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In this work we demonstrate experimentally how generative model training can be used as a benchmark for
small (fewer than five qubits) quantum devices. Performance is quantified using three data analytic metrics:
the Kullback-Leibler divergence and two adaptations of the F1 score. Using the 2 × 2 bars and stripes data
set, we train several different circuit constructions for generative modeling with superconducting qubits. By
taking hardware connectivity constraints into consideration, we show that sparsely connected shallow circuits
outperform denser counterparts on noisy hardware.

DOI: 10.1103/PhysRevA.99.062323

I. INTRODUCTION

The increasing diversity of programmable noisy
intermediate-scale quantum (NISQ) devices has exposed
the need for a unified set of benchmark tasks which assess
application-centric device capabilities. Quantum machine
learning (QML) has been presented as a useful tool for
benchmarking quantum hardware [1]. Generative model
training was recently proposed as a benchmark task [2–4] for
NISQ devices. In this work we use nonadversarial training
of a generative model to benchmark superconducting qubit
devices. This approach to generative modeling requires
training of a single quantum circuit, making it more practical
for implementation on current devices.

Generative models, such as adversarial networks [5], have
recently spurred significant interest in the development of
quantum-circuit analogs [6,7] and adversarial quantum-circuit
training [8–10]. The quantum-circuit Born machine (QCBM)
is a generative model constructed as a quantum circuit
[3,4,11]. Numerical simulation of QCBMs, constructed us-
ing the hardware efficient circuit Ansatz [12] with many
(more than ten) entangling layers and trained with nonad-
versarial methods, using data-driven quantum-circuit learning
(DDQCL), introduced in [4] can reproduce several classes of
discrete and continuous distributions [3]. Here we utilize the
gradient-based DDQCL methods of [3].

In contrast, NISQ devices accumulate errors due to imper-
fect gates and environmental decoherence effects. As such, we
expect the depth of useful NISQ circuits to be limited. After
this point, the output becomes random as dictated by the noise.
Quantum machine learning–based benchmarking is a practical
method to establish the maximal circuit depth. To experimen-
tally test this hypothesis, we train a set of shallow circuits
(fewer than three entangling layers) which are deployed on
IBM’s Toyko chip, which has 20 superconducting qubits. The
entangling layers of all circuits considered can be embedded
in a two-rung ladder geometry (e.g., IBM’s Melbourne chip
[13]) ensuring portability of our benchmark.

Guidelines for benchmarking digital QML algorithms have
been proposed [14] in terms of the output correctness. For
generative models, correctness refers to the model’s ability

to reproduce the target distribution. Performance is there-
fore naturally captured by statistical measures describing the
similarity of two distributions, such as the Kullback-Leibler
divergence and the F1 score.

We evaluated several QCBM circuits on superconducting
qubits accessed through the IBM Quantum Hub cloud inter-
face. The QCBM circuit, training methodology, and perfor-
mance metrics are described in Sec. II. In Sec. III we discuss
the interplay between circuit design and QCBM performance.
Noisy qubits are introduced into QCBM training in Sec. III B.
While previous experimental results for machine-learning
based benchmarks were executed on direct-access ion trap
hardware which can implement all-to-all connectivity [4],
our results show comparable performance in superconducting
qubits as measured by the Kullback-Leibler divergence.

II. QUANTUM-CIRCUIT BORN MACHINES

A parametrized quantum circuit defining a particular vari-
ational manifold of quantum states is referred to as an Ansatz.
In this work, as in [3], QCBM training is performed with
circuits inspired by the hardware efficient Ansatz originally
applied in the context of the variational quantum eigensolver
algorithm [12] (see Fig. 1). The bars and stripes (BAS) data set
BAS(2,2) contains six (2 × 2)-pixel black and white striped
images. Each image is represented in the computational ba-
sis of a four-qubit register by fixing a qubit-pixel mapping
and associating black (white) pixels with the states |0〉 (|1〉)
(see Appendix C). While the entangling design introduced
in [3] contains enough complexity to represent the data set,
for larger image sizes it can require a high degree of qubit
connectivity that is not available on current superconducting
devices.

