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Quantum coherence was recently formalized as a physical resource to measure the strength of superposition.
Based on the resource theory, we present a systematic framework that connects a coherence measure to the
security of quantum key distribution. By considering a generic entanglement-based key distribution protocol
under the collective attack scenario, we show that the key rate can be quantified by the coherence of the shared
bipartite states. This framework allows us to derive the key rate of the BB84 and six-state protocols. By utilizing
fine-grained parameters, we also derive the improved key rates of both protocols within the coherence-based
framework. Furthermore, we apply it to a practical issue, detection efficiency mismatch, and obtain an improved
result. In conclusion, this framework demonstrates the interplay among coherence, entanglement, and quantum
key distribution at a fundamental level.
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I. INTRODUCTION

As the notion that captures the quantum superposition
between differentiable physical states, quantum coherence
represents one of the fundamental features that distinguish
quantum mechanics from its classical counterpart [1,2]. De-
spite of the early recognition of its importance, quantum
coherence was only recently formalized under a rigourous
framework of resource theory [3], which stimulated a rapidly
growing research field on quantum coherence, ranging from
its mathematical characterizations to its operational interpre-
tations [4].

The motivation for studying the operational interpretation
of quantum coherence is twofold. First, by linking coher-
ence to the operational advantage of quantum information
processing protocols, one can improve existing protocols and
derive other ones by exploiting similar mechanisms. Second,
the observable phenomenon bestowed by quantum coherence
allows one to better understand the boundary between quan-
tum and classical realms, one of the fundamental problems in
theoretical physics.

The operational significance of quantum coherence has
been recognized in many areas, including quantum metrology
[5], quantum computing [6], quantum thermodynamics [7,8],
and quantum biology [9]. With the developed resource theory
of coherence, more operational significance of coherence was
discovered and quantified [10–15]. Recently, it was shown
that coherence quantifies the amount of unpredictable intrinsic
randomness from measuring quantum states [16,17]. Such
a relation has been applied to develop source-independent
quantum random number generators [18]. Taking a qubit as an
example, the state |ψA〉 = (|0〉 + |1〉)/

√
2 can yield intrinsic

randomness when measured in the Z basis, which is unpre-
dictable to an adversary, Eve. In comparison, the measurement
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result of ρA = (|0〉〈0| + |1〉〈1|)/2 with zero coherence can be
fully determined by Eve if she holds the purification of ρA,
that is, |ψAE 〉 = (|00〉 + |11〉)/

√
2.

In this paper, we investigate the significant role of coher-
ence played in quantum key distribution (QKD), via consider-
ing the relation between coherence and intrinsic randomness.
In the scenario of QKD, two legitimate users, Alice and Bob,
intend to share a sequence of private and identical bits, called
the secret key. In a QKD security analysis, one always needs
to consider two steps in postprocessing. One is information
reconciliation that ensures the keys shared by Alice and Bob
are identical. The other is privacy amplification that extracts
the secure key from the raw key. In general, information
reconciliation is a standard classical process, while privacy
amplification is determined by the quantum procedures of
the protocol. Privacy amplification plays a central role in all
security proofs. For example, in the Shor-Preskill security
proof [19], privacy amplification is linked to the phase error
correction in an equivalent entanglement protocol [20]. In this
paper, we examine the postprocessing in an alternative way.
After information reconciliation, the amount of secret key
that can be extracted from privacy amplification is essentially
determined by the intrinsic randomness that is unknown to
Eve. This intrinsic randomness can be quantified by the co-
herence of the joint system of Alice and Bob. For example, in
the entanglement-based version of the BB84 protocol [21,22],
supposing there are only phase errors left, the final state
shared by Alice and Bob is a mixture of (|00〉 + |11〉)/

√
2 and

(|00〉 − |11〉)/
√

2. If the phase error rate takes the worst case
of 50%, the state becomes (|00〉〈00| + |11〉〈11|)/2, which has
no coherence in the Z basis, and hence no secret key can be
generated.

Following this spirit, we propose a generic security analy-
sis framework for QKD under collective attacks, and we show
that the key generation rate is closely related to the amount
of coherence within the joint quantum states. To be more
specific, we find that the security of the key originates from the
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coherence of the bipartite quantum state shared by Alice and
Bob. Our framework is concise, and is one via which one can
derive the final key rate formulas of the BB84 protocol [19,21]
and the six-state protocol [23,24]. Moreover, the proposed
framework allows one to improve the key rates with fine-
grained parameters. Many existing QKD security analyses
[19,20] are based on entanglement distillation protocols [25],
where entanglement is taken as an essential resource to guar-
antee the security of the final key. In fact, entanglement is a
precondition for secure QKD [26]. Thus, we also discuss the
interplay among coherence, entanglement, and QKD security.
Later, the potential approach to extend our results from the
scenario of collective attacks to the one of coherent attacks
will be discussed.

Our paper is organized as follows. In Sec. II, we review
the close relation between quantum coherence and intrinsic
randomness. In Sec. III, we introduce the security analysis
framework based on quantifying coherence, and present an
explicit key rate formula related to the coherence of the
bipartite state in the key generation basis. In Sec. IV, by
applying the framework to the BB84 and six-state protocols,
we reproduce the original key rate formulas. Then, in Sec. V,
with analytical tools well developed under the resource theory
of coherence, we improve the key rates of these two proto-
cols by using fine-grained parameters in postprocessing the
measurement outcomes. Furthermore, in Sec. VI, we apply
the framework to solve a practical issue in QKD, detection
efficiency mismatch, where two detectors have nonidentical
detection efficiency. The derived key rate shows an advantage
over previous analyses. We also discuss the interplay among
coherence, entanglement, and QKD security in Sec. VII.
Finally, we conclude our work and discuss future works in
Sec. VIII.

II. PRELIMINARY: COHERENCE
AND INTRINSIC RANDOMNESS

The resource framework of coherence was recently formal-
ized [3]. A comprehensive review of this topic can be found
in Ref. [4] and references therein. Here, we briefly review the
concepts involved in this paper.

The free state and the free operation are two elementary in-
gredients in all resource theories. In the context of coherence
theory, considering a d-dimensional Hilbert space Hd and
a reference (computational) basis I = {|i〉}i=1,2,...,d , the free
state is the state which is diagonal in the reference basis, i.e.,
δ = ∑d

i=1 δi|i〉〈i|; the free operation is an incoherent complete
positive and trace preserving operation, which cannot generate
coherence from incoherent states. Based on this coherence
framework, several measures are proposed to quantify the
superposition strength of the reference basis, such as relative
entropy of coherence [3], which is defined as

C(ρ) = S(ρdiag) − S(ρ). (1)

where ρdiag is the diagonal state of ρ in the reference basis,∑
i 〈i|ρ|i〉|i〉〈i|, and S(ρ) = −Tr[ρ log2(ρ)] is the von Neu-

mann entropy of ρ.
On the other hand, intrinsic randomness is unpredictable

compared with the pseudorandomness produced by deter-
ministic algorithms. A quantum random number generator

(QRNG) serves as an elegant solution to the intrinsic ran-
domness generation, via measuring quantum state in well-
designed methods [27,28]. Under the resource framework of
coherence, it was recently observed that the coherence of a
quantum state quantifies the extractable intrinsic randomness
by measuring it in the reference basis [16,17].

To be more specific, let ρA denote the state of system A that
is designed to generate random numbers. Consider a purifi-
cation of ρA as |ψ〉AE , i.e., TrE [|ψ〉AE 〈ψ |AE ] = ρA with TrE

as the partial trace over system E . In a randomness analysis,
the purification system E is normally assumed to be held by
Eve, who aims at predicting the measurement outcome of ρA

by manipulating system E . Suppose a projective measure-
ment on the I basis is performed on ρA; then the joint state
ρAE = |ψ〉AE 〈ψ |AE becomes ρ ′

AE = ∑
i |i〉A〈i| ⊗ 〈i|AρAE |i〉A.

