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Simple source device-independent continuous-variable quantum random number generator
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Phase-randomized optical homodyne detection is a well-known technique for performing quantum state
tomography. So far, it has been mainly considered a sophisticated tool for laboratory experiments but unsuitable
for practical applications. In this work, we change the perspective and employ this technique to set up a
practical continuous-variable quantum random number generator. We exploit a phase-randomized local oscillator
realized with a gain-switched laser to bound the min-entropy and extract true randomness from a completely
uncharacterized input, potentially controlled by a malicious adversary. Our proof-of-principle implementation
achieves an equivalent rate of 270 Mbit/s. In contrast to other source-device-independent quantum random
number generators, the one presented herein does not require additional active optical components, thus
representing a viable solution for future compact, modulator-free, certified generators of randomness.
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I. INTRODUCTION

Randomness is an essential resource in many areas of
science and information technology. The problem of access-
ing true randomness has recently led to the proposal of a
variety of random number generator designs [1]. So-called
“device-independent” (DI) quantum-random-number gener-
ators (QRNGs) minimize the assumptions underlying the
randomness generation process by associating it with the
violation of Bell inequalities [2–5]. However, the complexity
of the setups and small generation rates strongly limit their
practical use.

Trusted QRNGs exploit a trusted environment for the
preparation and the measurement of the quantum states from
which the random numbers are extracted. This makes it
possible to build compact and fast generators, suitable for
real-world applications. However, due to their very nature, any
hidden side channel in the trusted environment compromises
the unpredictability of the generated numbers.

Semi-device-independent QRNGs represent an intermedi-
ate solution to achieve a high level of practicality. They intro-
duce a minimal set of assumptions, either on the measurement
[6–9] or on the preparation [10–12] parts of the generator. The
latter, so-called source device-independent (SDI) QRNGs,
relieve the user (Alice) from the burden of a perfect quantum
state preparation. The most paranoid scenario is when an
evil party (Eve) replaces Alice’s input state with her own
state so that the generated numbers look random to Alice
but actually are not. In this framework, Alice can counteract
Eve’s attack by applying measurements that are out of Eve’s
reach.

In this work we introduce a continuous-variable (CV)
SDI QRNG with which we demonstrate generation rates of
270 Mbit/s. Typical CV-QRNGs feature optical homodyne
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detection to measure a quadrature observable of an input
quantum state. The quadrature is selected by the phase of a
classical field, the so-called local oscillator (LO), which inter-
feres with the input field. The LO is typically a continuous-
wave laser. In our SDI protocol, the laser is pulsed and
gain switched such that each pulse features a random phase
[13–17]. This allows us to use the tomographic technique of
phase-randomized homodyne detection [18–20] for random
number generation, the security of which follows from ran-
domly changing the phase of the LO.

Unlike other recently introduced SDI CV-QRNGs [21–23],
ours features the same optical setup as a typical CV-QRNG.
No additional optical components are required. The phase
randomization of the LO, which is the key element of our
generator, is obtained without resorting to a phase modulator.
This lets us relax the security assumptions on the input state
without increasing the complexity of the setup. We refer to
Fig. 1 to illustrate the difference between our SDI CV-QRNG
and a typical one.

CV-QRNGs use balanced homodyne detection (BHD) to
measure a quadrature observable Q of an input state ρA.
This corresponds to Alice applying the quadrature operator
Q̂θ = 1√

2
(ei θ

2 â† + e−i θ
2 â) on ρA, where â† and â are the cre-

ation and annihilation operators such that [â, â†] = 1 holds
and θ is the phase of the LO, which is usually fixed. The
eigenvalue equation for Q̂θ is Q̂θ |qθ 〉 = qθ |qθ 〉, with qθ a
real number. Since the generator is characterized by a finite
resolution δ, the measurements of the quadratures return
the raw random numbers qθ,k , where k is the bin index of
the intervals Ik

δ = (k − δ
2 , k + δ

2 ], with the central bin cor-
responding to k = 0 [24]. The discretized quadrature spec-
trum Qθ,δ defines the random variable associated with the
measurement outcomes: each result is obtained with proba-
bility p(qθ,k ) = tr [ρAQ̂k