To generate BAS(2,2) we train three different Ansätze
(shown in Fig. 1) whose entangling layers are illustrated in
Fig. 2. Each circuit is defined on a four-qubit register and
specified by the number of entangling layers (L) and the
number of controlled-NOT (CNOT) gates contained within each
entangling layer (dC). Current hardware’s fixed connectiv-
ity presents a challenge when mapping arbitrary data sets.
The dC = 2 and dC = 4 entangling layers conform to IBM’s
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FIG. 1. General circuit construction of a QCBM introduced in
[4] based on the hardware efficient variational quantum eigensolver
Ansatz of [12].

layout, i.e., by restricting CNOT gates to the edges of a four-
site square plaquette. The dC = 2 layers are a sparser circuit
construction and only take ∼200 ns to apply. As CNOT gates
within a single plaquette cannot be simultaneously applied,
we decompose the dC = 4 layer into two separate plaquette
edge coverings. Thus the dC = 4 circuit takes ∼400 ns to
apply, adding additional decoherence compared to dC = 2.
Additionally, since plaquettes may be covered in two ways
as shown in Fig. 2, alternating the two patterns results in
a heterogeneous entangling layers structure for dC = 2. For
reference we also use the Chow-Liu tree-based design of [3]
to define circuits with dC = 3, though this entangling layer is
not embeddable in a single square plaquette.

Many methods exist for training implicit generative models
[15]. In this work the rotational parameters are optimized
using the algorithm Adam [16]. Overall, we follow the train-
ing methods described in [3]: relying on the maximum mean
discrepancy (MMD) [17] to define a loss function for circuit
training and using the same unbiased estimator to evaluate
the gradient. In this work we are modeling a known target
distribution: We know it is uniform, we can identify the
binary states contained in the distribution, and we may sample
classically from the distribution without error.

The target distribution p(x) is fixed and defined by the
BAS(2,2) data set. For a given set of rotational parameters, we
execute a given QCBM circuit, draw Nshots samples, and label
this distribution q(x). To compare q(x) to p(x) and quantify
the overall QCBM performance, we rely on the Kullback-
Leibler (KL) divergence. The KL divergence compares the
two sampled distributions p(x) and q(x) by computing the
density ratio p(xi )/q(xi ) of individual states,

D(p|q) =
∑

i

p(xi ) ln

(
p(xi )

q(xi )

)
. (1)

FIG. 2. The CNOT gate sets used to define individual entangling
layers. The dC = 3 entangling is the Chow-Liu tree-based design
introduced in [3].

(a)

(b)

FIG. 3. The KL divergence as a function of training step using
Nshots = 1024 during training for (a) L = 1 and (b) L = 2 entangling
layers.

As p(xi )/q(xi ) → 1, D(p|q) → 0, but D(p|q) diverges if
p(xi ) �= 0 and q(xi ) = 0.

In addition, the performance metric known as the F1 score
[18] can be used. We modify the F1 score to define an
individual value assigned to each BAS(n, m) state and treat
the data set as a 2m + 2n − 2 class system. This metric is
analogous to measuring the fidelity of each state and we use it
to gain insight into how well each circuit Ansatz can learn the
states of the BAS(n, m) system. The metric is complementary
to D(p|q), giving insight into which eigenstates of the distri-
bution are responsible for high KL values. Further details are
given in Appendix A.

We note that the number of samples drawn from a circuit
during training can be different from the number of samples
taken when evaluating performance metrics. When evaluating
the KL divergence, we keep the number of shots fixed at
Nshots = 2048.

III. RESULTS

We first use numerical simulation to train each QCBM
in order to estimate how well the target distribution can be
learned in the absence of noise. Circuits were constructed
using the entangling layers shown in Fig. 2 and trained using
the QASM simulator available in IBM Qiskit-Aer. We limit
the number of entangling layers to L = 2, for a total of six
circuits. Each circuit is trained for 100 steps of Adam with
learning rate α = 0.2 and decay rates (β1 = 0.9 and β2 =
0.999). The MMD loss function is calculated using Gaussian
kernels with σ = 0.1. Figure 3 shows the overall performance
of the three circuit Ansätze with noiseless qubits for L = 1, 2
when Nshots = 1024 shots are drawn during training. For each
set of rotational parameters, we evaluate the KL divergence of
a given circuit ten times at every training step with Nshots =
2048 and report the arithmetic mean value of D(p|q).

A. QCBM training with noiseless qubits

For each value of {dC, L, Nshots} a circuit was trained from
a random initialization for {θ (t=0)}. Tables I and II show that
for most circuits the shot size used during training has a
modest effect on performance for the same circuit (fixed dC

and L); however, different shot sizes will lead to different
trajectories through {θ} space during training. In particular,

062323-2



GENERATIVE MODEL BENCHMARKS FOR … PHYSICAL REVIEW A 99, 062323 (2019)

TABLE I. The min[〈D(p|q)〉] for L = 1 circuits simulated on
noiseless qubits. The mean is calculated over ten independent metric
evaluations.