Considering the independent and identically distributed (i.i.d.)
scenario, the intrinsic randomness that is unpredictable to Eve,
denoted by R(ρA), is measured by the quantum conditional
entropy S(A|E )ρ ′

AE
. It is shown to be exactly characterized by

the relative entropy of coherence C(ρS ) [16,17],

R(ρA) = S(A|E )ρ ′
AE

= C(ρA), (2)

where S(A|B) = S(ρAB) − S(ρB) is the conditional quantum
entropy of ρAB. Therefore, the resource theory of coherence
provides a useful tool to quantify the intrinsic randomness in
the reference basis.

At the end of this section, we clarify notations in the paper.
The Z basis is the reference basis of a qubit, {|0〉, |1〉}. The
X basis {|+〉, |−〉} and Y basis {| + i〉, | − i〉} are conjugate
bases with |±〉 = (|0〉 ± |1〉)/

√
2 and | ± i〉 = 1√

2
(|0〉 ± i|1〉),

respectively. Denote the Z-basis measurement result as Z . The
Z-basis parity projectors on a two-qubit space are

�+ = |00〉〈00| + |11〉〈11|,
�− = |01〉〈01| + |10〉〈10|. (3)

Similarly, for the X basis and Y basis, the projectors are

�+
x = |++〉〈++| + |−−〉〈−−|,

�−
x = |+−〉〈+−| + |−+〉〈−+|,

�+
y = |+i − i〉〈+i − i| + |−i + i〉〈−i + i|,

�−
y = |+i + i〉〈+i + i| + |−i − i〉〈−i − i|. (4)

Moreover, we define the partial dephasing channel on the Z
basis as

�(ρ) = �+ρ�+ + �−ρ�−. (5)

III. SECURITY FRAMEWORK WITH COHERENCE

In this section, we provide a framework that relates the se-
curity analysis of QKD to the resource theory of coherence. In
QKD, Alice and Bob intend to share a sequence of private and
identical bits, called the secret key, via communication over
an untrusted quantum channel and an authenticated classical
channel. Eve can attack the communication channels with any
strategies allowed by the principles of quantum mechanics.

In the following discussions, we consider an entanglement-
based QKD scheme, since the prepare-and-measure schemes
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can be converted to the entanglement-based ones with the
standard technique [19]. Also, we consider the security analy-
sis with respect to the condition that the shared states between
Alice and Bob of different rounds are i.i.d.. This is the
collective attack scenario considered in QKD [29]. Then, a
generic QKD protocol can be described by the five points
below.

(i) N pairs of qubit states, ρ⊗N
AB , are distributed to Alice and

Bob.
(ii) They randomly sample N − n copies of ρAB for param-

eter estimation, where 0 < n < N .
(iii) For the remaining n copies of ρAB, Alice and Bob each

perform the Z-basis measurement to generate the raw key.
(iv) They perform classical information reconciliation on

the raw key to share identical keys.
(v) They perform privacy amplification based on the infor-

mation provided in the parameter estimation to share private
keys.

In a security proof, the parameter estimation is a crucial
step, which determines the amount of secure keys that can
be extracted in QKD. Essentially, Alice and Bob perform
some measurement �i ∈ � to estimate the information of ρAB,
with the probability of measurement outcome i being γi =
Tr(ρAB�i ). As a result, ρAB should fulfill a set of constraints,
ρAB ∈ S, where S denotes the set which contains all the states
satisfying constraints from parameter estimation,

S := {ρAB|� : Tr(ρAB�i ) = γi}. (6)

Now we provide the main result of this paper, which
connects the key rate of QKD with the relative entropy of co-
herence. Our derivation is based on the close relation between
intrinsic randomness and quantum coherence.

Theorem 1. In the asymptotic limit where n, N → ∞, the
secret key rate of the above QKD protocol is given by

K = min
ρAB∈S

C(�(ρAB)) − Iec, (7)

where �(·) is the partial dephasing operation defined in
Eq. (5), C(·) is the relative entropy of coherence on the
computational basis ZA ⊗ ZB defined in Eq. (1), and Iec is the
information leakage during key reconciliation.

Note that Iec in Eq. (7), which accounts for the private
key consumed in the information reconciliation step, can be
directly estimated by the measurement statistics from param-
eter estimation. Sometimes parameter estimation is not even
needed here as long as an error verification step is applied
after information reconciliation [30]. Thus, the minimization
is only on the first term that quantifies the security of the
key by quantum coherence. Without loss of generality, in
the following analysis, we employ the one-way information
reconciliation scheme such that Iec = H (ZA|ZB).1 Here, the
Shannon entropy of a random variable a and the conditional
entropy of two random variables a and b are denoted by
H (a) = −∑

a q(a) log2 q(a) and H (a|b) = H (ab) − H (b),

1Here, one-way information reconciliation means that in the post-
processing stage Alice (or Bob) could determine the final key from
her (or his) sifted key directly. For example, one can use Alice’s sifted
key after privacy-amplification hashing as the final key.

respectively, where q(a) is the underlying probability distribu-
tion and H (e) = −e log2 e − (1 − e) log2(1 − e). We need to
emphasize that our result can be applied to more general post-
processing protocols, e.g., two-way classical-communication
protocol [31]. This is possible because our framework entirely
decouples the privacy amplification step from the informa-
tion reconciliation step. In the following proof, we show an
equivalent virtual protocol which employs quantum bit error
correction that commutes with the Z-basis measurement. This
follows the same spirit of the Lo-Chau and Shor-Preskill
proofs for the BB84 protocol [19,20].

Proof. Let K (ρAB) denote the key rate when the shared
quantum state is known to be ρAB. To estimate the secret key
rate K , one should consider the worst case of ρAB ∈ S , i.e.,

K = min
ρAB∈S

K (ρAB), (8)

where S is the set of quantum states ρAB that is consistent
with the measurement statistics obtained in the parameter
estimation step, as defined in Eq. (6).

First, we consider an equivalent virtual protocol, where Al-
ice and Bob perform the information reconciliation before the
Z-basis measurement, i.e., stepa (iii) and (iv) are exchanged.
Then, step (iii) and step (iv) are replaced by

(iii′) With the Z-basis measurement results obtained in
parameter estimation, Alice and Bob perform quantum bit
error correction on the n copies of ρAB, which is equivalent
to applying a global Z-basis parity projector {�+,�−} on
the joint state. Then, Alice (or Bob) applies the σx = |0〉〈1| +
|1〉〈0| to rotate all the joint states to the subspace �+.

(iv′) Alice and Bob perform the Z-basis measurement on
the error corrected state to generate the identical key.

Note that the quantum bit error correction in step (iii′)
commutes with the Z-basis measurement, since all operations
are performed in the Z basis. Thus, this virtual protocol
is equivalent to the one shown in (i)–(v). The quantum bit
error correction in the virtual protocol can be realized with
preshared nH (ZA|ZB) Einstein-Podolsky-Rosen (EPR) pairs.
In the original protocol, the amount of key cost is given by
the conditional entropy H (ZA|ZB). This step is essentially
classical. See Appendix A for a more detailed discussions. We
define the bit error rate eb = Tr(�−ρAB), and

H (ZA|ZB) � H (eb), (9)

where the equality holds for the symmetric case.
After the quantum bit error correction step (iii′), the

original ρ⊗n
AB is transformed to n(1 − eb) copies of ρ+

AB =
�+ρAB�+/Tr(�+ρAB) and neb copies of σ B

x ρ−
ABσ B

x , with
ρ−

AB = �−ρAB�−/Tr(�−ρAB). In step (iv′), when Alice and
Bob measure these states in the Z basis, they will get identical
keys.

