
PHYSICAL REVIEW A 99, 062324 (2019)

Implementing positive-operator-valued-measurement elements in photonic circuits
for performing minimum quantum state tomography of path qudits
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Manipulation of qudits in optical tables is a difficult and nonscalable task. The use of integrated optical circuits
opens new possibilities for the generation, manipulation, and characterization of high dimensional states besides
the ease of transmission of these states through an optical fiber. In this work we propose photonic circuits to
perform minimum quantum state tomography of path qudits and show how to determine all the constituents
parameters of these circuits (beam splitters and phase shifters). Our strategies were based on the symmetries of
the involved POVMs (positive operator-valued measures) suggested for minimum tomography and allowed us
to obtain interferometers smaller than those obtained by other already known methods. The calculations of the
transmittances and reflectivities of the beam splitters were made using the definition of probability operators in
extended Hilbert spaces and the application of Naimark’s theorem. The employment of equidistant states for the
definition of the POVM elements allowed us to develop a recipe applicable to the tomography of qudits of any
dimension, generalizing our scheme.
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I. INTRODUCTION

A qubit corresponds to the fundamental unit of quantum
information in the same sense as the bit corresponds to the
fundamental classical unit of information. When we are re-
ferring to quantum states with a Hilbert space with dimension
N > 2, then we speak of qudits [1–6]. The use of qudits opens
new prospects for quantum information processing, such as
the enhancement of security for quantum key distribution,
the increase of channel capacity, higher noise resistance, and
quantum computing [7–19].

Manipulating states of qudits in interferometers at optical
tables is a nonscalable and challenging task. Interferometers
have been set for characterizing quantum states [20–24],
controlling, detecting, or measuring entanglement of qudit
systems [9,10,25,26], or simulating noisy channels [27,28].
The use of photonic circuits written in glasses by a fem-
tosecond direct laser writing technique opens new possibilities
for the generation, manipulation, and characterization of high
dimensional states, besides the direct transmission of these
states through an optical fiber [29–36]. Using longitudinal
interferometers, we can implement quantum operations in two
qudits states, including transforming them from antisymmet-
ric states to symmetric ones, making it possible to construct
interferometers for simulation of open systems and their char-
acterization [37–40]. Remote preparation of arbitrary qudits
for their use in quantum communication protocols is another
possible application for these circuits [41–44].

Recently, the generation and analysis of a two qutrits
system in a silicon photonic circuit generated with the litho-
graphic technique was demonstrated [45]. In this domain, we
can use such a result to produce states of two qudits from an
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integrated photonic chip drawn on glass, after they receive
photon pairs generated by spontaneous parametric down-
conversion (SPDC). We aim here the construction of pho-
tonic circuits that, by implementing POVM (positive operator-
valued measure) elements, are able to perform minimum full
quantum state tomography of qudits, defined as an experi-
mental technique that allows the reconstruction of the density
matrix of a quantum system in an unknown state with a min-
imum number of measurements [46–50]. These techniques
satisfy a demand in current computer and telecommunications
technologies: the ability to execute quantum information pro-
tocols on small devices that integrate a larger hardware design.
Our accomplishment is a contribution in the development
of quantum information tasks in chips. It contributes to the
technology needed to reach compact and portable devices for
quantum protocols.

Quantum state tomography on a chip has been a subject
of interest to various research groups. It demonstrated, the-
oretically and experimentally, the accomplishment of quan-
tum tomography in photonic chips through quantum walks
[51,52]. The authors used in their experiment a circuit with
N inputs and M outputs to characterize a photon-number
state. The detection of the photons of all the outputs is done
simultaneously, optimizing the experiment duration. Since it
is not necessary to reconfigure the experimental apparatus,
the occurrence of errors is also reduced. Circuits that do not
require reconfiguration are called static circuits [53].

In this work we present an alternative form of performing
full quantum tomography on photonic chips, by the imple-
mentation of POVM elements in static circuits, whose de-
tection at all outputs is made simultaneously. All necessary
POVM elements are implemented at the same time by the
circuit and measured at the different photonic circuit exits
simultaneously. All necessary measurement probabilities are
obtained from the photon counts at the circuit outputs in
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one measurement time interval. This is important because it
minimizes the noise introduced by the experimental apparatus
during the detection time. The proposed tomography method
uses SIC-POVM (symmetric informationally complete posi-
tive operator-valued measure) elements, allowing a full quan-
tum state tomography with the minimum number of mea-
surements and with a symmetric POVM elements distribution
in Hilbert space that optimizes the system density operator
reconstruction [21,54–58].

Our proposal is based on the application of Naimark’s
theorem. The POVM cannot be realized by an unitary trans-
formation followed by a projective measurement in the orig-
inal qudit space. Therefore, the initial qudit Hilbert space is
expanded and the realization of the POVM elements occurs
by applying unitary transformations followed by projection
measurements in this extended space [59–63]. This task can
be realized in multiport interferometers, composed of beam
splitters and phase shifters, built by using, for example, the
Reck’s proposition [64]. An important advance was done
by Clements et al. that propose a different design for the
multiport interferometer that, by using the same number of
components, decreases the optical depth of the interferometer
[65]. This quantity is important for fabricating smaller inter-
ferometers with smaller losses.

The unitary transformations in the extended Hilbert space
in our circuit design uses a smaller number of beam splitters
than Reck et al. and Clements et al. general designs with a
smaller optical depth, which is a clear advantage for this spe-
cific task. It is necessary to mention that the proposed circuit
design realizes full quantum tomography with the minimum
number of measurements and no hypothesis about the initial
system state are necessary. Other schemes are able to realize
quantum tomography with a number of measurements smaller
than the minimum for a particular class of system states using
prior knowledge of the input state [53].

Finally, the organization of the rest of the paper is as
follows: in Sec. II we briefly discuss some useful concepts
about minimum state tomography for qubits. After this short
introduction, we present in Sec. III the proposal for con-
struction of the tomographical circuits for this case. We then
proceed in Sec. IV with the circuit’s proposal in the qutrit
case. In Sec. V we generalize our proposal for N dimensions.
Finally, we conclude in Sec. VI.

