, one may raise the following question:
Consider any set of orthonormal states spanning the entangled
subspace for a higher-dimensional system. Other than the
given parametric family of states, consider an arbitrary state
which is a mixture of those entangled states. Will that mixed
state be an NPT state? To answer to this question, further
analysis is required in this context. Another interesting re-
search direction may be to generalize the present construction
for even-dimensional quantum systems and explore different
properties of the corresponding PPT entangled states. It is also
important to reduce the cardinality of the present UPBs so that
it is possible to find new edge states with higher rank. Again,
by reducing the cardinality it may be possible to find new PPT
entangled states (other than rank 4) that are extremal points
of the set P . We have also discussed consequences of our
construction in the context of quantum state discrimination
by LOCC. We have introduced a stronger notion of local
indistinguishability. Quantification of this stronger notion is
another aspect for further research. It will also be interesting
to find the usefulness of these PPT-BE states in quantum
information processing tasks.
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