To perform the privacy amplification in step (v), one essen-
tially needs to characterize the amount of intrinsic randomness
in the error corrected keys that are unpredictable to Eve. Thus
the key rate shows

K (ρAB) = 1

n

{
n(1 − eb)R(ρ+

AB) + nebR
(
σ B

x ρ−
ABσ B

x

)
− nH (ZA|ZB)

}
. (10)
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Recall the relation between intrinsic randomness and coher-
ence shown in Eq. (2),

R(ρ) = C(ρ), (11)

where the reference basis of relative entropy of coherence C
coincides with the basis ZA ⊗ ZB. Then we have

K (ρAB) = 1

n

{
n(1 − eb)C(ρ+

AB) + nebC
(
σ B

x ρ−
ABσ B

x

)
− nH (ZA|ZB)

}
= (1 − eb)C(ρ+

AB) + ebC(ρ−
AB) − H (ZA|ZB)

= C((1 − eb)ρ+
AB + ebρ

−
AB) − H (ZA|ZB)

= C(�(ρAB)) − H (ZA|ZB), (12)

where the third equality employs the additivity property of
coherence and the Hilbert space of ρ+

AB and ρ−
AB are orthogonal

[32]. Inserting Eq. (12) into Eq. (8), one obtains Eq. (7). �
Note that in the symmetric case, where the bit value of the

raw key is evenly distributed, the information reconciliation
part is given by Eq. (9) with equality; then the key rate formula
can be further written as

K = min
ρAB∈S

C(�(ρAB)) − H (eb). (13)

In general, for the asymmetric case, H (eb) � H (ZA|ZB) on
account of Fano’s inequality.

IV. KEY RATES OF BB84 AND SIX-STATE QKD

As examples, we apply the framework to the security
analysis of the BB84 and six-state QKD protocols in the
collective-attack scenario. One can see that the secret key rates
of these two protocols can be directly derived with the tools
well developed within the resource theory of coherence [4].
We list the results of these two rederivations as the following
corollaries. Note that these two protocols only differ from
each other on the measurement {�i} performed in parameter
estimation. For simplicity, we consider the symmetric case,
where Eq. (13) holds.

A. BB84 protocol

Consider the entanglement-based version of BB84 proto-
col, where, in parameter estimation, Alice and Bob obtain
the bit error rate eb = Tr(�−ρAB) and the phase error rate
ep = Tr(�−

x ρAB). Then following Theorem 1, we have the
following corollary.

Corollary 1. The key rate of the BB84 QKD protocol
KBB84 is given by

KBB84 = min
ρAB∈S

C(�(ρAB)) − H (eb)

= 1 − H (ep) − H (eb), (14)

where S contains all the states yielding the same bit error rate
eb and phase error rate ep obtained from parameter estimation.

The result is consistent with the one from the Shor-Preskill
security proof [19]. We prove this corollary by first showing
that K (ρAB) � KBB84 for all ρAB ∈ S , and then giving a spe-
cific state in this set to saturate the inequality.

Proof. First note that the four eigenstates of ZA ⊗ ZB and
XA ⊗ XB are a pair of mutually unbiased bases in the four-
dimensional system H2

A ⊗ H2
B . Denote 
ZAB (
XAB ) to be the

projective measurement outcome on the ZA ⊗ ZB (XA ⊗ XB)
basis. Due to the entropy uncertainty relation [33,34], for any
state ρ, we have

H
(

ZAB (ρ)

) + H
(

XAB (ρ)

)
� 2 + S(ρ). (15)

Hence the relative entropy of coherence in the Z basis satisfies
[18]

CZAB (ρ) = H
(

ZAB (ρ)

) − S(ρ) � 2 − H
(

XAB (ρ)

)
. (16)

Denoting the rank-2 projective measurement {�+
x ,�−

x } out-
comes by 
XX , one has the key rate in Eq. (13),

KBB84(ρAB) = C(�(ρAB)) − H (eb)

� 2 − H (
XAB (�(ρAB))) − H (eb)

= 1 − H (
XX (�(ρAB))) − H (eb),

= 1 − H (ep) − H (eb), (17)

where Eq. (16) is applied for state �(ρAB) in the second line.
The third line holds due to the following reason. For the state
�(ρAB) which is the partially dephased state on �+ and �−
subspaces, it satisfies,

〈++|�(ρAB)|++〉 = 〈−−|�(ρAB)|−−〉 = 1 − ep

2
,

〈+−|�(ρAB)|+−〉 = 〈−+|�(ρAB)|−+〉 = ep

2
. (18)

That is, it has equal probabilities inside each of the rank-
2 projectors of the X basis, thus H (
XAB (�(ρAB))) = 1 +
H (
XX (�(ρAB))) = 1 + H (ep).

Finally, one can see that the Bell diagonal state, with prob-
abilities on {|�+〉, |�−〉, |�+〉, |�−〉} being {(1 − eb)(1 −
ep), (1 − eb)ep, eb(1 − ep), ebep}, reaches the minimal key
rate KBB84 in the state set S . �

B. Six-state protocol

Consider the entanglement-based six-state protocol, where,
in parameter estimation, Alice and Bob perform the measure-
ment in the X , Y , and Z bases respectively. Then, they estimate
the error in these three bases, ex = ep, ey = Tr(�−

y ρAB), and
ez = eb. Hence we have three parameters, ex, ey, and ez, to
constrain the state ρAB.

Suppose that the diagonal terms of ρAB, when repre-
sented in the Bell diagonal basis {|�+〉, |�−〉, |�+〉, |�−〉},
is {p0, p1, p2, p3} with pi � 0 and

∑
i pi = 1. Note that these

pi are directly related to the estimated error rates, i.e.,

ex = p1 + p3, (19)

ey = p1 + p2, (20)

ez = p2 + p3. (21)

Then, following Theorem 1, we have the following corollary.
Corollary 2. The key rate of the six-state QKD protocol

Ksix is given by

Ksix = min
ρAB∈S

C(�(ρAB)) − H (eb)

= 1 − H ({pi}), (22)
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where S contains all the states yielding the same error rates
ex, ey, and ez obtained from parameter estimation.

The result is consistent with the one from the previous
security proof [24]. Note that the state set S is more restrained
compared to the one in the BB84 protocol. We prove this
corollary by first showing that K (ρAB) � Ksix for all ρAB ∈ S ,
and then giving a specific state in this set to saturate the
inequality.

Proof. Considering
∑

i pi = 1, with Eqs. (19) to (21) {pi}
can be estimated by

p0 = 2 − ex − ey − ez

2
,

p1 = ex + ey − ez

2
,

p2 = ey + ez − ex

2
,

p3 = ez + ex − ey

2
. (23)

Applying Eq. (13), the key rate is given by

Ksix(ρAB) = C(�(ρAB)) − H (ez )

= (1 − ez )C(ρ+
AB) + ezC(ρ−

AB) − H (ez )

� (1 − ez )

[
1 − H

(
p0

p0 + p1

)]

+ ez

[
1 − H

(
p2

p2 + p3

)]
− H (ez )

= 1 − (1 − ez )H

(
p0

p0 + p1

)

− ezH

(
p2

p2 + p3

)
− H (ez )

= 1 − H ({pi}), (24)

where in the last line we substitute the relation of ez in
Eq. (21). The third line can be derived as follows. For the
Z and X bases, two mutually unbiased bases of a qubit, the
uncertainty relation for coherence measures is given by [18]

CZ (ρ) = H (
Z (ρ)) − S(ρ) � 1 − H (
X (ρ)). (25)

Since ρ+
AB is rank 2, it can be viewed as a “qubit” state and the

corresponding Z and X bases are Z ′ = {|00〉, |11〉} and X ′ =
{|�+〉, |�−〉} respectively, where |�±〉 = (|00〉 ± |11〉)/

√
2.

Thus, applying Eq. (25) to ρ+
AB, one has

CZ ′ (ρ+
AB) � 1 − H (
X ′ (ρ+

AB)) = 1 − H

(
p0

p0 + p1

)
. (26)

Similarly,

CZ ′′ (ρ−
AB) � 1 − H (
X ′′ (ρ−

AB)) = 1 − H

(
p2

p2 + p3

)
, (27)

where Z ′′ and X ′′ bases are {|01〉, |10〉} and {|�+〉, |�−〉}
respectively, with |�±〉 = (|01〉 ± |10〉)/

√
2. Based on

Eqs. (26) and (27), we obtain the inequality in the third line
of Eq. (24).

Finally, it is straightforward to verify that the Bell diagonal
state with probabilities {p0, p1, p2, p3} reaches the minimal
key rate Ksix in the state set S . �

V. IMPROVE THE KEY RATE WITH THE FRAMEWORK

In this section, we show that the above security proof
framework allows us to improve the key rates using fine-
grained parameters obtained in the measurement outcomes.
Essentially, if one can acquire more information about ρAB in
the parameter estimation step, then the state set S in Eq. (7)
will be constrained more tightly and the key rate can be
improved.