L Nshots dC = 2 dC = 3 dC = 4

1 512 0.95 ± 0.05 0.33 ± 0.02 0.24 ± 0.01
1 1024 0.93 ± 0.03 0.34 ± 0.01 0.23 ± 0.01
1 2048 0.93 ± 0.03 0.33 ± 0.01 0.23 ± 0.01

the large discrepancy for (dC = 3, L = 2) between Nshots =
512 and Nshots = 2048 is most likely due to {θ} getting trapped
in a suboptimal minimum. For context, we also trained a
nonentangling (L = 0, dC = 0) circuit. With Nshots = 1024
this circuit reached a minimum value of D(p|q) = 1.0(1).

In general, Tables I and II show that increasing the com-
plexity of a circuit by increasing the number of rotational
parameters will improve performance. For example, the (dC =
2, L = 2) (28 rotational parameters) and (dC = 4, L = 1) (16
rotational parameters) circuits contain the same set of CNOT

gates; however, the better performance is measured with the
(dC = 2, L = 2) circuit.

In Fig. 3, training reduces the value of 〈D(p|q)〉 for
the (dC = 3, 4; L = 1) circuits, while 〈D(p|q)〉 of the (dC =
2, L = 1) circuit fluctuates about a quasisteady mean value
∼1.1. With qubits being entangled pairwise, this Ansatz gen-
erates a state manifold of the tensor product of two Bell states,
up to local rotations. This tensor product structure lacks the
complexity to fully learn and describe all of the BAS(2,2)
states. The F1 score supports this claim. In Appendix B we
provide additional results for training with smaller learning
rates.

In Fig. 4, the individual F1 score for each BAS(2,2) state is
plotted as a function of training step. For the (dC = 2, L = 1)
circuit, it is clear that the QCBM never learns the states |1010〉
or |0101〉.

We deploy the circuits with trained noiseless parameters on
IBM’s Tokyo chip to evaluate circuit performance in the pres-
ence of noise. While we leave more detailed discussion about
circuit optimization in the presence of noise to Sec. IV, we
show several examples here of how the behavior of 〈D(p|q)〉 is
affected by the addition of noise. Many circuits show a general
offset for 〈D(p|q)〉, but the behavior on noisy qubits can be
substantially different from simulation. When the QCBM is
actively learning (fewer than 30 training steps), parameter up-
dates which result in large fluctuations on noiseless qubits (see
Fig. 5) will only result in small changes in 〈D(p|q)〉 on noisy
qubits. When the QCBM training has converged (more than
60 training steps), 〈D(p|q)〉 reaches a quasistationary value for

TABLE II. The min[〈D(p|q)〉] for L = 2 circuits simulated on
noiseless qubits. The mean is calculated over ten independent metric
evaluations.

L Nshots dC = 2 dC = 3 dC = 4

2 512 0.013 ± 0.004 0.06 ± 0.01 0.02 ± 0.01
2 1024 0.088 ± 0.008 0.01 ± 0.01 0.02 ± 0.01
2 2048 0.011 ± 0.003 0.13 ± 0.01 0.01 ± 0.01

(a) (b)

FIG. 4. The F1 score for each of the six BAS(2,2) states evaluated
with Nshots = 2048 at each training step for circuits trained with
Nshots = 1024: (a) the (dC = 2, L = 1) circuit, (b) the (dC = 2, L =
2) circuit.

most circuits (cf. Fig. 3). When deployed on hardware, noise
can degrade the efficacy of training on noiseless qubits [see
Fig. 7(a)]. In contrast, the (dC = 2, L = 2) or (dC = 3, L = 1)
circuits reach a quasistationary value of 〈D(p|q)〉 (see Figs. 5
and 6) that is lower than the starting value.

In Tables III and IV we report the best metric values
for each dC , L, and Nshots value. The smallest KL value
was found with the (dC = 2, L = 2) circuit. When deployed
on hardware, increasing the number of rotational parameters
improves performance for the dC = 2, 3 circuits, but not for
dC = 4 circuits.

B. QCBM training with noisy qubits

The experiments described in Sec. III explored how closely
the value D(p|q) would follow the noiseless learning when
measured with noisy qubits. In this section we investigate how
well QCBM circuits can be trained with a finite number of
steps utilizing noisy qubits. The experiments in this section
allow us to explore hardware training within the rotational
parameter space.