II. MINIMUM QUANTUM STATE TOMOGRAPHY
FOR QUBITS

As already mentioned in the Introduction, quantum state
tomography is an experimental technique that allows the
reconstruction of the density matrix of an unknown quantum
system state. Its realization consists of the production of a
large number of identically prepared system states together
with a series of measurements of the physical quantities that
it describes. When the tomography is made using the least
possible number of operations, it is called a minimum full
quantum state tomography [66,67]. To perform a minimal full
tomography on a qubit system, one needs a POVM with four
different elements Ê j to be implemented in the initial state ρ̂.
The outcome’s counting rate c j is

c j = APj, (1)

where A is a constant proportional to the detector efficiency
and the number of identically prepared states in 1 s and
Pj = Tr[ρ̂Ê j] is the probability of detecting one of the output
states after Ej is implemented. By implementing these POVM
elements, it is possible to determine the qubit state since the
number of counts is going to be accessible.

As seen in [67], the necessary POVM elements to be
implemented are

Êk = 1
2 |ϕk〉〈ϕk|, (2)

with k = 1, 2, 3, 4 and

|ϕ1〉 = ω|0〉 + iυ|1〉, (3a)

|ϕ2〉 = ω|0〉 − iυ|1〉, (3b)

|ϕ3〉 = υ|0〉 − ω|1〉, (3c)

|ϕ4〉 = υ|0〉 + ω|1〉, (3d)

where ω = √
2/3 and υ = √

1/3. If the density operator ρ̂ is
written as ρ̂ = (Î + �r · �σ )/2, where �r = (rx, ry, rz ) and �σ =
(σ̂x, σ̂y, σ̂z ) is the Pauli vector, we need to determine the values
of the quantities rx, ry, and rz from the experimental outcome’s
counting rates c j [Eq. (1)] in order to reconstruct the initial
state density matrix ρ̂. By using the POVM elements shown
in Eq. (2) in Eq. (1), we obtain

rx = 3(c4 − c3)

A
√

2
, (4a)

ry = 3(c1 − c2)

A
√

2
, (4b)

rz = 3(c1 + c2 − c3 − c4)

A
, (4c)

where A = c1 + c2 + c3 + c4.

III. CONSTRUCTION OF THE TOMOGRAPHICAL
CIRCUITS FOR QUBITS

Any unitary operator of finite size can be constructed
in the laboratory using an appropriate combination of two
optical devices: beam splitters (BS) and phase shifters [64].
Therefore, we can express an N-dimensional operator Û ′ as

Û ′ = T̂nT̂n−1 · · · T̂2T̂1, (5)

where T̂j is an N-dimensional matrix that represents the jth
operation performed on the input state and n is the number of
operations required for the implementation of the matrix Û ′.
The T̂j matrix is a block-diagonal matrix, where each block
is composed from the elements of the BS matrix, defined as
follows [64]:

ÛBS =
[

eiφ√
r eiφ

√
t√

t −√
r

]
, (6)

in which t is the transmittance of the beam splitter and r is its
reflectivity. These parameters satisfy the equation r + t = 1.
The parameter φ indicates the phase difference between the
outputs of the beam splitter. These are the building blocks
we will use to create a scheme for minimal quantum state
tomography in integrated chips.
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FIG. 1. Circuit proposal for the realization of the minimal state
tomography on a one-qubit system. The black lines are the photon
paths realized by the waveguides; the BS’s are represented by the
approximation of these lines and the phase shifters are the blue
rectangles. This proposal was made on the assumption that the modes
of the photonic qubit labeled as |0〉 and |1〉 are coupled to the second
and third waveguides, respectively.

The first goal of this article is to propose a photonic circuit
that implements the minimal full path state tomography on a
one-qubit system. The simpler choice for the interferometer
is shown in Fig. 1. In this configuration, each outcome of the
interferometer corresponds to the implementation of one of
the different maps Êk , with k = 1, 2, 3, 4 [Eq. (2)], allowing
us to obtain the outcomes simultaneously. The T̂j operators
that it constitutes (Fig. 1) are

T̂1 =

⎡
⎢⎢⎢⎣

eiφ1
√

r1 eiφ1
√

t1 0 0√
t1 −√

r1 0 0

0 0 eiφ2
√

r2 eiφ2
√

t2
0 0

√
t2 −√

r2

⎤
⎥⎥⎥⎦, (7)

T̂2 =

⎡
⎢⎢⎢⎣

1 0 0 0

0 eiφ3
√

r3 eiφ3
√

t3 0

0
√

t3 −√
r3 0

0 0 0 1

⎤
⎥⎥⎥⎦, (8)

T̂3 =

⎡
⎢⎢⎢⎣

eiφ4
√

r4 eiφ4
√

t4 0 0√
t4 −√

r4 0 0

0 0 eiφ5
√

r5 eiφ5
√

t5
0 0

√
t5 −√

r5

⎤
⎥⎥⎥⎦. (9)

Since we need to expand the Hilbert space, we will use
as an initial state |ψ〉0 = |ψ〉 ⊗ |0〉. The first state vector can
be interpreted as a qubit system in the state |ψ〉, and the
second as an ancilla in the state |0〉. But note that the state
|ψ〉0 = (α, 0, β, 0)T is different from the initial state shown
in Fig. 1, given by |ψ〉in = (0, α, β, 0)T . The input state |ψ〉in

can be written in terms of the state |ψ〉0, with no modifications
in the circuit nor any relabeling, by using the transformation
described by M̂, defined by the following relation:

⎡
⎢⎢⎢⎣

0

α

β

0

⎤
⎥⎥⎥⎦ = M̂

⎡
⎢⎢⎢⎣

α

0

β

0

⎤
⎥⎥⎥⎦ ⇒ M̂ =

⎡
⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦. (10)

It is worth noting that the transformation M̂ is not imple-
mented in practice. It is only a mathematical transformation.
Thus, as our proposal supposes the input state as being |ψ〉in

and the theoretical calculation is made based on the initial
state |ψ〉0, we have

Û ′|ψ〉in = T̂3T̂2T̂1M̂|ψ〉0. (11)

Therefore, the operator that effectively would act on the
state |ψ〉0 is given by

Ûqubit = T̂3T̂2T̂1M̂. (12)

The operator defined in Eq. (12) is used in the pro-
cess of determination of the circuit parameters, as shown in
Appendix A.