Here we point out an important observation about Theo-
rem 1. In order to estimate the secret key rate generated by an
unknown ρAB, it suffices to gain the information of �(ρAB),
rather than the full information of ρAB. To be more specific,
Alice and Bob only need to estimate

�(ρAB) =

⎛
⎜⎜⎝

m00 0 0 m03

0 m11 m12 0
0 m21 m22 0

m30 0 0 m33

⎞
⎟⎟⎠, (28)

where mi j are the density matrix elements of ρAB in the Z
basis,

∑
i mii = 1, m12 = m∗

21, and m03 = m∗
30. The form in

Eq. (28) provides clear clues to improve the key rates. In the
following two subsections, we show the refined key rates for
BB84 and six-state protocols with the tools from the resource
theory of coherence.

A. BB84 protocol

In the BB84 protocol, the relations between the error rates
eb, ep and the matrix elements of ρAB, as shown in Eq. (28),
are

eb = m11 + m22, (29)

ep = 1/2 − Re[m03] − Re[m12]. (30)

In parameter estimation, Alice and Bob carry out ZA and
ZB measurement, respectively. Thus from the measurement
results they can obtain not only the bit error rate eb but
also the four diagonal elements in the ZA ⊗ ZB basis, i.e.,
m00, m11, m22, m33. Hence the bit error rate eb can be seen as
a coarse-grained parameter from the four diagonal elements.

Based on this observation, we give the refined key rate for-
mula for the BB84 protocol. First, let us define the following
optimization problem.

Problem 1. Minimize C(ρ(a, b)) that is subject to a + b =
1/2 − ep, |a| � √

m00m33, and |b| � √
m11m22 with a, b ∈ R,

where C is the relative entropy of coherence, and

ρ(a, b) =

⎛
⎜⎜⎝

m00 0 0 a
0 m11 b 0
0 b m22 0
a 0 0 m33

⎞
⎟⎟⎠. (31)

This optimization problem can be efficiently solved via
simple numerical methods. In addition, when the diagonal el-
ements satisfy m00/m33 = m11/m22 (or m00/m33 = m22/m11),
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it can be analytically solved, as shown in Lemma 1 in Ap-
pendix B. We have the following theorem to improve the key
rate of the BB84 protocol.

Theorem 2. The secret key rate of the BB84 QKD protocol
can be estimated via

Kopt
BB84 = C(ρ(ā, b̄)) − H (eb), (32)

where {ā, b̄} is the solution to Problem 1.
Proof. From Eq. (13), we need to prove that

K = min
ρAB∈S

C(�(ρAB)) − H (eb)

= Kopt
BB84, (33)

where S contains all the states sharing the same diagonal ele-
ments m00, m11, m22, m33 and the phase error rate ep obtained
from parameter estimation.

Define σAB as the state by removing the imaginary parts of
the off-diagonal terms in �(ρAB):

σAB =

⎛
⎜⎜⎝

m00 0 0 Re[m03]
0 m11 Re[m12] 0
0 Re[m21] m22 0

Re[m30] 0 0 m33

⎞
⎟⎟⎠. (34)

It is clear that C(�(ρAB)) � C(σAB), due to the fact that the
magnitude of the off-diagonal elements is reduced. Specifi-
cally, considering a qubit density matrix

ρ =
(

β |c|eiϕ

|c|e−iϕ 1 − β

)
, (35)

after applying the incoherent operation Ôr (ρ) = 1
2UρU † +

1
2ρ with U = |0〉〈0| + e2iϕ |1〉〈1|, one can get

Ôr (ρ) =
(

β |c| cos(ϕ)
|c| cos(ϕ) 1 − β

)
, (36)

where the imaginary parts of the off-diagonal terms are
removed. As coherence does not increase under incoherent
operation, C(ρ) � C(Ôr (ρ)) [3].

Since �(ρAB) locates in the two rank-2 subspaces �+ and
�−, similarly, one can get C(�(ρAB)) � C(σAB) via applying
incoherent operations on these two subspaces respectively. As
a result, for any state ρAB ∈ S ,

K (ρAB) = C(�(ρAB)) − H (eb)

� C(σAB) − H (eb)

� min
σAB∈Sσ

C(σAB) − H (eb)

= C(ρ(ā, b̄)) − H (eb), (37)

where Sσ consists of all the corresponding σAB from �(ρAB),
and the last line is on account of the definition of Problem 1.
Note that σAB is also a quantum state belonging to the state
set S , i.e., σAB ∈ S , thus the inequality above can be saturated
and we get Eq. (33). �

Now we have the following corollary.
Corollary 3. For the BB84 QKD protocol, Kopt

BB84 in
Eq. (32) generally yields a higher secret key rate than the
Shor-Preskill one, KBB84 in Eq. (14):

Kopt
BB84 � KBB84. (38)

Corollary 3 can be directly obtained from Eqs. (14) and
(33). Specifically, since more parameters are utilized to con-
strain the state ρAB, the state set S in Eq. (33) is the subset
of the one in Eq. (14). As a result, one has Kopt

BB84 � KBB84.
The proof of Corollary 1 is based on the entropy uncertainty
relation. Here, we prove Corollary 3 with the tools from the
coherence theory [4]. In this way, one can clearly see when
the inequality in Eq. (38) is saturated.

Proof. Define Ôi j as the operation

Ôi j (ρ) = 1
2 Si jρSi j + 1

2ρ, (39)

where Si j = |i〉〈 j| + | j〉〈i|. Then, we consider the state σ ′
AB =

Ô12 ◦ Ô03(σAB), where σAB is defined in Eq. (34). Here the
labels {0, 1, 2, 3} represent the Z bases {|00〉, |01〉|10〉|11〉}
respectively. And we have σ ′

AB,

σ ′
AB =

⎛
⎜⎜⎜⎝

1−eb
2 0 0 Re[m03]
0 eb

2 Re[m12] 0
0 Re[m21] eb

2 0

Re[m30] 0 0 1−eb
2

⎞
⎟⎟⎟⎠, (40)

where the diagonal elements of the density matrix become
equal in two subspaces �+ and �− respectively after the
operation. Clearly, Ôi j is an incoherent operation, thus the
coherence of σ ′

AB is not larger than that of σAB, i.e.,

C(σAB) � C(σ ′
AB). (41)

By definition, one has

Kopt
BB84 = minσAB∈Sσ

C(σAB) − H (ez )

� minσAB∈S ′
σ

C(σ ′
AB) − H (ez ), (42)

where S ′
σ contains all the states σ ′

AB obtained from σAB, as
shown in Eq. (40). In fact, the minimization in the second
line is a special case of Problem 1. By applying Lemma 1
in Appendix B, one can get the minimal value, 1 − H (ep) −
H (eb). In the end, we have Kopt

BB84 � KBB84. �
From Eq. (40), it is clear that Kopt

BB84 = KBB84 when the
diagonal elements in the two subspaces �+ and �− are
balanced, i.e., m00 = m33 and m11 = m22. In practice, in order
to achieve this improvement of the key rate, Alice and Bob
need to replace the estimation of eb with more refined pa-
rameters m00, m11, m22, m33 in the parameter estimation step,
then perform privacy amplification with the updated key rate
formula Eq. (32). Note that this modification does not require
extra quantum or classical communications between Alice and
Bob.

B. Six-state protocol

Similarly to the case of BB84 protocol, one can improve
the key rate of six-state protocol by utilizing more refined pa-
rameters, i.e., diagonal elements m00, m11, m22, m33, instead
of the coarse-grained one, ez. Here, we provide the following
theorem.