The goal of these tests is to determine if training a circuit
Ansatz with noisy qubits can improve the KL metric. In
Table IV, the (dC = 2, L = 2) circuit reaches a minimum

(a)

(b)

(c)

FIG. 5. Comparison of 〈D(p|q)〉 for ten circuit evaluations of the
(dC = 2, L = 2) circuit Ansatz deployed on noiseless qubits (black
solid line) and noisy qubits (black circles), trained with (a) Nshots =
512, (b) Nshots = 1024, and (c) Nshots = 2048. The standard deviation
of 〈D(p|q)〉 is shown by the gray shaded regions.
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(a)

(b)

(c)

FIG. 6. Comparison of 〈D(p|q)〉 for ten circuit evaluations of the
(dC = 3, L = 1) circuit Ansatz deployed on noiseless qubits (black
solid line) and noisy qubits (blue squares), trained with (a) Nshots =
512, (b) Nshots = 1024, and (c) Nshots = 2048. The standard deviation
of 〈D(p|q)〉 is shown by the blue shaded regions.

value of 0.27(1) using θ values trained only with noiseless
qubits. In this section the circuit initialization is chosen at
equally spaced intervals from the first 60 training steps of each
of the curves shown in Fig. 5. This initializes the circuit with
a completely random set of parameters (S = 0), parameters
that have undergone some optimization with Adam (S =
10, 20, 30), or parameters that have mostly converged to a
localized set of values (S = 40, 50, 60). We only train the
(dC = 2, L = 2) circuit, which was able to reach the lowest
value of 〈D(p|q)〉 with pretrained parameters (see Table IV).

As in Sec. III A, the training is done with three shot
sizes Nshots = (512, 1024, 2048), but we evaluate KL metric
with Nshots = 2048. The arithmetic mean value of D(p|q) is
calculated from ten circuit evaluations at every training step.
We report the following values: the initial mean value 〈· · · 〉i,
the final value after training 〈· · · 〉 f , and the minimum KL
value observed over training.

For completely random initial parameters (S = 0, 10),
training with noisy qubits is able to reduce 〈D(p|q)〉. How-
ever, training that begins at later points tends to return
higher values of 〈D(p|q)〉 or shows minimal improvement of
〈D(p|q)〉 after ten training steps. We discuss the effects of
noise and shot size on circuit training in Sec. IV.

(a)

(b)

(c)

FIG. 7. Comparison of 〈D(p|q)〉 for ten circuit evaluations of the
(dC = 4, L = 2) circuit Ansatz deployed on noiseless qubits (black
solid line) and noisy qubits (red triangles), trained with (a) Nshots =
512, (b) Nshots = 1024, and (c) Nshots = 2048. The standard deviation
of 〈D(p|q)〉 is shown by the red shaded regions.

TABLE III. The min[〈D(p|q)〉] for circuits evaluated on IBM’s
Tokyo chip. The mean is calculated over ten independent metric
evaluations.

L Nshots dC = 2 dC = 3 dC = 4

1 512 0.91 ± 0.01 0.64 ± 0.01 0.59 ± 0.02
1 1024 0.81 ± 0.02 0.60 ± 0.02 0.54 ± 0.01
1 2048 0.86 ± 0.01 0.57 ± 0.02 0.58 ± 0.01

The code used to train QCBM circuits on IBM hardware
was adapted from open-source software which is publicly
available [19].

IV. DISCUSSION

Effective classical machine learning relies on proper tuning
of hyperparameters and avoiding overfitting. By limiting the
number of training steps and rotational parameters our models
try to fit, we believe that we have avoided circuit Ansätze
that are too complex for the data set. The hyperparameters
of Adam were optimized using noiseless simulation and good
rotational parameters were learned for the circuits in this pa-
per, with the exception of the (dC = 2, L = 1) circuit, which
we will exclude from discussion in this section. In this section
we will use the Kullback-Leibler divergence to discuss the
qualitative changes in performance due to qubit noise and
finite sampling.

A. Device noise

When simulated with noiseless qubits, increasing the num-
ber of rotational parameters improves the capabilities of the
QCBM. The lowest 〈D(p|q)〉 ∼ 0.01 values were found for
L = 2, regardless of dC value. This same convergence is not
seen when circuits are deployed on noisy hardware. Current
quantum devices have many sources of noise including qubit
decoherence, gate infidelity, and measurement errors. In this
study we assume the training will be able to compensate for
noise in the single-qubit gates and the limited circuit size will
mitigate decoherence effects. In this initial study we have not
included any readout error mitigation and designed entangling
layers to reduce the noise from two-qubit CNOT gates. With
the addition of noise the (dC = 2, L = 2) circuit returned the
lowest value 〈D(p|q)〉 = 0.27 ± 0.02 using values pretrained
via noiseless simulation. Comparable values are found when a
circuit is trained on noisy qubits; the lowest value found after
training was 〈D(p|q)〉 = 0.29 ± 0.01 (see Tables V–VII). Un-
derstanding how training is affected by the loss function space

TABLE IV. The min[〈D(p|q)〉] for circuits evaluated on IBM’s
Tokyo chip. The mean is calculated over ten independent metric
evaluations.