θ,δ] = ∫
Ik
δ

dq〈qθ |ρA|qθ 〉, where Q̂k
θ,δ =∫

Ik
δ

dq|qθ 〉〈qθ | are the elements of Alice’s positive operator-
valued measure (POVMs) applied on ρA.
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FIG. 1. (a) Schematics of a typical CV-QRNG. The input state ρA is assumed to be prepared by Alice, so it is trusted and lies within the
security perimeter (red dashed line). The LO has a fixed phase, letting Alice measure one specific quadrature of the input field. (b) Schematics
of SDI CV-QRNG. The input state is untrusted and can even be prepared by Eve, so it lies outside the security perimeter (green dashed line).
The LO is phase randomized by using a gain-switched laser, which allows Alice to measure random quadratures of the input field. (c) Example
of attack to (d) a typical CV-QRNG and (e) an SDI CV-QRNG, if Eve controls the input state. In (d), the LO has a fixed phase. Eve forges
ρA using Q-displaced squeezed states and guesses the raw numbers with high probability. However, Alice thinks she is measuring the vacuum
state because the decomposition chosen by Eve mimics the Q distribution of the vacuum. This compromises the security of the system. In (e),
Alice does not trust the input state as she is in the SDI setting. She uses a phase-randomized LO so that Eve’s guessing probability depends on
the random angle of the quadrature selected by the LO. Alice can then spot the attack because the measurement distribution is wider than the
one she expected from the vacuum input state.

If the input state can be trusted to be pure, the
maximal number of independent and identically dis-
tributed (iid) bits extractable per measurement is given
by the min-entropy Hmin(Qθ,δ ) = − log2 pguess(Qθ,δ ), where
pguess(Qθ,δ ) = maxk p(qθ,k ) is the guessing probability [25].
Typically, CV-QRNGs trust the input state to be the vacuum
[26–33], ρA = |0〉〈0| [see Fig. 1(a)], for which the LO’s phase
is irrelevant due its to the rotational invariance in phase space.
The associated outcome distribution |〈0|q〉|2 is Gaussian with
zero mean and variance σ 2

|0〉 = 1/2, such that the min-entropy
is given by

Hmin(Qδ )|0〉 = − log2 erf

(
δ

2

)
. (1)

However, in the SDI paradigm, the measurement is assumed
to be under Alice’s control, whereas the input state is un-
characterized and even assumed to be controlled by Eve [see
Fig. 1(b)].

An example attack [Fig. 1(c)] can clarify the difference
between the two cases [Figs. 1(d) and 1(e)]. Suppose that
Eve controls the input state. In the non-SDI case, Fig. 1(d),
she knows that Alice measures ρA along the Q quadrature
selected by the LO phase θ , which is fixed. Eve can then
input a displaced squeezed state such that she can predict qθ,k

with high confidence. To conceal her attack, Eve displaces the
states so that the probabilities p(qθ,k ) measured by Alice are
the same as those she would expect from her trusted input
vacuum state. Clearly, Alice could never spot this attack and
she would overestimate the actual randomness of the samples.
In the limit of infinite squeezing, Eve could predict each

outcome with certainty and the actual min-entropy would be-
come zero. In the SDI case, on the contrary [Fig. 1(e)], Alice
measures the input field on a quadrature randomly selected by
the LO, which is assumed to be inaccessible to Eve. This foils
Eve’s strategy based on a squeezed input. Without knowing
Alice’s LO phase, Eve cannot determine the correct squeezing
direction for her attack. This makes the distribution measured
by Alice broader than the one corresponding to the vacuum,
σ 2

M > σ 2
|0〉, which unveils the attack.