Theorem 3. The secret key rate of six-state QKD protocol
can be estimated via

Kopt
six = C(τ ) − H (ez ), (43)
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where

τ =

⎛
⎜⎜⎜⎝

m00 0 0 (1 − ex − ey)/2

0 m11 (ey − ex )/2 0

0 (ey − ex )/2 m22 0

(1 − ex − ey)/2 0 0 m33

⎞
⎟⎟⎟⎠. (44)

Proof. The proof is similar to that of Thereom 2. We need to prove that

K = min
ρAB∈S

C(�(ρAB)) − H (eb)

= Kopt
six ,

where S contains all the states sharing the same diagonal elements m00, m11, m22, m33 and the error rates ex and ey obtained
from parameter estimation. Recall Eq. (37),

K = min
ρAB∈S

C(�(ρAB)) − H (eb)

� min
σAB∈Sσ

C(σAB) − H (ez ), (45)

where σAB is defined in Eq. (34). Here, Sσ = {τ } only has one element, since terms in σAB can all be determined by parameter
estimation in the six-state protocol. Namely, one has

ex = 1/2 − Re[m03] − Re[m12], (46)

ey = 1/2 − Re[m03] + Re[m12], (47)

ez = m11 + m22, (48)

while m00, m11, m22, m33 can be estimated with the ZA ⊗ ZB measurement. Inserting σAB = τ into Eq. (45) and noting that
τ ∈ S , we obtain Eq. (45). �

Corollary 4. For the six-state QKD protocol, Kopt
six in Eq. (43) generally yields a higher secret key rate than the original one,

Ksix in Eq. (22):

Kopt
six � Ksix. (49)

Like in the BB84 case, one can obtain Corollary 4 directly from Eqs. (22) and (45). Here we show a proof based on the
coherence theory [4].

Proof. Similar to the proof in Corollary 3, we apply the incoherent operation Ô on the state τ , and get τ ′ = Ô12 ◦ Ô03(τ ),
that is

τ ′ =

⎛
⎜⎜⎜⎝

1−ez

2 0 0 (1 − ex − ey)/2

0 ez

2 (ey − ex )/2 0

0 (ey − ex )/2 ez

2 0

(1 − ex − ey)/2 0 0 1−ez

2

⎞
⎟⎟⎟⎠. (50)

Due to monotonicity of coherence under incoherent operation,
one has

Kopt
six = C(τ ) − H (ez )

� C(τ ′) − H (ez )

= 1 − H ({pi})

= Ksix. (51)

Here, we substitute the probabilities pi on the Bell diagonal
basis for the error rates ex, ey, and ez with Eqs. (19) to (21),
and calculate the coherence C(τ ′). �

From Eq. (50), it is clear that Kopt
six = Ksix when the di-

agonal elements in the two subspaces �+ and �− are bal-
anced, i.e., m00 = m33 and m11 = m22. In practice, to achieve
this improvement of the key rate, Alice and Bob need to

replace the estimation of ez with the more refined parameters
m00, m11, m22, m33 in the parameter estimation step, then
perform the privacy amplification with the updated key rate
formula Eq. (43). Note that this modification does not require
extra quantum or classical communications between Alice and
Bob.

Here, we have some remarks regarding the improvement
of the key rates. In Secs. V A and V B, we have shown that
under the coherence-based framework, one can improve the
key rates of BB84 and the six-state protocol with fine-grained
parameters. These key rate improvements can be understood
as a fine-grained estimation of coherence in �(ρAB). On the
other hand, by utilizing other key rate formulas, such as the
Devetak-Winter approach, one may also get similar improve-
ments of the key rates by using fine-grained parameters. See
Appendix E for more discussions.
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FIG. 1. Key rate comparison of different schemes. We set
ex (ep) = ey = ez(eb) = 3%. The parameter α describes the unbal-
ance of the diagonal elements, m00/m33 = m22/m11 = α

1−α
, where the

region α ∈ [0.38, 0.62] is considered to guarantee the non-negativity
of the state ρAB. From top to bottom, the key rate plots are Kopt

six , Ksix,
Kopt

BB84, and KBB84, respectively.

C. Numerical simulation

To illustrate the improvement on the security analysis via
the coherence framework, we numerically compare the four
key rates analyzed above in Fig. 1, i.e., KBB84 in Eq. (14),
Kopt

BB84 in Eq. (32), Ksix in Eq. (22), and Kopt
six in Eq. (43). Here

we set typical experimental parameters for simulation, and
use a parameter α to describe the unbalance of the diagonal
elements of ρAB, i.e., m00/m33 = m22/m11 = α

1−α
.

The numerical result shows that the coherence-based key
rate of the six-state protocol enjoys the highest key rate, while
the Shor-Preskill key rate of BB84 possesses the lowest key
rate. As α = 0.5, that is, there is no unbalance of diagonal
elements, Kopt

BB84 = KBB84 and Kopt
six = Ksix; as α departs from

0.5, the unbalance becomes significant and one can clearly see
the improvements of the key rates.

We remark that the unbalance of the diagonal elements
could happen in practical QKD scenarios. In the next section,
one can see that the asymmetry of the detectors can lead to
this phenomenon[see ρZ

AB in Eq. (61) for an example].

VI. PRACTICAL ISSUE: DETECTION EFFICIENCY
MISMATCH

In this section, we apply our coherence framework to QKD
security analysis when considering a practical issue: detection
efficiency mismatch. Here, we focus on analyzing the BB84
protocol. We show that the key rate derived by our framework
is generally higher than in the previous analyses [35].

Ideally, the two detectors which detect |0〉 and |1〉 in the
Z basis (|+〉 and |−〉 in the X basis) are assumed to be
identical. However, in practical scenarios, there are always
imperfections in the channels and detectors, which may lead
to different efficiencies for |0〉 and |1〉 (or |+〉 and |−〉) [36].

A. Detector model

In practice, the detection efficiency of a detector is nor-
mally related to other degrees of freedom of the input

Efficiency

0t tt

 0Detector  1Detector

FIG. 2. Illustration of detector efficiency mismatch in the time
domain. Due to the optical path difference between the two detectors,
the two detectors have different detection efficiency in the time
domain. If the arrival time of the signal is t0, the efficiencies of the
two detectors are the same. However, if the arrival time is t− or t+,
the efficiency of Detector 0 (the solid blue line) is higher or lower.

photons, such as time, space, or spectrum [35]. For example,
Fig. 2 shows the detection efficiency mismatch that is related
to the temporal degree of freedom of the injected photons.
Employing the analytical methods in Ref. [35], here we model
the measurement by the two detectors on Bob’s side by the
measurement of

M0 = η0|0〉B〈0|, (52)

M1 = η1|1〉B〈1|, (53)

where 0 � η0, η1 � 1 are the efficiencies of the two detectors.
We assume η0 and η1 can be calibrated, thus are known to
Alice and Bob.

Here, we decompose M0 and M1 by a filtering operation Fz

and an ideal Z-basis measurement, where

Fz = √
η0|0〉B〈0| + √

η1|1〉B〈1|. (54)

Similarly, the measurement in the X basis with the two non-
identical detectors can be decomposed by a filtering operation,

Fx = √
η0|+〉B〈+| + √

η1|−〉B〈−|, (55)

followed by an ideal X -basis measurement {|+〉B〈+|,
|−〉B〈−|}.

Under this decomposition, before the ideal Z-basis mea-
surement, the state is transformed to

ρZ
AB = FzρABFz

Tr(FzρABFz )
, (56)

and the obtained bit error rate is represented by

eb = Tr
(
�−ρZ

AB

)
. (57)

Similarly, for the X -basis measurement, one has

ρX
AB = FxρABFx

Tr(FxρABFx )
, (58)

and the obtained phase error rate is

ep = Tr
(
�−

x ρX
AB

)
, (59)
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where �−
x = | + −〉〈+ − | + | − +〉〈− + |. We remark that

ep is not the phase error corresponding to the state measured
in the Z basis. That error should be

e′
p = Tr

(
�−

x ρZ
AB

)
. (60)

Note that the discrepancy between ep and e′
p originates from

the detection efficiency mismatch of the two detectors.

B. Derivation of the key rate

Essentially, the task of deriving the final key rate is to
estimate e′

p with the knowledge of the measurement results
in the Z and X bases.