L Nshots dC = 2 dC = 3 dC = 4

2 512 0.27 ± 0.02 0.48 ± 0.02 0.64 ± 0.02
2 1024 0.39 ± 0.01 0.39 ± 0.01 0.53 ± 0.01
2 2048 0.28 ± 0.02 0.59 ± 0.01 0.52 ± 0.01
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TABLE V. Training on IBM’s Tokyo chip (Nshots = 512). The
mean value is calculated over ten independent metric evaluations.

S 〈D(p|q)〉i 〈D(p|q)〉 f min 〈D(p|q)〉
0 1.29 ± 0.05 0.39 ± 0.02 0.39 ± 0.02
10 0.48 ± 0.02 0.35 ± 0.02 0.35 ± 0.02
20 0.46 ± 0.02 0.34 ± 0.02 0.34 ± 0.02
30 0.32 ± 0.02 0.34 ± 0.01 0.32 ± 0.02
40 0.41 ± 0.02 0.30 ± 0.02 0.29 ± 0.02
50 0.36 ± 0.02 0.30 ± 0.03 0.30 ± 0.03
60 0.36 ± 0.02 0.31 ± 0.02 0.30 ± 0.01
70 0.32 ± 0.02 0.30 ± 0.01 0.29 ± 0.01
80 0.29 ± 0.02 0.32 ± 0.03 0.29 ± 0.02

is an active area of research for classical machine learning
[20,21]. We will use this concept to frame our discussion in
this section using τU (τU ′) for the loss function space of a
noiseless (noisy) circuit.

For a circuit with R rotational parameters, the loss function
space τ is defined over the R-dimensional set of all possible
parameter values. We will compare the noiseless and noisy
qubit performances to draw conclusions about how the addi-
tion of noise affects the space τU of a single circuit Ansatz
(cf. Figs. 5–7) and rely on several assumptions made without
explicit models of these spaces. First, varying the value of dC

modifies the encoded degrees of entanglement. The local and
global optimal parameters of circuits with different dC and L
will therefore be quite different. Also, for circuits with the
same values of dC and L noise will cause the spaces (τU , τU ′ )
to differ.

In the absence of qubit noise the training has largely
converged after approximately 50 steps of training. With the
weight decay implemented in Adam, this implies that the
optimizer is taking small steps within a localized region of
τU . Our first observation is trivial: Just as the optima of τU

are expected to be different for different dC and L values, the
minimum that Adam converges to in τU is not guaranteed to be
a minimum in τU ′ and using Adam to optimize over τU instead
may drive the system further from the ideal parameters for
τU ′ . However, small changes in parameters can lead to a good
minimum within the space τU ′ . Second, the stability of τU

does not necessarily predict the stability of τU ′ . Small changes
in parameters can lead to fluctuations in 〈D(p|q)〉 or possible

TABLE VI. Training on IBM’s Tokyo chip (Nshots = 1024). The
mean value is calculated over ten independent metric evaluations.

S 〈D(p|q)〉i 〈D(p|q)〉 f min 〈D(p|q)〉
0 1.28 ± 0.05 0.44 ± 0.02 0.43 ± 0.02
10 0.48 ± 0.03 0.44 ± 0.02 0.43 ± 0.01
20 0.49 ± 0.02 0.46 ± 0.02 0.43 ± 0.02
30 0.42 ± 0.02 0.44 ± 0.02 0.42 ± 0.02
40 0.45 ± 0.02 0.50 ± 0.02 0.45 ± 0.02
50 0.44 ± 0.01 0.47 ± 0.02 0.44 ± 0.01
60 0.41 ± 0.04 0.44 ± 0.03 0.41 ± 0.04
70 0.47 ± 0.02 0.46 ± 0.03 0.45 ± 0.03
80 0.45 ± 0.03 0.46 ± 0.02 0.42 ± 0.01

TABLE VII. Training on IBM’s Tokyo chip (Nshots = 2048). The
mean value is calculated over ten independent metric evaluations.

S 〈D(p|q)〉i 〈D(p|q)〉 f min 〈D(p|q)〉
0 1.30 ± 0.06 0.34 ± 0.02 0.34 ± 0.02
10 0.58 ± 0.01 0.37 ± 0.02 0.37 ± 0.02
20 0.37 ± 0.02 0.35 ± 0.02 0.30 ± 0.02
30 0.30 ± 0.02 0.36 ± 0.02 0.30 ± 0.02
40 0.33 ± 0.01 0.35 ± 0.01 0.33 ± 0.01
50 0.38 ± 0.02 0.43 ± 0.03 0.38 ± 0.02
60 0.29 ± 0.02 0.34 ± 0.02 0.29 ± 0.02
70 0.30 ± 0.03 0.29 ± 0.02 0.29 ± 0.02
80 0.29 ± 0.02 0.30 ± 0.03 0.29 ± 0.02

degradation on noisy qubits (cf. Fig. 7, Nshots = 512). On the
other hand, the convergence in τU to an improved value can
be seen in τU ′ (cf. Fig. 5, Nshots = 1024); the relative stability
of the KL divergence implies that Adam is exploring a region
of τU which is quasistable in τU ′ .