The next task is to find the parameters r j , t j , and φ j that
compose Ûqubit to complete the circuit description. We start
by examining the set of probability operators �̂ml acting on
the system-ancilla Hilbert space. Such operators can be un-
derstood as the POVM elements associated with the detection
of the photon at each circuit output. The action results of these
POVM elements correspond to the projections over the states
of the set {|ml〉}, with m, l = 0, 1, and each circuit output
corresponds to one of the states |ml〉, i.e., |00〉, |01〉, |10〉, or
|11〉. Here the states |m〉 and |l〉 form a basis on each of the
subspaces: system and ancilla, respectively. The probability
of detecting a photon, initially in the state described by the
density operator ρ̂, in one given output of the interferometer,
is given by

Pml = Tr[(ρ̂ ⊗ |0〉〈0|)�̂ml ], (13)

where |0〉 is the ancilla state. This expression can also be
written in terms of a POVM acting only in the subspace of
the input qubit

Pml = Tr[ρ̂Êml ], (14)

where we can define the local POVM elements Êml as

Êml = Tr2[(Î ⊗ |0〉〈0|)Û †
qubit|ml〉〈ml|Ûqubit] (15)

and the matrix elements of Êml will be given by

〈p|Êml |q〉 = 〈p0|Û †
qubit|ml〉〈ml|Ûqubit|q0〉. (16)

Each state |ml〉, in binary notation, corresponds to one
outcome shown in Fig. 1, which allows us to make the
exchange Êml → Êk , with k being the number that identifies
each output. Based on this, the operators Êk in Eq. (15) will
be identified as the POVM element presented in Eq. (2).
From these relations, it is possible to determine the suitable
circuit parameters. As shown in Appendix A, the parameters
necessary for implementing the minimal tomography, in this
case, are

r1 = 1/3, t1 = 2/3, φ1 = π/2, (17a)

r2 = 1/3, t2 = 2/3, φ2 = 0, (17b)

r3 = 0, t3 = 1, φ3 = 0, (17c)

r4 = 1/2, t4 = 1/2, φ4 = 0, (17d)

r5 = 1/2, t5 = 1/2, φ5 = 0. (17e)
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By manufacturing a photonic circuit (Fig. 1) with the pa-
rameters presented in Eqs. (17), we obtain a specific interfer-
ometer with five beam splitters and one phase shifter. This cir-
cuit implements POVM by doing unitary transformations and
projective measurements in an extended Hilbert space with
less optical elements and a smaller optical depth than other
existing general unitary operations circuits already proposed
in the literature [63–65]. Another conclusion that arises from
this result, is that the effect of the beam splitter that composes
T̂2 solely exchanges the photon beam carried by the second
and third paths, as seen in Eq. (17c). Except by this exchange,
the BS’s that act nontrivially operate only between the first
and second, and the third and fourth, separately. This structure
will inspire the design of circuits for general qudit states.

IV. MINIMUM QUANTUM STATE TOMOGRAPHY
FOR QUTRITS

For the qutrit, we approached the circuit’s design in a
different manner. The strategy to find a circuit that performs
the qubit’s tomography starts with Eq. (12), which leads to
the solution of a 4 × 4 matrix equation for finding the BS
specifications. Applying the same procedure in the qutrit
case would result in the solution of a 9 × 9 matrix equation.
Alternatively, we faced this problem by analyzing the POVM
operators and the desired outcomes for the qutrit tomography,
being able to reduce the problem to the search of a 3 × 3
matrix equation solution. The qutrit tomography is realized
via equidistant states [21,54].

The SIC-POVM elements for the qutrit case are of the form

Êml = 1
3 |ψml〉〈ψml |, (18)

with m, l = 0, 1, 2 and [54]

|ψ00〉 = μ|0〉 + η|2〉, (19a)

|ψ01〉 = κ|0〉 + κ|2〉, (19b)

|ψ02〉 = η|0〉 + μ|2〉, (19c)

|ψ10〉 = η|0〉 + μ|1〉, (19d)

|ψ11〉 = κ|0〉 + κ|1〉, (19e)

|ψ12〉 = μ|0〉 + η|1〉, (19f)

|ψ20〉 = η|1〉 + μ|2〉, (19g)

|ψ21〉 = κ|1〉 + κ|2〉, (19h)

|ψ22〉 = μ|1〉 + η|2〉, (19i)

where κ = 1/
√

2, μ = e2π i/3/
√

2, and η = e−2π i/3/
√

2, such
that κ + μ + η = 0, ensuring that

∑
ml Êml = 1. Keeping in

mind Eq. (16), we use the fact that the POVM elements are of
the form of Eq. (18) to define ap

ml as the expansion coefficients
of |ψml〉 as

1√
3
|ψml〉 = a0

ml |0〉 + a1
ml |1〉 + a2

ml |2〉, (20)

where 〈p|Êml |q〉 = (ap
ml )

∗aq
ml , with p, q = 0, 1, 2. By substi-

tuting Eq. (20) into Eq. (18) and comparing Êml with Eq. (16),
we arrive at an expression for the matrix elements of Û that
allow us to implement the desired POVM elements in the

FIG. 2. Schematic drawing showing the quantum operations of
the proposed photonic circuit for quantum tomography of qutrits.
The pink dotted lines separate the three sectors of the circuit that can
be analyzed separately. The waveguides are represented by the black
lines and labeled by the vectors |i〉 j , where i, j = 0, 1, 2. The state
vectors αi|i〉1 indicate the waveguides where a possible (α0, α1, α2)T

input qutrit path state is coupled to the circuit. The �̂ operation is
responsible for diffusing the initial state to the first and third path
in each sector. The red and blue arrows portray the permutations
between the third and fourth paths and between the sixth and sev-
enth ones, respectively. This permutation, performed by 1 : 0 BS,
exchanges the coefficients of some base vectors. Finally, these paths
are connected to the last circuit piece, described by a 3 × 3 Û matrix,
to resume the tomographic implementation. Analogous descriptions
can be done for the other two sectors. A detector count in one of the
nine circuit outputs is proportional to the implementation probability
of a POVM element Êi j (i, j = 0, 1, 2).

extended Hilbert space of dimension 9

〈ml|Û |q0〉 = aq
ml . (21)

Inspired by the solution for the tomography of qubits, we
conceive an interferometer that is formed by three sectors,
shown in Fig. 2, separated by the pink dotted line. Due to
the symmetry in the POVM, it is convenient to perform the
tomography measurements, such that, in the kth sector, the
three outcomes result from the application of only Êkl (l =
0, 1, 2), already defined in Eq. (18). Our goal is that the
photon count in the detector coupled to one of the three exits
of the zeroth, first, and second sector is proportional to the
probability of implementing the POVM elements Ê0l , Ê1l , or
Ê2l , respectively.