Let us explicitly write down ρZ
AB in Eq. (56),

ρZ
AB = 1

�

⎛
⎜⎝

η0m00 · · √
η0η1m03

· η1m11
√

η0η1m12 ·
· √

η0η1m21 η0m22 ·√
η0η1m30 · · η1m33

⎞
⎟⎠,

(61)

where the matrix elements that are not related to the param-
eter estimation are represented by “·”, and the normalization
factor is

� = η0m00 + η1m11 + η0m22 + η1m33. (62)

Employing Eq. (30), one has

e′
p = 1/2 −

√
η0η1

�
{Re[m03] + Re[m12]}

= 1/2 −
√

η0η1

�
(1/2 − e′′

p), (63)

where the second line applies Eq. (30) for e′′
p, and e′′

p is defined
as

e′′
p = Tr(�−

x ρAB). (64)

Actually, � and e′′
p in Eq. (63) both can be obtained from

measurement results. Denote the probabilities of obtaining
|00〉, |01〉, |10〉, and |11〉 when both sides are measured in the
Z basis by m̂00, m̂11, m̂22, and m̂33, respectively. Then from
Eq. (61) one has

m̂00 = η0m00/�, m̂11 = η1m11/�,

m̂22 = η0m22/�, m̂33 = η1m33/�,
(65)

Since m00 + m11 + m22 + m33 = 1, � can be represented as

� = 1

m̂00/η0 + m̂11/η1 + m̂22/η0 + m̂33/η1
. (66)

Similarly, one can explicitly write down ρX
AB in Eq. (58) in

the X basis,

ρX
AB = 1

�′

⎛
⎜⎝

η0m′
00 · · √

η0η1m′
03· η1m′

11
√

η0η1m′
12 ·

· √
η0η1m′

21 η0m′
22 ·√

η0η1m′
30 · · η1m′

33

⎞
⎟⎠,

(67)

where m′
i, j denotes the matrix elements of ρAB in the X basis

and the normalization factor is

�′ = η0m′
00 + η1m′

11 + η0m′
22 + η0m′

22. (68)

Denote the probabilities of obtaining | + +〉, | + −〉, | − +〉,
and | − −〉 when both sides are measured in the X basis by
m̂′

00, m̂′
11, m̂′

22, and m̂′
33, respectively. Then one has

m̂′
00 = η0m′

00/�
′, m̂′

11 = η1m′
11/�

′,

m̂′
22 = η0m′

22/�
′, m̂′

33 = η1m′
33/�

′. (69)

Similarly to � in Eq. (66) for the Z basis, �′ can be represented
as

�′ = 1

m̂′
00/η0 + m̂′

11/η1 + m̂′
22/η0 + m̂′

33/η1
. (70)

By the definition (64), we have

e′′
p = m′

11 + m′
22

= �′(m̂′
11/η1 + m̂′

22/η0). (71)

With Eqs. (63), (66), (70), and (71), the phase error e′
p can

be precisely estimated from the measurement results in Z and
X bases. By contrast, e′

p is roughly upper bounded in previous
results [35]. This precise estimation of e′

p allows Alice and
Bob to obtain a higher key rate than in the previous analysis.
Also, the key rate can be further improved by applying Theo-
rem 2 to ρZ

AB.
Therefore, with fine-grained parameters, one can expect a

higher key rate than the previous ones. This is to be illustrated
in the following subsection.

C. Analytical key rate formula under symmetric attack

To simplify the analysis, we assume Eve’s attack to be
symmetric between bits 0 and 1 in the Z/X basis, i.e., the
diagonal elements of ρAB in both the Z basis and the X basis
are balanced. That is

m00 = m33 = c,

m11 = m22 = d,
(72)

with the normalization condition 2(c + d ) = 1. Meanwhile,
for the X basis, one has

m′
00 = m′

33 = c′,

m′
11 = m′

22 = d ′,
(73)

with 2(c′ + d ′) = 1. Then via Eq. (62) one has

� = η0c + η1d + η0d + η1c

= (η0 + η1)(c + d )

= (η0 + η1)/2, (74)

where � is a constant related to the detection efficiency.
With Eqs. (59), (67), and (68), one has

ep = (η1m′
11 + η0m′

22)/�′

= η1m′
11 + η0m′

22

η0m′
00 + η1m′

11 + η0m′
10 + η1m′

22

= (η0 + η1)d ′

(η0 + η1)(c′ + d ′)

= e′′
p, (75)
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x

key rate

1K

2K

K

FIG. 3. Comparison between the key rates obtained from three
analyses targeting the detection efficiency mismatch issue. The solid
blue, dashed green, and dotted red curves represent K , K1, and K2,
respectively. We set ep = eb = 5%, and plot the key rates versus
x = η0

η0+η1
, which describes the efficiency mismatch. Without loss of

generality, we assume η0 � η1 and hence 0 � x � 0.5.

where the last line is on account of the definition of e′′
p.

Inserting Eqs. (74) and (75) into Eq. (63), we have

e′
p = 1/2 − 2

√
η0η1

η0 + η1
(1/2 − ep), (76)

which means e′
p can be precisely estimated with ep.

With Eq. (76), one can estimate the key rate by applying
Theorem 2. For the current scenario that is restricted to the
symmetric attack, the optimization Problem 1 can be solved
analytically. See Appendix C for a detailed derivation. The
key rate is given by

K = H (x) − H ( f (x, ep)) − H (eb), (77)

where

x = η0

η0 + η1
,

f (x, ep) = 1/2 +
√

(1/2 − x)2 + x(1 − x)(1 − 2ep)2.

Comparatively, Ref. [35] proposes two methods of analyz-
ing the key rate with the detection efficiency mismatch issue.
There, one key rate formula is obtained via the data discarding
process,

K1 = 2 min{η0, η1}
η0 + η1

(1 − H (ep) − H (eb)). (78)

The other key rate is obtained via a virtual protocol based on
Koashi’s complementary approach [37],

K2 = 2 min{η0, η1}
η0 + η1

(1 − H (ep)) − H (eb). (79)

To compare above key rates, K , K1, and K2, we first
consider the noiseless case, where ep = eb = 0. Then, one
has K = H ( η0

η0+η1
) and K1 = K2 = 2 min{η0,η1}

η0+η1
. It is clear that

K � K1 = K2. In the noisy case, the key rates obtained from
the three analysis are plotted in Fig. 3. It shows that K is larger
than K2 for any efficiency mismatch extent; while K is larger
than K1 if the mismatch is not too serious. This manifests
the advantage of coherence framework for analyzing QKD
security.

When the efficiency mismatch becomes large (x ap-
proaches 0 in Fig. 3), K becomes negative; but K1 keeps
positive and thus larger than K . This fact can be understood
as follows. Suppose the initial state before measurement ρAB

possesses positive key rate (bit and phase error are both small).
The data discarding approach effectively transforms the state
ρZ

AB to ρAB with probability 2 min{η0,η1}
η0+η1

, thus the key rate K1

is always positive. As x → 0 (η0 → 0), the probability of
successful transform approaches 0, thus K1 → 0. On the other
hand, as x → 0, the phase error of the state ρZ

AB in Eq. (76)
approaches 1/2. Consequently, the first two terms in Eq. (77)
approach zero, and K → −H (eb) � 0.

VII. RELATION WITH ENTANGLEMENT

The existing security analyses [19,20] usually starts from
entanglement distillation protocols [25,38], where entangle-
ment is taken as an essential resource to deliver the security of
the final key. In contrast, our work is based on the relation be-
tween quantum coherence and intrinsic randomness, which is
related to the security in QRNG and QKD. Specifically, after
correcting the bit errors, we take Alice and Bob as a whole
and analyze the intrinsic randomness out of reach of Eve.
From this point of view, our approach shares similarity with
Koashi’s, which is based on the complementary arguments for
the joint system [37]. In addition, recently there have been
several works considering the interplay between coherence
and entanglement [39,40]. However, we remark that in these
works the authors normally investigate converting subsystem
coherence (not the coherence in the bipartite system) into
global correlations and the incoherent operations used there
cannot be directly applied to the QKD security analysis.

Here, we show some relations between our key rate and
the entanglement property of the input state ρAB. As shown
in Eq. (13), the key rate can be enhanced if Alice and Bob
acquire more information of the shared state ρAB and estimate
the coherence of �(ρAB) more accurately. Suppose Alice
and Bob perform a full tomography of ρAB in the parameter
estimation step; then the state set S only contains one state
ρAB. An upper bound for the key rate is shown in the following
proposition.