Rotational parameters learned during training are depen-
dent on hardware noise and variability. For all values of Nshots,
training on hardware improved 〈D(p|q)〉 when the circuit
was initialized with a random set of parameters or pretrained
parameters obtained from a low number of Adam steps (S <

40). On the other hand, continued training on hardware after
the training in the simulator has already converged yields no
improvement in 〈D(p|q)〉. The hardware-trained parameters
overall yielded less of an improvement than trained parame-
ters from the simulator due to the inherent noise of the quan-
tum computer. Therefore, interleaving error mitigation steps
with each training step is expected to improve performance of
hardware-trained parameters.

B. Sampling

In Sec. III we trained multiple circuits from random initial
values using noiseless qubits. For each circuit, Adam trains a
unique QCBM and defines a unique path in a 16-dimensional
(28-dimensional) space for L = 1 (L = 2) circuits. Within
100 training steps the optimizer is able to find local minima;
however, it is not guaranteed to converge to the global optima
(see Table II). The noise introduced by smaller Nshots values
could improve exploration during training.

Sampling a circuit with a high number of shots can im-
prove the KL metric evaluation by reducing the probability of
erroneously populated states. However, reducing the sampling
error by increasing Nshots alone may not be sufficient to
counteract the effects of noise on the overall performance of a
given circuit.

V. CONCLUSION

As quantum devices become available there is a grow-
ing need for a cohesive set of benchmarks quantifying
hardware performance. We have observed that while lim-
ited connectivity between qubits and noisy gates are not
a significant obstacle to circuit learning, our results show
that circuit Ansatz design can affect generative modeling
performance.
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There are six possible CNOT gates that can be defined
between pixels of the BAS(2,2) images, and the dC = 2, 4
circuits show that the distribution can be modeled by placing
CNOT gates between neighboring pairs of pixels. While larger
image sizes require long-range correlations, efficient encoding
of larger data sets into hardware with fixed qubit connectivity
remains an open question (see Appendix C). For the BAS(2,2)
data set, adding more CNOT gates to a single qubit in each
entangling layer led to minimal increases in performance on
noisy qubits. When deployed on hardware, the (dC = 2, L =
2) circuit outperformed all other circuits.

Using a noise-robust stochastic optimizer allowed us to
train quantum circuits in the presence of noisy hardware.
The provided metrics showed the hardware’s capability to
reproduce desired probability distributions in the presence of
both systematic and statistical noise. We also observed that
measurement shot noise can minimally affect the training of
a QCBM. However, classical effects such as the optimizer
getting trapped in local minima are more significant.

Since the hardware is both noisy and has somewhat
sparse connectivity, choosing entangling layers with sufficient
sparseness to avoid excessive systematic error while still
providing enough complexity to reproduce the distribution
represents a trade-off that can be explored using the metrics as
a guide. Evaluating the metric for a few entangling layer de-
signs gives insight into which entanglement circuits are good
at providing the complexity to represent certain distributions
with low noise.

Further development of this benchmark should focus on
improvements to the noise-resilience of circuit training which
will lead to better estimates of the hardware’s innate ca-
pabilities. Areas of development include incorporating error
mitigation [22] into circuit training to counteract the effects
of measurement (readout) and gate errors and exploring other
classical optimizers to find the most robust methods for a
given hardware device. The benchmark presented in this work
is a useful measure of a quantum computer ability to repro-
duce a discrete probability distribution, and we demonstrated
its utility by analyzing the performance of a superconducting
quantum computer. While fully noise-robust circuit learning
remains an open question, as a benchmark it shows promising
avenues for future application and refinement.
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FIG. 8. Weighted mean taken over 11 independent distributions
of 〈qBAS22〉 scores evaluated at each training step using NqBAS = 15
and 10 000 samples (error bars are the weighted variance). The
circuit training and metric evaluation are both done on noiseless
qubits: (a) the L = 1 circuits and (b) the L = 2 circuits.
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APPENDIX A: ALTERNATE PERFORMANCE METRICS

In this Appendix we use two alternate metrics to evaluate
how well a circuit modeled the BAS(2,2) distribution; both
are derived from the F1 score. First we use the qBAS22 score
derived in Ref. [4]; then we introduce a state-based F1 score.