The prepared photonic path state is such that the photon
can enter in one of the nine input ports of the interferometer, as
shown in Fig. 2. A photon in a qutrit path state represented by
the |0〉, |1〉, and |2〉 base vectors can enter in the second or in
the fifth or in the eighth input circuit ports. Since the photonic
circuit has nine input ports, it is clear that the Hilbert space
for the photonic path states increases from N = 3 to N = 9.
We label the path states in the N = 9 extended Hilbert space
as |i〉 j , where i, j = 0, 1, 2. The nine photonic paths, from
top to bottom, are labeled as |0〉0, |0〉1, |0〉2, |1〉0, |1〉1, |1〉2,
|2〉0, |2〉1, and |2〉2. Figure 2 shows the quantum operations
schematically in the extended Hilbert space.
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FIG. 3. Circuit representation of the �̂ operation for the imple-
mentation of the qutrit tomography. We have a 1/2 : 1/2 BS that
splits the input mode in path 2 in two output modes in paths 2 and
3 (labeled as |i〉1 and |i〉2, respectively). A 1 : 0 BS between paths 1
and 2 switches these paths.

Let us suppose we have a normalized input state |ψ〉 =∑2
i=0 αi|i〉1. After the first operation, represented by the

green rectangles, the photon path state becomes |ψ ′〉 =∑2
i=0 αi(|i〉0 + |i〉2)/

√
2. The second transformation in Fig. 2

switches some of the coefficients in |ψ ′〉 to generate the
state |ψ ′′〉 = ∑2

i=0(βi|i〉0 + γi|i〉2)/
√

2, where β0 = β1 = α0,
β2 = γ0 = α1, and γ1 = γ2 = α2. The states |ψ〉 and |ψ ′′〉 can
be represented by vectors such that the first and second state
transformations in Fig. 2 produces⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

α0

0

0

α1

0

0

α2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�−→ 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

0

α1

α0

0

α2

α1

0

α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

Notice that the circuit design is such that, in the first,
second, and third sectors, we create state superpositions
of the original qutrit base states {|0〉, |1〉}, {|0〉, |2〉}, and
{|1〉, |2〉}, respectively. The arrangement of beam splitters
which implements what is outlined by the green rectangles
in Fig. 2 is shown in Fig. 3. The optical couplers (BS) that
carry the quantum operation described in Fig. 3 are 1/2 : 1/2
BS (t = 0.5 and r = 0.5) and 1 : 0 BS (t = 1 and r = 0).
The second transformation shown in Fig. 2, the permutations
between third and fourth paths and sixth and seventh paths, is
performed by 1 : 0 BSs.

The last part of Fig. 2 shows the applications of unitary
operations Û in the first, second, and third sectors. Notice that
the Û operations only apply to the vector states of their respec-
tive sectors. Therefore, the quantum operation described by a
9 × 9 matrix in the extended Hilbert space of nine dimensions
is composed by three 3 × 3 Û matrices forming three blocks
matrices with all the other elements of the 9 × 9 matrix equal
to zero, i.e.,

Ô =

⎡
⎢⎣

Û 0 0

0 Û 0

0 0 Û

⎤
⎥⎦. (23)

FIG. 4. Circuit representation of the Û matrix for the imple-
mentation of the qutrit tomography. The blue rectangles are phase
shifters.

The circuit scheme for Û appears in detail in Fig. 4. Hence,
we must establish the coefficients r j , t j , and the phases φ j . In
order to achieve this, we are going to obtain the matrix from
the inputs and outputs vectors available. The desired effect of
the operations Ê0l , Ê1l , and Ê2l in the first, second, and third
sectors of the circuit, respectively, leads us to

Û

⎡
⎢⎣

αi/
√

2

0

α j/
√

2

⎤
⎥⎦ = 1√

6

⎡
⎢⎣

αi + α j

αie2iπ/3 + α je−2iπ/3

αie−2iπ/3 + α je2iπ/3

⎤
⎥⎦, (24)

with i = 0, 1, j = 1, 2, and i < j. The unitary Û that satisfies
Eq. (24) is

Û = 1√
3

⎡
⎢⎣

1 1 1

e2iπ/3 1 e−2iπ/3

e−2iπ/3 1 e2iπ/3

⎤
⎥⎦, (25)

which corresponds to the circuit in Fig. 4. We managed
therefore to reduce the problem from a 9 × 9 matrix equation
to a problem of finding coefficients for a 3 × 3 matrices.
Performing this calculation (more details in Appendix B), we
obtain the values of the coefficients and phases:

r1 = 1, t1 = 0, φ1 = −2π/3, (26a)

r2 = 0, t2 = 1, φ2 = −π/3, (26b)

r3 = 1/2, t3 = 1/2, φ3 = −π/2, (26c)

r4 = 1/3, t4 = 2/3, φ4 = 0, (26d)

r5 = 1/2, t5 = 1/2, φ5 = π. (26e)

The results presented in Eqs. (26) show that the first beam
splitter of the scheme of Fig. 4 can be discarded, since there is
no transmittance. The phase shifter φ5 can also be discarded,
since it is at the end of the circuit and does not interfere
in the photon counting. We conclude that the interferometer
that implements the quantum path state tomography in the
one-qutrit state is formed by 20 beam splitters and nine
phase shifters. As in the one-qubit case, our proposal for
one-qutrit systems has less optical elements and a smaller
optical depth than other existing proposals in the literature
[63–65].

We also summarize in Table I the number of optical el-
ements necessary for the implementation of each proposal of
photonic circuits for the quantum tomography task. It is worth
emphasizing that Reck’s and Clements’s proposals use Mach-
Zehnder interferometers as building blocks of the circuits,
while our proposal uses single beam splitters.
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TABLE I. Number of optical elements required for the imple-
mentation of minimum quantum path state tomography in photonic
circuits according to our proposal and other proposals already known
in the literature [63–65].

Reck’s
proposal

Clements’s
proposal

Tabia’s
proposal

Our
proposal

Qubit 12 12 7 6
Qutrit 72 72 44 29

V. GENERALIZATION FOR N DIMENSIONS

In the previous section we use the results of Paiva-Sánchez
[54] about equidistant states to build the SIC-POVM elements
that implement a quantum state tomography of path photonic
qutrits. One remarkable feature of this approach is that it is
not limited to the dimension of the input state. The relation
for equidistant states suitable for the tomography of an N-
dimensional quantum system is [54]

|ψl〉 = 1√
N − 1

N−1∑
k = 0
k �= 1

e2iπ l (k−1)/N |k〉, (27)

where l = 0, 1, . . . , N − 1. From Eq. (27) we can obtain N
operators of the N2 required for the quantum state tomography
experiment. The other operators are obtained from states
generated by the application of the operator X̂ in |ψl〉 shown
in Eq. (27), defined as

X̂ |k〉 = |k ⊕ 1〉. (28)

This operator X̂ acts on a state |k〉 performing an addition
modulo N . Thus, all equidistant states used in the construction
of the POVM elements can be organized in sets Bm(ψ ), with
m = 0, 1, . . . , N − 1, defined as

Bm(ψ ) = {|ψml〉 = X̂ m|ψl〉} (29)

and these POVM elements are obtained through the relation

Êml = 1

N
|ψml〉〈ψml |. (30)

As an example, we will define the base states for quantum
state tomography of ququarts, that is, qudits with N = 4.
They are

|ψ00〉 = 1√
3

(|0〉 + |2〉 + |3〉), (31a)

|ψ01〉 = 1√
3

(−i|0〉 + i|2〉 − |3〉), (31b)

|ψ02〉 = 1√
3

(−|0〉 − |2〉 + |3〉), (31c)

|ψ03〉 = 1√
3

(i|0〉 − i|2〉 − |3〉). (31d)

The other states (|ψ1l〉, |ψ2l〉, and |ψ3l〉, with l = 0, 1, 2, 3)
come from the application of the operator X̂ one, two, or three
times.