Proposition 1. Consider a protocol in which a full tomog-
raphy on ρAB is performed in the parameter estimation; then
the key rate is upper bounded by

K (ρAB) = C(�(ρAB)) − H (eb) � S(TrA[�(ρAB)])

− S(�(ρAB)). (80)

Note that the right side of Eq. (80) is the hashing inequality
for the state �(ρAB), which is a lower bound for one-way
LOCC (local operations and classical communication) en-
tanglement distillation protocol [29,38]. We remark that the
projection operation � on state ρAB is a nonlocal operation,
hence our analysis framework based on coherence could
potentially yield higher key rate than the usual entanglement
distillation analysis. For conciseness, we leave the proof of
Proposition 1 in Appendix D. We also compare our key rate
with the Devetak-Winter formula [29] in Appendix E.

Now we define a key rate that is independent of measure-
ment basis by maximizing the key rate generated by state ρAB
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over all local bases, i.e.,

Km(ρAB) = max
ZA⊗ZB

{C(�(ρAB)) − H (eb)}, (81)

where ZA ⊗ ZB labels all the local bases of Alice and Bob.
One can see that, given a pure state |�AB〉, the maxi-

mal key rate is its entanglement entropy, i.e., Km(�AB) =
S(ρA), with �AB = |�AB〉〈�AB| and ρA = TrB(�AB). To be
specific, suppose |�〉AB = a0|ψ0〉A|ψ ′

0〉B + a1|ψ1〉A|ψ ′
1〉B is

the the Schmidt decomposition of |�〉AB; one can choose
{|ψ0〉A, |ψ1〉A} and {|ψ ′

0〉B, |ψ ′
1〉B} as the optimal local basis

that maximizes the key rate. In addition, it is clear for a
product state |�AB〉 = |ψ0〉A|ψ ′

0〉B that the maximal key rate
is zero. And the following proposition gives an upper bound
for the maximal key rate for general state.

Proposition 2. The maximal key rate of the state ρAB opti-
mized over all local bases is upper bounded by the entangle-
ment of formation,

Km(ρAB) � min
{pi,�i}

∑
i

piK
m(�i ) = E form(ρAB), (82)

where the minimization is over all the convex decompositions
of ρAB = ∑

pi�i.
Proof. Note that the key rate K is convex due to the con-

vexity of the relative entropy of coherence and the concavity
of the von Neumann entropy. Hence, for any decomposition
of ρAB = ∑

pi�i,

Km(ρAB) = K (ρAB)Zo
A⊗Zo

B
�

∑
i

piK (�i )Zo
A⊗Zo

B

�
∑

i

piK
m(�i ), (83)

where Zo
A ⊗ Zo

B represents the optimal local basis for ρAB and
the last inequality holds since one can improve the key rates
of �i further by choosing specific optimal basis for each of
them. Consequently, the maximal key rate is upper bounded
by the entanglement of formation as shown in Eq. (82). �

It is also clear to see that the key rate for any separable
state Km(ρsep

AB ) � 0, since it can be written as the combination
of product states [26].

VIII. DISCUSSION AND CONCLUSION

We have proposed a framework that captures the close re-
lation between coherence and QKD. By considering a generic
entanglement-based QKD protocol, the framework shows that
the secure key rate can be quantified via the coherence of
the shared bipartite quantum states. By applying the proposed
framework to the BB84 and six-state protocols, we reproduce
the key rates. Furthermore, the framework can even allow
us to improve the key rates by modifying the postprocess-
ing. And it is also shown to be advantageous to analyze
the practical issue of detector efficiency mismatch in QKD.
More generally, the coherence-based framework also provide
us convenience to analyze the key rate by using tools from
coherence theory.

Along this direction, a number of problems can be ex-
plored in the future. Note that our current security analysis is
performed under the collective attack scenario. An important
future study is to extend the results to the scenario of coherent

attacks and take into account finite-key effects [41,42]. To
solve this problem, one may employ results from recent
studies on one-shot coherence theories [43–45]. There, co-
herence can be quantified in a nonasymptotic setting where
finite data-size effects appear. Also, apart from the currently
studied cases, the framework has potential to be applied to
many other QKD protocols, such as the three-state protocol
[46,47] and B92 protocol [48], where similar derivation and
improvement of the key rate are expected. In particular, the
framework can be naturally extended to measurement-device-
independent QKD [49], since bipartite quantum states are
directly distributed and measured in this kind of protocol.
In addition, generalization to high-dimensional QKD and
continuous-variable QKD [50] is also interesting. Also, we
expect our framework to be useful in addressing more practi-
cal issues in QKD, the solutions to many of which are missing
or very complicated at the moment.

Moreover, it is intriguing to reexamine the previous QKD
security analyses from the coherence theory point of view.
To be specific, a common technique of security analysis
is to transform the original protocol to the equivalent vir-
tual protocol. The latter is easier to analyze but shares
the same amount of secure keys. In the virtual protocol,
the operations conducted there are incoherent operations [4]
(more specifically, dephasing-covariant incoherent operation
[51,52]), which commute with the final Z-basis measurement
to generate keys. It is also interesting to investigate the con-
nection between coherence and entanglement [39,40,53–55]
under the scenario of security analysis. This topic might
not only deepen our understanding of the basic quantum
resources, but also inspire useful applications in quantum
information processing.
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APPENDIX A: QUANTUM BIT ERROR CORRECTION

We first clarify the information reconciliation of the origi-
nal protocol (i)–(v), and then convert it to a quantum version,
the quantum bit error correction of the virtual protocol.

In the original protocol, after the Z basis measurement
on ρ⊗n

AB , Alice and Bob get n-bit strings Zn
A and Zn

B, respec-
tively. Due to errors, the random variables Zn

A and Zn
B are

not identical in general. Then, in (linear) error correction,
Alice generate an error syndrome by hashing her bit string
with an nH (ZA|ZB) × n random binary matrix. By consuming
nH (ZA|ZB) preshared secret bits, Alice sends the syndrome to
Bob safely with the one-time-pad encryption. After obtaining
the syndromes, Bob can correct the corresponding error bits.

In the virtual protocol, the quantum bit error correction is
executed before the Z-basis measurement. Specifically, Alice
and Bob now share nH (ZA|ZB) EPR pairs. First, they use their
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FIG. 4. The circuit for quantum bit error correction. Alice and
Bob separately use their state ρ⊗n

AB to control the EPR pairs according
to a nH (ZA|ZB ) × n hashing matrix with n → ∞. Here for clearness
we show the schematic with a 2 × 3 hashing matrix H2×3 given in
Eq. (A1).

state ρ⊗n
AB to control the EPR pairs according to the hashing

matrix separately, where the ancillary EPR pairs act as the
target of the CNOT gate. Second, they measure the EPR pairs
in the Z basis separately and get the measurement results Za

A
and Za

B, where a labels the ancilla. Then Alice sends Za
A to

Bob and Bob obtains the error syndrome via bitwise binary
addition Za

A ⊕ Za
B. Finally, Bob locates the bit errors and

applies the σx operation to correct them. Here, it is clear that
the quantum bit error correction commutes with the Z-basis
measurement. Take a simple example, where

H2×3 =
(

1 1 0
0 1 1

)
; (A1)

the circuit is illustrated in Fig. 4.

APPENDIX B: ANALYTICAL SOLUTION TO PROBLEM 1

Lemma 1. If the four diagonal elements of the den-
sity matrix in Eq. (31) satisfy m00/m33 = m11/m22 =

α
1−α

(or m00/m33 = m22/m11), the minimal coherence ob-
tained from the optimization in Problem 1 is H (α) −
H ( 1

2 +
√

(α − 1
2 )2 + ( 1

2 − ep)2), with the solution ā = (1 −
eb)(1/2 − ep) and b̄ = eb(1/2 − ep).