An advantage to using the qBAS22 metric is that it re-
mains finite even if a BAS state is absent from the sampled
distribution. In [4] the terms of the F1 are defined as follows:
The precision is the number of counts returned in BAS states
divided by the total number of counts and the recall is the
number of BAS states returned divided by the total number
of BAS states. The number of samples used to calculate
the qBAS22 score (NqBAS) is different from the number of
shots (Nshots) used to sample from a circuit. For BAS(2,2),
NqBAS = 15, which was derived in the Appendix of [4].

We focus on circuits trained with Nshots = 1024 and cal-
culate the 〈qBAS22〉 scores at each training step for the six
circuits introduced in the main text. At each training step we
sample from a given circuit 11 times each with Nshots = 1024,
generating 11 independent distributions {qi(x)}11

i=1. For a sin-
gle distribution qi(x) we generate a set of subsamples {s j}10 000

j=1
by drawing 10 000 samples of size NqBAS = 15 (sampling
done with replacement). The set {s j} is used to calculate
μ(qBAS22)i ± σi, the qBAS22 score of qi(x). The reported
〈qBAS22〉 values are the weighted arithmetic mean of means
taken over the 11 independent distributions: 〈qBAS22〉 =
1

11

∑11
i=1

1
σ 2

i
μ(qBAS22)i. The uncertainty is given by the vari-

ance of the mean.
We evaluate this metric for circuits trained with noiseless

qubits and for circuits trained on hardware. In Fig. 8 we show
the qBAS22 score for circuits that are trained with noiseless
qubits and the metric is evaluated with noiseless qubits. The
qBAS22 score for the (dC = 2, L = 1) circuit [which does not
completely model the entire BAS(2,2) data set] is the lowest
performing circuit. Of the six circuits shown in Fig. 8 the
(L = 2; dC = 3, 4) circuits have the highest qBAS22 scores
(0.96 ± 0.04 and 0.95 ± 0.4, respectively).
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(a)

(b)

FIG. 9. Weighted mean taken over 11 independent distributions
of 〈qBAS22〉 scores evaluated at each training step using NqBAS = 15
and 10 000 samples (error bars are the weighted variance). The
circuit training is done on noiseless qubits and the metric is evaluated
on IBM’s Tokyo chip: (a) the L = 1 circuits and (b) the L = 2
circuits.

However, the device noise strongly affects the dc = 3, 4
circuits. In Fig. 9 we present 〈qBAS22〉 scores for circuits
trained with noiseless qubits, but evaluate the metric on IBM’s
Tokyo chip. We see that for L = 1 circuits the dC = 2 circuit
performs comparably to the dC = 3, 4 circuits, even though
this circuit is known to only fit four out of the six BAS(2,2)
states. When the circuit size is increased to L = 2, the dc =
2, 3 circuits have comparable performance after 100 steps of
training (0.75 ± 0.03 and 0.75 ± 0.03, respectively), outper-
forming the dc = 4 circuit (0.69 ± 0.03). Similar behavior is
seen in the KL metric reported in the main text (cf. Table IV).

In Table VIII we present the qBAS22 score evaluated on
IBM’s Tokyo chip for the (dC = 2, L = 2) circuit trained on
hardware. As in Sec. III B, the circuits are pretrained using
noiseless simulation for a fixed number of steps and then
deployed on IBM’s Tokyo hardware to execute ten steps of
Adam training. The best performance of a circuit trained on
hardware for ten steps of Adam was 〈qBAS22〉 = 0.74 ±
0.03.

The qBAS22 metric and the KL metric give a measure
of the global performance of a circuit, but there is also a
need for local metrics. We adapt a modified F1 score [18] and
apply it to the individual BAS(n, m) states to define a metric
that measures how well a circuit learns each state and can
be applied to uniform or nonuniform discrete distributions.
However, it requires that the user specify the exact form

TABLE VIII. The 〈qBAS22〉 scores evaluated on IBM’s Tokyo
chip at each training step for circuits trained on IBM’s Tokyo chip.