The determination of the circuit design for the general
case is made in the same way as it was done in Sec. IV,
not applicable for the qubit case. The N2 paths are divided
into N sectors with N paths each. Here the three-dimensional
(3D) conception of circuits facilitates the generalization task
[68–70]. The assumption of a 3D waveguide writing technique
becomes necessary because we have to create path states
superposition between states of different sectors. For example,
it is necessary to create superposition between the states of the
first and the last sector in a SIC-POVM tomographic proposal.
In a planar circuit, the optical depth would increase, as long
as these states are connected, by a quadratic function in N .
In the 3D waveguide writing technique, these states will be
connected by N − 1 beam splitters, that is, the optical depth is
now a linear function in N .

In the three-dimensional circuit scheme, the paths can be
organized in N parallel vertical sectors, with N paths in the
vertical direction each, forming a square array of waveguides.
By choosing the paths for entrance of the photons belonging
to the same line, i.e., path i0 in each sector j, we have as
initial state

|ψ〉(0)
j =

N−1∑
j=0

α j |i0 j〉, (32)

where |i0 j〉 means path state in line i0 and sector j. Our
proposal consists of conceiving the circuit as a sequence of
three unitary operations. The first one operates separately in
each vertical sector j performing the transformation

α j |i0 j〉 �−→ α j√
N − 1

N−2∑
i=0

|i j〉, (33)

i.e., each component of the initial state α j |i0 j〉 is decomposed
into N − 1 components α j |i j〉, that will occupy N − 1 paths
of the vertical sector j, leaving, also by choice, the last path
empty.

The second operation realized by the circuit is a permuta-
tion betweens vertical sectors. Except the last layer that did
not receive one of the N − 1 components at the end of the
first operation, in all other layers the operation performed is
an addiction modulo N as follows:

Γ̂ |i j〉 = |i〉| j ⊕ i〉, (34)

where i = 0, 1, . . . , N − 2 is the paths label. At the end of
this second operation, we will have in each vertical sector j
the state

|ψ〉(2)
j = 1√

N − 1

N−2∑
i=0

α j−i|i j〉, (35)

where the operations with subindexes are carried out modulo
N . The third operation that our proposed circuit performs is
analogous to Eq. (25). Its transforms the state |ψ〉(2)

j [Eq. (35)]
in a final state where the square module of its expansion
coefficients are equal to the probabilities that implement all
POVM elements in the qudit Hilbert space. By possession
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of these probabilities, we reconstruct the initial state density
matrix [54].

If the possibility of usage of a three-dimensional array is
at hand, our circuit becomes considerably more efficient than
one derived directly from [64] or [65]. As the minimal state
tomography uses at least N2 outputs, a general circuit would
have a complexity of O(N4) beam splitters. In our realization,
the procedure is divided into three parts, each acting in parallel
over a maximum N paths. This guarantees a complexity of
O(N3). Moreover, each part may simplify separately, since
they act differently, allowing an increase of efficiency through
the detailed analysis of each part. The modular property of the
circuit is the main feature of our proposed implementation of
the circuit for minimal state tomography.

There is a particularity in the even-dimension case, re-
ported in Ref. [54]. It is shown that the method exposed in this
paper cannot determine the imaginary part of some elements
of the system’s density matrix ρ̂. For that, one more step is
needed, the application of the following operator:

�̂ =
N/2−1∑

k=0

|k〉〈k| + i
N−1∑
N/2

|k〉〈k|, (36)

which generates a new density matrix ρ̂ ′ = �̂ρ̂�̂†. The advan-
tage about this strategy is that the imaginary parts, impossible
to be determined, are exchanged with the real parts of the same
matrix elements, being now possible to be obtained. Thus,
to reconstruct the initial density matrix of even-dimensional
systems, it is necessary to realize the quantum state tomogra-
phy in ρ̂ and ρ̂ ′, increasing from N2 to 3N2/2 the number of
measurements.

VI. CONCLUSION

In this paper we were able to determine the design of
integrated photonic circuits that perform quantum path state
tomography for qubits and qutrits. In these schemes, a POVM
is implemented by doing an application of Naimark’s theo-
rem by extending the qudit Hilbet space, performing unitary
transformations and projective measurements in this extended
space. The parameters of the optical interferometer elements
(beam splitters and phase shifters) were accurately calcu-
lated by using methods already described in the literature.
Only three different types of beam splitters appeared on the
proposed circuits, which may facilitate their manufacture.
Our designs require less optical components than alternative
general unitary transformations circuits and a smaller optical
depth when compared with the optical depth of the circuits
discussed in [64,65]. A general recipe also was presented for
determining the circuit to be used for dimensions higher than
three. In all cases, our interferometers are more compact than
those already exposed in other works.
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APPENDIX A: CALCULATIONS FOR THE QUBIT
PHOTONIC CIRCUIT

In Sec. II are defined the POVM elements that realize a full
quantum state tomography in one-qubit systems, namely

Ê1 = 1

2

[
2/3 −i

√
2/3

i
√

2/3 1/3

]
, (A1)

Ê2 = 1

2

[
2/3 i

√
2/3

−i
√

2/3 1/3

]
, (A2)

Ê3 = 1

2

[
1/3 −√

2/3

−√
2/3 2/3

]
, (A3)

Ê4 = 1

2

[
1/3

√
2/3√

2/3 2/3

]
. (A4)

On the other hand, the POVM elements written in terms of
the parameters of the photonic circuit that we aim to determine
are expressed in Eq. (15), where |m〉 and |l〉 are the state
vectors of the subspace basis, principal system, and ancilla,
respectively. Instead of labeling the outcomes in terms of the
binary base |ml〉, we choose to label the output states in terms
of the path number of the circuit, where we write ρ̂k = |k〉〈k|.
Therefore, we make the identification:

m = 0, l = 0 → k = 1,

m = 0, l = 1 → k = 2,

m = 1, l = 0 → k = 3,

m = 1, l = 1 → k = 4.