II. BOUND FOR THE ENTROPY WITH
PHASE RANDOMIZATION

In the presence of an adversary controlling the source, the
maximal number of iid bits distillable with a randomness
extractor is given by the min-entropy Hmin(Qθ,δ|E ) condi-
tioned on the quantum side information available to Eve. This
quantity considers a purification ρAE of the input state ρA: the
system E , e.g., a quantum memory, is entangled with Alice’s
system A and held by Eve who measures it to predict Qθ,δ .
The quantum conditional min-entropy is then defined as

Hmin
(
Qθ,δ|E

) = − log2 max
{Q̂θ,E }

∞∑
k=−∞

p(qθ,k ) tr
[
Q̂k

θ,Eρk
E

]
, (2)

with ρk
E being the post-Alice-measurement state of E , on

which Eve applies the POVM {Q̂θ,E } [34,35]. In the following
we will lower bound Hmin(Qθ,δ|E ) by phase randomizing
Alice’s states, a procedure typically used to enhance the
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performance of quantum key distribution with weak coherent
states [36,37].

To show the efficacy of this procedure, consider
the following example. Eve shares with Alice
a two-mode squeezed-vacuum state ρAE = (1 −
γ 2)

∑∞
n,m=0 γ m+n|n〉E 〈n| ⊗ |m〉A〈m| , where γ = tanh r

and r the squeezing parameter. Although the quadrature
fluctuations look random to Alice, the numbers are not
private, as Eve can learn them from her part of the state.
However, if Alice’s input is phase randomized, ρAE becomes
ρ

pr
AE ,ϕav

= (1 − γ 2)
∑∞

n=0 γ 2n|n〉E 〈n| ⊗ |n〉A〈n| , which is a
separable state that guarantees the privacy of Alice’s numbers.

We generalize this example by considering the density
matrix of a pure bipartite state in the Fock basis

ρAE =
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ |n〉A〈m|. (3)

Alice phase randomizes the input by applying the phase-shift
operator Ûϕ = e−iϕn̂ to her part of the system,

ρ
pr
AE =

∑
k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ Ûϕ|n〉A〈m|Û †

ϕ

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ |n〉A〈m|e−i(n−m)ϕ, (4)

with the phase uniformly distributed in the interval ϕ ∈
{0, 2π}. Since Eve does not know the ϕ values, the state ρ

pr
AE

is averaged to

ρ
pr
AE ,ϕav

=
∑
k,l,n

ρk,l
n,n|k〉E 〈l| ⊗ |n〉A〈n| . (5)

This relation shows that phase randomization returns the
same outcome as a quantum nondemolition measurement
of the photon number [38] that disentangles A from E . In
fact, Eq. (5) can be also rewritten in a manifestly separable
form [39].

Equation (5) also entails that Alice’s most generic input
state after phase randomization is a classical mixture of Fock
states, as is clear from trE ρ

pr
AE ,ϕav

= ∑
n pn|n〉A〈n|A with pn =∑

k ρk,k
n,n . Therefore it is equally secure to consider that Eve

inputs such a mixture rather than preparing a general state
ρAE . The side information is now related to the ensembles
{pn, |n〉} and the conditional min-entropy becomes

Hmin(Qδ|E )pr = − log2 max
{pn,|n〉}

∑
n

pn max
k

tr
[
Q̂k

δ |n〉〈n|], (6)

with the external maximization performed over all Eve’s
possible {pn, |n〉} compatible with ρ

pr
A,ϕav

[40].
Alice can now easily bound Eq. (6) by noticing that the

largest guessing probability is obtained when Eve inputs the
vacuum state |0〉〈0|. In fact, the argument of the external
maximization is a convex combination of probabilities; hence
it is automatically upper bounded by its maximum element,
that is, pguess(Qδ )|0〉 � δ/

√
π . The vacuum is the Fock state

with the narrowest uncertainty in the phase space, which
implies

max
k

tr Q̂k
δ |n〉〈n| < max

k
tr Q̂k

δ |0〉〈0| = pguess(Q)|0〉 (7)

for n � 1. Hence, among all the possible {pn, |n〉}, the trivial
decomposition {p0 = 1, |0〉} is the best forging strategy for
Eve, which implies the following bound for the conditional
min-entropy:

Hmin(Qδ|E )pr � Hmin(Qδ )|0〉 . (8)

Consequently, when Alice performs phase randomization,
Eve’s best attack is to input the vacuum state.