S 〈qBAS22〉i 〈qBAS22〉 f max 〈qBAS22〉
0 0.42 ± 0.04 0.74 ± 0.03 0.74 ± 0.03
10 0.71 ± 0.03 0.72 ± 0.03 0.74 ± 0.03
20 0.70 ± 0.03 0.71 ± 0.03 0.72 ± 0.03
30 0.74 ± 0.03 0.73 ± 0.03 0.74 ± 0.03
40 0.73 ± 0.03 0.69 ± 0.04 0.73 ± 0.03
50 0.73 ± 0.03 0.71 ± 0.03 0.73 ± 0.03
60 0.74 ± 0.03 0.72 ± 0.03 0.74 ± 0.03
70 0.72 ± 0.03 0.71 ± 0.03 0.72 ± 0.03
80 0.72 ± 0.03 0.71 ± 0.03 0.73 ± 0.03

(a)

(b)

FIG. 10. The F1 score per BAS state of a circuit trained on a
noiseless simulator with 200 steps of Adam and α = 0.05: (a) the
(dC = 2, L = 1) circuit and (b) the (dC = 2, L = 2) circuit.

of the target distribution. For benchmarking tasks where the
performance is measured with regard to a known distribution
this is not a problem, but it may limit the usability of the F1

score metric for future applications.
The modified F1 score defines the precision and true pos-

itive rate of a model with respect to the uniform BAS(2,2)
distribution [pi = 1/6 if |xi〉 is a BAS(2,2) state]. Device
noise (such as readout errors) leads to a number of incorrectly
measured states, but in our initial approximation, for each
state |xi〉 of the BAS data set we define the number of
true positives as TP(xi ) = q(xi ) if q(xi ) < p(xi ) and TP(xi ) =
p(xi ) if q(xi ) > p(xi ). We define the number of false positives
and false negatives using the difference � = |q(xi ) − p(xi )|.
If q(xi ) > p(xi ) then FP(xi ) = � and FN(xi ) = 0; if q(xi ) <

p(xi ) then FN(xi ) = � and FP(xi ) = 0. With these values we
can define for each state xi the true positive rate

TPR(xi ) = TP(xi )

[TP(xi ) + FN(xi )]
(A1)

and the precision

P(xi ) = TP(xi )

[TP(xi ) + FP(xi )]
. (A2)

The modified F1 score is defined in terms of the precision and
true positive rate,

F1(xi ) = 2

(
P(xi ) × TPR(xi )

P(xi ) + TPR(xi )

)
. (A3)

APPENDIX B: ALTERNATE LEARNING RATES

In this Appendix we highlight the specific case of the
(dC = 2, L = 1) circuit. In Fig. 3 the KL value oscillated
around D(p|q) ∼ 1.1 and in Secs. III and IV we argue that
this behavior is due to the circuit being overly simplistic and
not from a too-large learning rate.

To prove this we randomly initialize the (dC = 2, L = 1)
circuit and train it with Nshots = 1024 and different learning
rates α = {0.05, 0.3} and train for 200 steps of Adam. In
Figs. 10 and 11 we show the state-by-state F1 score (evaluated
with Nshots = 2048). For either learning rate (α = 0.05, 0.3)
the (dC = 2, L = 1) circuit fails to learn the states |1010〉 and
|0101〉. In contrast, the (dC = 2, L = 2) circuit is able to learn
all six BAS states.
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(a)

(b)

FIG. 11. The F1 score per BAS state of a circuit trained on a
noiseless simulator with 200 steps of Adam and α = 0.3: (a) the
(dC = 2, L = 1) circuit and (b) the (dC = 2, L = 2) circuit.

APPENDIX C: CONNECTIVITY, CORRELATION
LOCALITY, AND HARDWARE EMBEDDING

We define local or nonlocal connections with respect to the
image pixels of the BAS(2,2) data set. There are six possible
pairs that can be formed from the four pixels of each image
(four local and two nonlocal). The nearest-neighbor pairs
of pixels [(0,1),(0,2),(1,3),(2,3)] form the local connections,
while the remaining pairs [(0,3),(1,2)] are nonlocal.

If the hardware supports all-to-all connectivity then all
local and nonlocal connections can be mapped to CNOT gates

FIG. 12. (a) Pixels of a BAS(2,2) image with the edges of the
Chow-Liu tree defined from the mutual information (red). (b) Con-
nectivity graph of IBM’s Melbourne chip [13]. (c) The dC = 3
entangling layer defined using the Chow-Liu tree in (a). (d) The
dC = 3 layer embedded into IBM’s Melbourne chip.

and implemented in a single QCBM. With limited qubit
connectivity, it is possible to embed two nonlocal connections
into hardware but often at the cost of removing local con-
nections. The dC = 2, 4 layers construct QCBMs with four
local connections and zero nonlocal connections, whereas the
dC = 3 layers construct QCBMs with one nonlocal and two
local connections. In Fig. 12 we show the construction and
hardware embedding of a dC = 3 entangling layer from the
edges of a Chow-Liu tree rooted at pixel 0. Understanding
the trade-offs between local or nonlocal connections will be
necessary to construct QCBMs that can model larger images
or more complicated distributions.
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