(A5)

Moreover, these operators are simplified if we define the
beam splitter in T̂2 as a 1 : 0 BS, so that r3 = 0 and t3 = 1.
With this, the operators are reduced to

Ê1 =
[

r4t1 e−iθ√r2r4t1t4
eiθ√r2r4t1t4 r2t4

]
, (A6)

Ê2 =
[

t1t4 −e−iθ√r2r4t1t4
−eiθ√r2r4t1t4 r2r4

]
, (A7)

Ê3 =
[

r1r5 −√
r1r5t2t5

−√
r1r5t2t5 t2t5

]
, (A8)

Ê4 =
[

r1t5
√

r1r5t2t5√
r1r5t2t5 r5t2

]
, (A9)

where θ = φ1 − φ2 − φ3. The absence of the phases φ4 and
φ5 in the operators Êk allows us to choose

φ4 = 0, φ5 = 0. (A10)

When comparing Ê1 [Eq. (A1)] with Ê1 [Eq. (A6)] and Ê2

[Eq. (A2)] with Ê2 [Eq. (A7)], it is concluded that

r4 = t4 ⇒ r4 = 1/2, t4 = 1/2. (A11)

Similarly, when comparing Ê3 [Eq. (A3)] with Ê3

[Eq. (A8)] and Ê4 [Eq. (A4)] with Ê4 [Eq. (A9)], it is
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concluded that

r5 = t5 ⇒ r5 = 1/2, t5 = 1/2. (A12)

Therefore, the operators acquire simpler forms:

Ê1 = 1

2

[
t1 e−iθ√r2t1

eiθ√r2t1 r2

]
, (A13)

Ê2 = 1

2

[
t1 −e−iθ√r2t1

−eiθ√r2t1 r2

]
, (A14)

Ê3 = 1

2

[
r1 −√

r1t2
−√

r1t2 t2

]
, (A15)

Ê4 = 1

2

[
r1

√
r1t2√

r1t2 t2

]
. (A16)

Making the same comparisons explained above, we obtain
the last parameters of the circuit:

r1 = 1/3, t1 = 2/3,

r2 = 1/3, t2 = 2/3,
θ = π/2. (A17)

APPENDIX B: CALCULATIONS FOR THE Û MATRIX
OF THE QUTRIT PHOTONIC CIRCUIT

We are interested to find the parameters necessary for
carrying the operator Û shown in Eq. (25). The circuit rep-
resentation of the Û matrix is shown in Fig. 4. The operations
that make up this circuit are

T̂a =

⎡
⎢⎣

eiφa
√

ra eiφa
√

ta 0√
ta −√

ra 0

0 0 1

⎤
⎥⎦, (B1)

T̂b =

⎡
⎢⎣

1 0 0

0 eiφb
√

rb eiφb
√

tb
0

√
tb −√

rb

⎤
⎥⎦, (B2)

where a = 1, 3, 5 and b = 2, 4. The entire circuit is repre-
sented by the matrix

Ûqutrit = T̂5T̂4T̂3T̂2T̂1. (B3)

Analogous to the qubit case, it is possible to simplify the
matrix Ûqutrit by defining r1 = 1, t1 = 0, r2 = 0, and t2 = 1.

This reduces the matrix elements to the following quantities:

〈0|Ûqutrit|0〉 = ei(φ1+φ5 )(eiφ3
√

r3r5 + eiφ4
√

r4t3t5),

〈0|Ûqutrit|1〉 = −ei(φ4+φ5 )√t4t5,

〈0|Ûqutrit|2〉 = ei(φ2+φ5 )(eiφ3
√

r5t3 − eiφ4
√

r3r4t5),

〈1|Ûqutrit|0〉 = eiφ1 (−eiφ4
√

r4r5t3 + eiφ3
√

r3t5),

〈1|Ûqutrit|1〉 = −eiφ4
√

r5t4,

〈1|Ûqutrit|2〉 = eiφ2 (eiφ4
√

r3r4r5 + eiφ3
√

t3t5),

〈2|Ûqutrit|0〉 = eiφ1
√

t3t4,

〈2|Ûqutrit|1〉 = √
r4,

〈2|Ûqutrit|2〉 = −eiφ2
√

r3t4.

A first comparison between the elements of the matrix
Ûqutrit and those of the matrix Û in Eq. (25) allows us to
determine the following parameters:

r3 = 1/2, t3 = 1/2, φ1 = −2π/3,

r4 = 1/3, t4 = 2/3, φ2 = −π/3. (B4)

With the parameters shown in Eq. (B4), the matrix ele-
ments 〈2|Ûqutrit| j〉 ( j = 0, 1, 2), are determined completely.
The parameters φ j ( j = 3, 4, 5), r5, and t5 of the remaining
elements are still not determined, as shown below:

〈0|Ûqutrit|0〉 = ei(φ5−2π/3)(eiφ3
√

r5/2 + eiφ4
√

t5/6),

〈0|Ûqutrit|1〉 = −ei(φ4+φ5 )
√

2t5/3,

〈0|Ûqutrit|2〉 = ei(φ5−π/3)(eiφ3
√

r5/2 − eiφ4
√

t5/6),

〈1|Ûqutrit|0〉 = e−2iπ/3(−eiφ4
√

r5/6 + eiφ3
√

t5/2),

〈1|Ûqutrit|1〉 = −eiφ4
√

2r5/3,

〈1|Ûqutrit|2〉 = e−iπ/3(eiφ4
√

r5/6 + eiφ3
√

t5/2).

When comparing again the elements 〈i|Ûqutrit| j〉 (i = 0, 1,
j = 0, 1, 2) and the respective elements of the Û matrix in
Eq. (25), we are able to determine the remaining parameters

r5 = 1/2, t5 = 1/2,

φ3 = 1/3, φ4 = 2/3, φ5 = −π/3. (B5)

Thus, we obtained Ûqutrit = Û as we wanted.

[1] P. Rungta, W. J. Munro, K. Nemoto, P. Deuar, G. J. Milburn,
and C. M. Caves, Qudit entanglement, in Directions in Quantum
Optics (Springer, Berlin, 2001), pp. 149–164.

[2] R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, Bell-Type Test
of Energy-Time Entangled Qutrits, Phys. Rev. Lett. 93, 010503
(2004).