III. SDI CV-QRNG WITH PHASE-RANDOMIZED LO

The scheme presented in the previous section is SDI if we
assume that a phase modulator randomizing the input state
is part of Alice’s measuring setup and Eve cannot access it.
This assumption is hardly justifiable in practice. For example,
this phase modulator could be probed by external bright pulses
[41]. Fortunately, there is no need for this phase randomizer
in our setup, as the phase randomization comes for free from
a LO generated by a gain-switched laser.

As we show in Appendix A, Eve’s density matrix after Al-
ice’s state phase randomization and quadrature measurement
with a fixed phase θ ,

ρI
E = trA

[(
IdE ⊗ Q̂k

θ,δ

)†
∫ 2π

0

dϕ

2π
Û †

ϕ ρAEÛϕ

(
IdE ⊗ Q̂k

θ,δ

)]
,

(9)
is equal to the phase averaged matrix obtained by Alice
after applying a randomly ϕ-phase shifted quadrature operator
Q̂ps

θ,φ ,

ρII
E = trA

[∫ 2π

0

dϕ

2π

(
IdE ⊗ Q̂ps

θ,φ

)
ρAE

(
IdE ⊗ Q̂ps

θ,φ

)†
]
, (10)

where Q̂ps
θ,φ = ÛϕQ̂k

θ,δÛ
†
ϕ . Therefore the two situations are

equivalent securitywise.
The feasibility of the SDI protocol is greatly simplified by

having ρI
E = ρII

E in Eqs. (9) and (10). First, because apply-
ing Ûϕ = e−iϕn̂ to Q̂k

θ,δ corresponds to shifting the LO by a
phase ϕ, we can replace the phase modulator with a phase-
randomized LO by exploiting the process of phase diffusion in
gain-switched lasers [14,42]. This has practical consequences
on security, as Eve cannot tamper with a phase modulator
placed on the input port. Moreover, if a real phase modulator
were used to randomize the LO phase, another RNG would be
necessary to properly drive it.

IV. EXPERIMENTAL REALIZATION

We now move on to show the phase-randomized SDI CV-
QRNG in operation. The setup is shown in Fig. 2. The LO is
a 1550-nm laser diode with an integrated optical isolator, gain
switched to produce phase-randomized pulses. Its output first
travels through a variable optical attenuator (VOA) and is then
split by a 99:1 fiber coupler. The 1% output is connected to a
power meter to monitor the power of the LO. The 99% output
is split by a 50:50 coupler. The other input of the 50:50 coupler
is left open such that any input state potentially controlled
by an adversary could enter. A microelectromechanical sys-
tems (MEMS) VOA on one output arm of the 50:50 coupler
balances the power incident on the two photodiodes of a
commercial wideband homodyne detector. An optical delay
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FIG. 2. Schematics of the setup. The LO is pulsed at 50 MHz via
gain switching. PG: pattern generator; LO: local oscillator; VOA:
variable optical attenuator; PM: power meter; SP: signal port; DL:
delay line; BHD: balanced homodyne detector; Osc: oscilloscope.

line is used to match the arrival times of the pulses. The output
of the BHD is digitized using an oscilloscope with an analog-
to-digital converter (ADC) resolution of 8 bits and a sampling
frequency of 40 GSamples/s. The main advantage of this
protocol is that the setup required is identical to a typical
trusted CV-QRNG, despite offering SDI assurance. The phase
randomization of the LO is a vital part of the security of this
protocol. In practical future implementations, in addition to
the power meter for monitoring the intensity, Alice could add
an interferometer to monitor the phase randomization of the
LO. The LO could be further protected from potential external
phase seeding attacks by placing an additional optical isolator
in front of it.

To gain-switch the laser, the dc bias is set just below
threshold and the laser is driven above threshold by applying
an ac voltage from a pattern generator. When the laser cavity is
empty, the lasing action is triggered entirely by spontaneous
emission, which inherits its random phase from the vacuum
[14,15]. This condition holds for repetition frequencies up to
2.5 GHz [15]. However, we limit the clock rate to 50 MHz to
minimize the signal ringing due to the imperfect response of
the BHD circuit to higher frequency pulses.