Proof. Here, we only consider the case m00/m33 =
m11/m22, and the proof for the other case m̄00/m̄33 = m̄22/m̄11

can proceed in a similar way.
Due to the additivity property of coherence, we can express

the coherence of ρ(a, b), like in Eq. (12), as

C(ρ(a, b)) = (1 − eb)C(ρ+) + ebC(ρ−), (B1)

where ρ+(−) = �+(−)ρ(a, b)�+(−)/Tr[�+(−)ρ(a, b)]. With
m00/m33 = m11/m22 = α

1−α
, we can explicitly write down the

matrix form of ρ+(−) as

ρ+ =
(

α a′
a′ 1 − α

)
, ρ− =

(
α b′
b′ 1 − α

)
, (B2)

where (1 − eb)a′ = a and ebb′ = b.
The relative entropy of coherence of the state ρ+ is

C(ρ+) = S(
(ρ+)) − S(ρ+)

= H (α) − H
(

1
2 +

√
(α − 1

2 )2 + |a′|2), (B3)

where 
(·) is the dephasing operation of the {|00〉, |11〉} basis.
For simplicity, we denote g(x) = 1

2 +
√

γ + x2, where γ =
(α − 1

2 )2, hence

C(ρ+) = H (α) − H (g(|a′|)). (B4)

And similarly for ρ−, we have

C(ρ−) = H (α) − H (g(|b′|)). (B5)

In fact, g(x) is a monotonically increasing convex function,
on account of

g′(x) = x√
γ + x2

� 0,

g′′(x) = γ

(γ + x2)
3
2

> 0. (B6)

Moreover we can show that H (g(x)) is a concave function.
Specifically, for two variables x1, x2 with probability p1, p2,

∑
i

piH (g(xi )) � H

(∑
i

pig(xi )

)
� H

(
g

(∑
i

pixi

))
,

(B7)

where the summation i = 1, 2. The first inequality is due
to the concavity of the entropy function H (x). The second
inequality holds because of three facts: g(x) is a convex
function, i.e.,

∑
i pig(xi ) � g(

∑
i pixi ); g(x) is larger than 1

2 ;

H (x) monotonically decreases as x � 1
2 .

Then inserting Eqs. (B4) and (B5) into Eq. (B1), and
utilizing the concavity of H (g(x)), we have

C(ρ(a, b)) = H (α) − (1 − eb)H (g(|a′|)) − ebH (g(|b′|))
� H (α) − H (g([1 − eb]|a′| + eb|b′|)), (B8)

where the equality holds when |a′| = |b′|.
Remembering that the coherence C(ρ(a, b)) should be

minimized under the constraint a + b = (1 − eb)a′ + ebb′ =
1
2 − ep, we have

(1 − eb)|a′| + eb|b′| � |(1 − eb)a′ + ebb′| = | 1
2 − ep|, (B9)

where the equality is saturated when a′ and b′ share the same
sign. Consequently, following Eq. (B8), we have

C(ρ(a, b)) � H (α) − H (g([1 − eb]|a′| + eb|b′|))
� H (α) − H (g(| 1

2 − ep|)), (B10)

where the second inequality holds since H (g(x)) is a mono-
tonically decreasing function. And the inequality is saturated
when ā = (1 − eb)(1/2 − ep) and b̄ = eb(1/2 − ep). �

APPENDIX C: DERIVATION OF THE KEY
RATE K IN EQ. (77)

Here we derive the key rate for the symmetric attack
scenario, where the key is generated from the Z-basis bit of
ρZ

AB. Under the symmetric assumption in Eq. (72), the four
diagonal elements in the Z basis of ρZ

AB are 2c η0

η0+η1
, 2d η1

η0+η1
,

2d η0

η0+η1
, and 2c η1

η0+η1
respectively. The phase error e′

p is given
by Eq. (76). Consequently, the coherence minimization of
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Problem 1 becomes

ρ(a, b) =

⎛
⎜⎜⎜⎝

2c η0

η0+η1
0 0 a

0 2d η1

η0+η1
b 0

0 b 2d η0

η0+η1
0

a 0 0 2c η1

η0+η1

⎞
⎟⎟⎟⎠,

(C1)

where a + b = 1
2 − e′

p. It is clear that this minimization sat-
isfies the condition in Lemma 1 with α = η0

η0+η1
. Hence,

according to Theorem 2, the key rate reads

K = H (α) − H
(
1/2 +

√(
α − 1

2

)2 + (
1
2 − e′

p

)2) − H (eb)

= H (α) − H
(
1/2 +

√(
α − 1

2

)2 + α(1 − α)(1 − 2ep)2
)

− H (eb), (C2)

where Eq. (76) is applied in the third line to express e′
p with

ep. If we substitute x for α in the above equation, we get the
key rate in Eq. (77) in the main part.

APPENDIX D: PROOF OF PROPOSITION 1

From Eq. (12), one has C(�(ρAB)) = (1 − eb)C(ρ+
AB) +

ebC(ρ−
AB). By definition [3],

C(ρ+
AB) = S

(
ρ

+diag
AB

) − S(ρ+
AB)

= LS(ρ+
B ) − S(ρ+

AB), (D1)

where ρ+
B = TrB(ρ+

AB). Here in the second line we utilize the
fact that S(ρ+

B ) = S(ρ+diag
AB ), since ρ+

AB is in the �+ subspace.
Similarly, one has

C(ρ−
AB) = S(ρ−

B ) − S(ρ−
AB). (D2)

As a result,

K (ρAB) = C(�(ρAB)) − H (eb)

= (1 − eb)(S(ρ+
B ) − S(ρ+

AB)) + eb(S(ρ−
B ) − S(ρ−

AB)) − H (eb)

= (1 − eb)S(ρ+
B ) + ebS(ρ−

B ) − ((1 − eb)S(ρ+
AB) + ebS(ρ−

AB) + H (eb)),

� S((1 − eb)ρ+
B + ebρ

−
B ) − S(�(ρAB)),

= S((1 − eb)TrA(ρ+
AB) + ebTrA(ρ−

AB)) − S(�(ρAB)),

= S(TrA[�(ρAB)]) − S(�(ρAB)), (D3)

where the inequality in the fourth line is due to the concavity
of entropy.

APPENDIX E: COMPARISON WITH THE
DEVETAK-WINTER FORMULA

The Devetak-Winter formula shows that the key rate
of state ρAB in the i.i.d. scenario is KD−W = S(ZA|E ) −
H (ZA|ZB). This formula considers the one-way information
reconciliation protocol. In this case, the information reconcil-
iation term H (ZA|ZB) is the same as in our formula. Note
that our formula Eq. (1) can be applied to more general
information reconciliation protocols, whereas the Devetak-
Winter one is originally designed for one-way postprocessing.
Thus, we focus on the first term S(ZA|E ) which is used to
estimate the privacy of the sifted key on Alice’s side. In fact,
it can be written in the relative entropy form [53,56] as

S(ZA|E ) = D(ρAB‖
ZA (ρAB)), (E1)

where 
ZA is the partial dephasing operation on system A, i.e.,

ZA (ρAB) = ∑

i=0,1 |i〉A〈i|ρAB|i〉A〈i|. Here S(ZA|E ) equals to
the amount of basis-dependent discord of ρAB [57].

On the other hand, the term corresponding to privacy,
C(�(ρAB)) in our key formula in Eq. (7), can also be written
in the relative entropy form. By definition [3], we have

C(�(ρAB)) = D(�(ρAB)‖
ZAB (�(ρAB))). (E2)

Compared with Eq. (E1) of Devetak-Winter formula,
C(�(ρAB)) quantifies the global coherence of �(ρAB).

It is enlightening to note that, using the same fine-grained
parameters, one can achieve the same key rate improvement
from the Devetak-Winter formula as our coherence frame-
work. Here is the proof. As shown in Eq. (31), ρAB constrained
by the fine-grained parameters in the BB84 protocol satisfies
ρAB = �(ρAB). Similarly, Eq. (44) shows that ρAB = �(ρAB)
is also satisfied for ρAB constrained by the fine-grained param-
eters in the six-state protocol. Therefore, for both protocols,
one has

C(�(ρAB)) = D(�(ρAB)‖
ZAB (�(ρAB)))

= D(�(ρAB)‖
ZA (�(ρAB)))

= D(ρAB‖
ZA (ρAB))

= S(ZA|E ) (E3)

where the second equality employs the fact that 
ZA (�(·)) =

ZAB (�(·)) and the third equality employs ρAB = �(ρAB).

Therefore, with the fine-grained parameters, KD−W is equal
to the key rate formula (1). This implies one can derive
the same improved key rate formulas as those in Theorem
2 and Theorem 3, from the Devetak-Winter formula with
fine-grained parameters.
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