[3] R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, Qudit
quantum-state tomography, Phys. Rev. A 66, 012303 (2002).

[4] L. Neves, G. Lima, J. G. A. Gómez, C. H. Monken, C. Saavedra,
and S. Pádua, Generation of Entangled States of Qudits Using
Twin Photons, Phys. Rev. Lett. 94, 100501 (2005).

[5] E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik,
Realization of Four-Level Qudits Using Biphotons, Phys. Rev.
Lett. 97, 023602 (2006).

[6] Y. Li, K. Zhang, and K. Peng, Generation of qudits and entan-
gled qudits, Phys. Rev. A 77, 015802 (2008).

[7] F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco,
M. Huber, T. Scheidl, and R. Ursin, Distribution of
high-dimensional entanglement via an intra-city free-space link,
Nat. Commun. 8, 15971 (2017).

[8] M. Hendrych, R. Gallego, M. Mičuda, N. Brunner, A. Acín,
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technologies, Nat. Photon. 3, 687 (2009).

[33] L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini,
M. Galli, R. Morandotti, and D. J. Moss, Integrated sources of
photon quantum states based on nonlinear optics, Light: Sci.
Appl. 6, e17100 (2017).

[34] B. J. Smith, D. Kundys, N. Thomas-Peter, P. G. R. Smith, and
I. A. Walmsley, Phase-controlled integrated photonic quantum
circuits, Opt. Express 17, 13516 (2009).

[35] K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing
waveguides in glass with a femtosecond laser, Opt. Lett. 21,
1729 (1996).

[36] A. M. Streltsov and N. F. Borrelli, Fabrication and analysis of
a directional coupler written in glass by nanojoule femtosecond
laser pulses, Opt. Lett. 26, 42 (2001).

[37] A. Aspuru-Guzik and P. Walther, Photonic quantum simulators,
Nat. Phys. 8, 285 (2012).

[38] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum
simulation with superconducting circuits, Nat. Phys. 8, 292
(2012).

[39] N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini,
J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-
Jones, M. Hochberg et al., Quantum transport simulations in
a programmable nanophotonic processor, Nat. Photon. 11, 447
(2017).

[40] A. J. Kerman, Multiloop interferometers for quantum informa-
tion processing, US Patent App. 15/354,275, 18 May 2017.

[41] F. Qiu-Bo, Remote preparation of photon polarization states
within a network, Chin. Phys. Lett. 25, 20 (2008).

[42] W. Zhang-Yin, Controlled remote preparation of a two-qubit
state via an asymmetric quantum channel, Commun. Theor.
Phys. 55, 244 (2011).

[43] C. Wang, Z. Zeng, and X.-H. Li, Controlled remote state
preparation via partially entangled quantum channel, Quant.
Info. Proc. 14, 1077 (2015).

062324-9

https://doi.org/10.1038/nphys2334
https://doi.org/10.1038/nphys2334
https://doi.org/10.1038/nphys2334
https://doi.org/10.1038/nphys2334
https://doi.org/10.1038/nature22986
https://doi.org/10.1038/nature22986
https://doi.org/10.1038/nature22986
https://doi.org/10.1038/nature22986
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1103/PhysRevLett.96.090501
https://doi.org/10.1103/PhysRevLett.96.090501
https://doi.org/10.1103/PhysRevLett.96.090501
https://doi.org/10.1103/PhysRevLett.96.090501
https://doi.org/10.1103/PhysRevA.95.032312
https://doi.org/10.1103/PhysRevA.95.032312
https://doi.org/10.1103/PhysRevA.95.032312
https://doi.org/10.1103/PhysRevA.95.032312
https://doi.org/10.1088/2058-9565/aaace4
https://doi.org/10.1088/2058-9565/aaace4
https://doi.org/10.1088/2058-9565/aaace4
https://doi.org/10.1088/2058-9565/aaace4
https://doi.org/10.1038/srep02316
https://doi.org/10.1038/srep02316
https://doi.org/10.1038/srep02316
https://doi.org/10.1038/srep02316
https://doi.org/10.1038/srep14671
https://doi.org/10.1038/srep14671
https://doi.org/10.1038/srep14671
https://doi.org/10.1038/srep14671
https://doi.org/10.1103/PhysRevLett.120.160502
https://doi.org/10.1103/PhysRevLett.120.160502
https://doi.org/10.1103/PhysRevLett.120.160502
https://doi.org/10.1103/PhysRevLett.120.160502
https://doi.org/10.1103/PhysRevA.92.062324
https://doi.org/10.1103/PhysRevA.92.062324
https://doi.org/10.1103/PhysRevA.92.062324
https://doi.org/10.1103/PhysRevA.92.062324
https://doi.org/10.1126/sciadv.1701491
https://doi.org/10.1126/sciadv.1701491
https://doi.org/10.1126/sciadv.1701491
https://doi.org/10.1126/sciadv.1701491
https://doi.org/10.1103/PhysRevA.97.032322
https://doi.org/10.1103/PhysRevA.97.032322
https://doi.org/10.1103/PhysRevA.97.032322
https://doi.org/10.1103/PhysRevA.97.032322
https://doi.org/10.1103/PhysRevA.84.062101
https://doi.org/10.1103/PhysRevA.84.062101
https://doi.org/10.1103/PhysRevA.84.062101
https://doi.org/10.1103/PhysRevA.84.062101
https://doi.org/10.1103/PhysRevA.88.012112
https://doi.org/10.1103/PhysRevA.88.012112
https://doi.org/10.1103/PhysRevA.88.012112
https://doi.org/10.1103/PhysRevA.88.012112
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1088/1367-2630/aa5571
https://doi.org/10.1088/1367-2630/aa5571
https://doi.org/10.1088/1367-2630/aa5571
https://doi.org/10.1088/1367-2630/aa5571
https://doi.org/10.1103/PhysRevA.99.012336
https://doi.org/10.1103/PhysRevA.99.012336
https://doi.org/10.1103/PhysRevA.99.012336
https://doi.org/10.1103/PhysRevA.99.012336
https://doi.org/10.1364/OE.20.026351
https://doi.org/10.1364/OE.20.026351
https://doi.org/10.1364/OE.20.026351
https://doi.org/10.1364/OE.20.026351
https://doi.org/10.1103/PhysRevA.90.032328
https://doi.org/10.1103/PhysRevA.90.032328
https://doi.org/10.1103/PhysRevA.90.032328
https://doi.org/10.1103/PhysRevA.90.032328
https://doi.org/10.1038/srep16049
https://doi.org/10.1038/srep16049
https://doi.org/10.1038/srep16049
https://doi.org/10.1038/srep16049
https://doi.org/10.1364/OL.43.004398
https://doi.org/10.1364/OL.43.004398
https://doi.org/10.1364/OL.43.004398
https://doi.org/10.1364/OL.43.004398
https://doi.org/10.1126/science.1155441
https://doi.org/10.1126/science.1155441
https://doi.org/10.1126/science.1155441
https://doi.org/10.1126/science.1155441
https://doi.org/10.1364/OE.17.012546
https://doi.org/10.1364/OE.17.012546
https://doi.org/10.1364/OE.17.012546
https://doi.org/10.1364/OE.17.012546
https://doi.org/10.1038/nphoton.2011.283
https://doi.org/10.1038/nphoton.2011.283
https://doi.org/10.1038/nphoton.2011.283
https://doi.org/10.1038/nphoton.2011.283
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/lsa.2017.100
https://doi.org/10.1038/lsa.2017.100
https://doi.org/10.1038/lsa.2017.100
https://doi.org/10.1038/lsa.2017.100
https://doi.org/10.1364/OE.17.013516
https://doi.org/10.1364/OE.17.013516
https://doi.org/10.1364/OE.17.013516
https://doi.org/10.1364/OE.17.013516
https://doi.org/10.1364/OL.21.001729
https://doi.org/10.1364/OL.21.001729
https://doi.org/10.1364/OL.21.001729
https://doi.org/10.1364/OL.21.001729
https://doi.org/10.1364/OL.26.000042
https://doi.org/10.1364/OL.26.000042
https://doi.org/10.1364/OL.26.000042
https://doi.org/10.1364/OL.26.000042
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1088/0256-307X/25/1/006
https://doi.org/10.1088/0256-307X/25/1/006
https://doi.org/10.1088/0256-307X/25/1/006
https://doi.org/10.1088/0256-307X/25/1/006
https://doi.org/10.1088/0253-6102/55/2/11
https://doi.org/10.1088/0253-6102/55/2/11
https://doi.org/10.1088/0253-6102/55/2/11
https://doi.org/10.1088/0253-6102/55/2/11
https://doi.org/10.1007/s11128-015-0917-0
https://doi.org/10.1007/s11128-015-0917-0
https://doi.org/10.1007/s11128-015-0917-0
https://doi.org/10.1007/s11128-015-0917-0