An example of the ringing observed is shown in Fig. 3(a),
in which the region from which the raw random numbers were
sampled is highlighted. The chosen pulsing frequency also

FIG. 3. (a) Example of the ringing observed in the output of the
BHD when the LO is pulsed at 50 MHz with a duty cycle of 50%.
The ac driving signal applied to the LO is shown in green, showing
where the laser is on and off. The region from which samples were
taken to generate the raw random numbers is highlighted in blue.
The dashed lines show the ADC range used when acquiring data.
(b) Autocorrelation evaluated on 106 filtered raw data points with
95% confidence intervals for a white noise process (green), showing
that this data is uncorrelated.

FIG. 4. (a) Typical calibration line obtained during data acqui-
sition, where the average power incident on each photodiode has
been calculated from the power-meter measurements. (b) Probability
density function (PDF) of filtered raw data converted into vacuum
units (blue). Theoretical PDF for vacuum state input in the absence
of excess noise (orange).

allows us to minimize the correlations introduced by the finite
bandwidth of the detector [43].

Filtering and randomness extraction are performed offline.
We first apply a 1.6 GHz low-pass filter to remove the noise
above the bandwidth of the detector and then subsample
the resulting data, taking one point every laser pulse, giving
an equivalent sampling rate of 50 MSamples/s. The low-
frequency noise is removed by modulating at 25 MHz and
then applying a low-pass filter. The autocorrelation evaluated
on a set of 106 filtered points with 95% confidence intervals
for lags of 0–400 is reported in Fig. 3(b), showing the absence
of correlations due to low-frequency noise.

V. BOUNDING THE MIN-ENTROPY

To bound the conditional min-entropy, we estimate the
resolution δ in vacuum units. During our practical calibration,
the signal port is blocked to provide a reference vacuum state
input. We measure the variance of the filtered data at different
LO powers P and fit a calibration line. The intercept corre-
sponds to the contribution of the electronic noise to the overall
variance, whereas the gradient m can be used to estimate the
contribution of the quantum noise. A typical calibration line is
shown in Fig. 4(a). In the absence of electronic noise, the vari-
ance in ADC units would be given by mP and the measure-
ment resolution in vacuum units δ = δADC√

2mP
, where δADC is the

resolution of the oscilloscope ADC. The solid line in Fig. 4(b)
represents the theoretical vacuum distribution used to bound
the min-entropy of the raw numbers whose distribution is rep-
resented by the histogram. According to our framework, Alice
does not make any assumptions on the input state entering the
signal port and therefore on the raw distribution that she will
observe. However, since in our proof-of-principle experiment
there was no external source, it is reasonable to assume that
the vacuum was actually the main input state. The histogram
of the raw data is then Gaussian but wider than reference
vacuum distribution because it includes excess noise.

Using Eqs. (8) and (1), we obtain a typical conditional
min-entropy of Hmin(Qδ|E )pr � 5.53 bits. To extract iid bits
we implement a Toeplitz hashing using a seed from another
QRNG described in [44]. Given the length of the input string,
the length of the seed was chosen to obtain a probability
ε � 2−100 of distinguishing the output data distribution from
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a uniform one [45,46]. As a result, 5.4 random bits were dis-
tilled from each raw 8-bit sample. With the 50-MHz sampling
rate, this provides a secure generation rate of 270 Mbit/s.

To assess the implementation of the randomness extractor,
we applied two standard statistical tests, NIST [47,48] and
TestU01 [49]. The data gathered was split into blocks of 125
MB for the NIST tests. The Rabbit and Alphabit batteries from
the TestU01 suite were applied to all 900 MB of data at once.
The postprocessed data passed all of these tests. Detailed
results are reported in Appendix B.

VI. CONCLUSION

In this work we presented an experimental SDI CV-QRNG
based on phase-randomized balanced homodyne detection
capable of generating secure random numbers at an equivalent
rate of 270 Mbit/s. Due to the SDI nature of the generator, no
assumption on the input state was required.

The achieved generation rate was limited by the ringing
observed in the output of the balanced homodyne detector.
Any reduction of this impairment could significantly increase
the generation rate.