CARDOSO, BARROS, BARROS, AND PÁDUA PHYSICAL REVIEW A 99, 062324 (2019)

[44] T. B. Cao, B. A. Nguyen et al., Flexible controlled joint remote
preparation of an arbitrary two-qubit state via non-maximally
entangled quantum channels, Adv. Natural Sci. 7, 025007
(2016).

[45] C. Schaeff, R. Polster, M. Huber, S. Ramelow, and A. Zeilinger,
Experimental access to higher-dimensional entangled quantum
systems using integrated optics, Optica 2, 523 (2015).

[46] M. G. Raymer, M. Beck, and D. McAlister, Complex
Wave-Field Reconstruction Using Phase-Space Tomography,
Phys. Rev. Lett. 72, 1137 (1994).

[47] J. P. Home, M. J. McDonnell, D. M. Lucas, G. Imreh, B. C.
Keitch, D. J. Szwer, N. R. Thomas, S. C. Webster, D. N. Stacey,
and A. M. Steane, Deterministic entanglement and tomography
of ion–spin qubits, New J. Phys. 8, 188 (2006).

[48] M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schmidt, T. K.
Körber, W. Hänsel, H. Häffner, C. F. Roos, and R. Blatt, Process
Tomography of Ion Trap Quantum Gates, Phys. Rev. Lett. 97,
220407 (2006).

[49] P. Six, Ph. Campagne-Ibarcq, I. Dotsenko, A. Sarlette, B.
Huard, and P. Rouchon, Quantum state tomography with non-
instantaneous measurements, imperfections, and decoherence,
Phys. Rev. A 93, 012109 (2016).

[50] T. Xin, D. Lu, J. Klassen, N. Yu, Z. Ji, J. Chen, X. Ma, G.
Long, B. Zeng, and R. Laflamme, Quantum State Tomography
Via Reduced Density Matrices, Phys. Rev. Lett. 118, 020401
(2017).

[51] J. G. Titchener, A. S. Solntsev, and A. A. Sukhorukov, Two-
photon tomography using on-chip quantum walks, Opt. Lett.
41, 4079 (2016).

[52] J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A.
Szameit, and A. A. Sukhorukov, Scalable on-chip quantum state
tomography, npj Quantum Inform. 4, 19 (2018).

[53] D. Oren, M. Mutzafi, Y. C. Eldar, and M. Segev, Quantum state
tomography with a single measurement setup, Optica 4, 993
(2017).

[54] C. Paiva-Sánchez, E. Burgos-Inostroza, O. Jiménez, and A.
Delgado, Quantum tomography via equidistant states, Phys.
Rev. A 82, 032115 (2010).

[55] D. Petz and L. Ruppert, Efficient quantum tomography needs
complementary and symmetric measurements, Rep. Math.
Phys. 69, 161 (2012).

[56] D. Petz and L. Ruppert, Optimal quantum-state tomog-
raphy with known parameters, J. Phys. A 45, 085306
(2012).

[57] A. E. Rastegin, Notes on general SIC-POVMs, Phys. Scr. 89,
085101 (2014).

[58] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves,
Symmetric informationally complete quantum measurements,
J. Math. Phys. 45, 2171 (2004).

[59] S. Barnett, Quantum Information (Oxford University Press,
Oxford, 2009), Vol. 16.

[60] R. Beneduci, Infinite sequences of linear functionals, posi-
tive operator-valued measures and Naimark extension theorem,
Bull. London Math. Soc. 42, 441 (2010).

[61] B. Coecke and É. O. Paquette, POVMs and Naimark’s theorem
without sums, Electron. Notes Theor. Comput. Sci. 210, 15
(2008).

[62] R. Beneduci, Unsharpness, Naimark theorem and informational
equivalence of quantum observables, Int. J. Theor. Phys. 49,
3030 (2010).

[63] G. N. M. Tabia, Experimental scheme for qubit and qutrit sym-
metric informationally complete positive operator-valued mea-
surements using multiport devices, Phys. Rev. A 86, 062107
(2012).

[64] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Ex-
perimental Realization of Any Discrete Unitary Operator,
Phys. Rev. Lett. 73, 58 (1994).

[65] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S.
Kolthammer, and I. A. Walmsley, Optimal design for universal
multiport interferometers, Optica 3, 1460 (2016).
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