In contrast to earlier SDI CV-QRNGs, this implementa-
tion does not require active optical components or the use
of heterodyne detection. The gain-switched local oscillator
provides the necessary phase randomization for the QRNG
without adding components such as a phase randomizer and
a random number generator to drive it. This also makes the
setup robust against attacks probing the internal components.
These features and the overall compactness of the generator
are promising for a future integration on chip.
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APPENDIX A: EQUIVALENCE BETWEEN
PHASE-RANDOMIZED INPUT AND

PHASE-RANDOMIZED LOCAL OSCILLATOR

In the following, we will explicitly demonstrate ρI
E = ρII

E ,
where ρI

E and ρII
E are defined in Eqs. (9) and (10) in the

main text. We will argue that from a security perspective it
is equivalent to place a phase randomizer at the input of the

generator or to use a phase-randomized local oscillator. The
equivalence will be proven by showing that Eve’s reduced
density matrix is the same in the two cases.

The most general Alice-Eve density matrix written in the
Fock basis is

ρAE =
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ |n〉A〈m|, (A1)

where {kE }k=0...∞ and {lE }l=0...∞ are Eve’s basis states, and
{nA}n=0...∞ and {mA}m=0...∞ are Alice’s basis states.

We define the phase-shift operator Ûϕ = e−iϕn̂, where n̂ is
the photon number operator, and rewrite Eq. (4) of the main
text as

ρ
pr
AE =

∑
k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

(
1

2π

∫ 2π

0
dϕÛϕ |n〉A〈m|Û †

ϕ

)

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

(
1

2π

∫ 2π

0
dϕe−i(n−m)ϕ|n〉A〈m|

)

=
∑
k,l,n

ρk,l
n,n|k〉E 〈l| ⊗ |n〉A〈n| . (A2)

We then consider the action of Alice’s quadrature operator.
For ease of notation, in the following we will use the quadra-
ture projector in the approximation of infinite resolution Q̂θ =
|qθ 〉〈qθ |, by dropping the reference to the interval δ and
outcome k.

We then have (
IdE ⊗ Q̂θ

)
ρ

pr
AE

(
IdE ⊗ Q̂θ

)†
(A3)

and evaluate the reduced state of Eve referred to in the main
text by ρI

E by tracing out Alice’s degrees of freedom:

ρI
E = trA

[
(IdE ⊗ Q̂θ )ρpr

AE (IdE ⊗ Q̂θ )†
]

=
∑

r

〈r|
⎡
⎣∑

k,l,n

ρk,l
n,n|k〉E 〈l|(Q̂θ |n〉A〈n|Q̂†

θ )

⎤
⎦|r〉

=
∑
k,l,n

ρk,l
n,n|k〉E 〈l|

∑
r

〈r|qθ 〉〈qθ |n〉A〈n|qθ 〉〈qθ |r〉

=
∑
k,l,n

ρk,l
n,n|k〉E 〈l| |〈qθ |n〉A|2

∑
r

〈qθ |r〉〈r|qθ 〉

=
∑
k,l,n

ρk,l
n,n|k〉E 〈l| |〈qθ |n〉A|2〈qθ |

∑
r

|r〉〈r|qθ 〉

=
∑
k,l,n

ρk,l
n,n|k〉E 〈l| |〈qθ |n〉A|2 (A4)

We now consider Alice applying a randomly phase-shifted
quadrature operator Q̂ps

θ,φ = ÛϕQ̂θÛ †
ϕ on her part of the sys-

tem, such that now the overall phase averaged state is:

ρ
pr
AE =

∫ 2π

0

dϕ

2π

(
IdE ⊗ Q̂ps

θ,φ

)
ρAE

(
IdE ⊗ Q̂ps

θ,φ

)†

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ 1

2π

∫ 2π

0
dϕ(ÛϕQ̂θÛ †

ϕ )|n〉A〈m|(ÛϕQ̂θÛ †
ϕ )

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ 1

2π

∫ 2π

0
dϕe−i(m−n)ϕÛϕQ̂θ |n〉A〈m|Q̂θÛ †

ϕ (A5)
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By tracing out Alice’s degrees of freedom, we obtain Eve’s density matrix ρII
E :

ρII
E = trA

[
ρ

pr
AE

]

=
∑

r

〈r|
⎛
⎝ ∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ 1

2π

∫ 2π

0
dϕe−i(m−n)ϕÛϕ|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |Û †

ϕ

⎞
⎠|r〉

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ 1

2π

∫ 2π

0
dϕe−i(m−n)ϕ

∑
r

〈r|Ûϕ|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |Û †
ϕ |r〉

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ 1

2π

∫ 2π

0
dϕe−i(m−n)ϕ

∑
r,s

〈r|Ûϕ|s〉〈s|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |Û †
ϕ |r〉

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ 1

2π

∫ 2π

0
dϕe−i(m−n)ϕ

∑
r,s

e−i(s−r)ϕ〈r|s〉〈s|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |r〉

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ 1

2π

∫ 2π

0
dϕe−i(m−n)ϕ

∑
r

〈r|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |r〉

=
∑
k,l,n

ρk,l
n,n|k〉E 〈l| |〈qθ |n〉A|2, (A6)

which is equal to Eve’s density matrix in Eq. (A4), thus
completing the proof.

APPENDIX B: EXPERIMENTAL BOUND TO
THE MIN-ENTROPY

As explained in the main text, we calculate a bound on
the min-entropy based on the gradient of a calibration line
obtained by varying the power of the LO and measuring
the variance of the filtered output. We assume that this

FIG. 5. The blue points are the min-entropies corresponding to
each data set acquired. The dashed lines indicate separate sessions
in between which the setup was adjusted. For each session the
entropy was estimated multiple times by periodically acquiring a
calibration line approximately every 10 min. Hence, in a session
multiple data sets were acquired, each of them with its own min-
entropy bound. The minimum value of 5.53, circled in red, was used
as the experimental bound for the min-entropy. Given the length
of the input string, the length of the seed was chosen to obtain a
probability ε � 2−100 of distinguishing the output data distribution
from a uniform one. As indicated by the green horizontal line, we
then distill 5.4 random bits from each raw 8-bit sample.

relationship holds for the data gathered following this cali-
bration. The performance of the system and hence the min-
entropy is likely to change over time due to degradation of
the components and changing environmental conditions. Our
system therefore automatically obtains a new calibration line
periodically (approximately every 10 min), allowing the value
of the min-entropy used in the randomness extraction to be
updated if necessary.

By taking into account the error in the gradient m as-
sociated with the fit, we calculate conservative estimates of
the min-entropy from the calibration lines obtained when
gathering the data discussed in the main text.

TABLE I. Results of the NIST test battery applied on 103 strings,
each having a length of 106 bits.

Statistical test P value Proportion Result

Frequency 0.156 0.990 Success
Block frequency 0.567 0.990 Success
Cumulative sums 0.917 0.984 Success
Cumulative sums 0.038 0.991 Success
Runs 0.512 0.987 Success
Longest run 0.668 0.984 Success
Rank 0.660 0.994 Success
FFT 0.445 0.985 Success
Nonoverlapping template 0.483 0.990 Success
Overlapping template 0.777 0.989 Success
Universal 0.101 0.987 Success
Approximate entropy 0.145 0.992 Success
Random excursions 0.384 0.991 Success
Random excursions variant 0.335 0.992 Success
Serial 0.770 0.990 Success
Serial 0.724 0.991 Success
Linear complexity 0.714 0.989 Success
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The resulting values are plotted in Fig. 5. The vertical
dashed lines indicate when parts of the setup were adjusted,
changing the maximum LO power incident on the detector. As
expected, we see a corresponding change in the min-entropy.
This highlights our systems’ ability to respond to changes
in operating conditions and continue to extract iid bits. The
difference between the largest and smallest values of min-
entropy obtained over all of the acquisitions is less than 2%.
The corresponding difference over the longest uninterrupted
set of acquisitions is less than 1%, highlighting the stability of
our system. Furthermore, the number of iid bits extracted from

each 8-bit sample, shown in green, is far below the minimum
min-entropy bound obtained compared to the variation in
values seen.

APPENDIX C: RESULT OF THE NIST TESTS

In Table I, the results of a typical run of the NIST test are
reported. The test is applied on 103 strings after application
of the randomness extractor, and each string has a length of
106 bits.
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