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Effect of long-range interactions on multipartite entanglement in Heisenberg chains
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It is well known that the notions of spatial locality are often lost in quantum systems with long-range
interactions, as exhibited by the emergence of phases with exotic long-range order and faster propagation of
quantum correlations. We demonstrate here that such induced “quasinonlocal” effects do not necessarily translate
to growth of global entanglement in the quantum system. By investigating the ground and quenched states of
the variable-range, spin-1/2 Heisenberg Hamiltonian, we observe that the genuine multiparty entanglement in
the system can either increase or counterintuitively diminish with a growing range of interactions. The behavior
is reflective of the underlying phase structure of the quantum system and provides key insights for generation
of multipartite entanglement in experimental atomic, molecular, and optical physics where such variable-range
interactions have been implemented.
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I. INTRODUCTION

In recent years, there has been considerable interest in in-
vestigating the physical properties related to quantum systems
with long-range interactions [1–4]. This is primarily in re-
sponse to the significant developments made in experimental
atomic, molecular, and optical (AMO) physics [5–7], where
such interactions can be implemented in a well-controlled
setting [8–11]. These studies have led to a flurry of exciting
new physical phenomena [12–26], for instance, propagation
of correlations faster than the Lieb-Robinson bound [13–15],
emergence of exotic long-range order [17–20], and dynamical
phase transitions [21,22]. Most of these phenomena arise in
the presence of long-range interactions due to the breakdown
of “quasilocality” [27,28] (cf. [29]). In this context, quasilo-
cality affirms the existence of a nonrelativistic spatial light
cone within which most of the causal information travels with
the finite Lieb-Robinson velocity [30]. Any correlations or
response to local fluctuations appear to be strongly suppressed
at small distances away from this light-cone boundary [31,32],
which may not be the case when long-range interactions are
present. Importantly, the loss of quasilocality can lead to
nontrivial distribution of quantum entanglement [33], which
over the years has been established as an important resource in
implementation of various quantum information and compu-
tation protocols [34–36] (also see [37]). While recent studies
have focused on the growth of entanglement between two par-
ties in a variable-range interacting system [12,16], the effect of
emergent quasinonlocality due to long-range interactions on
the global entanglement of these systems remains elusive [38].
Here, we address this void by investigating the multipartite
entanglement in the ground and quenched states of quantum
many-body systems with long-range interactions.

It is known that entanglement jointly distributed among
many parties has richer features [39,40], which has allowed

for the design of sophisticated protocols such as crypto-
graphic conference [41,42] and multiparty quantum com-
munication [43–48]. Multiparty entangled states are also
intrinsic resources in implementation of novel quantum
computation models such as measurement-based quantum
computation [49]. In the past decade, notable progress in
experimental physics has allowed for the efficient creation
and manipulation of multiparty entanglement [50–54]. This
opens up the exciting potential for harnessing systems with a
tunable range of interactions for physical realization of these
quantum protocols. Moreover, multiparty entanglement is also
an important characteristic quantity in the study of critical
phenomena in many-body systems [55–62].

In this work, we consider a spin-1/2 Heisenberg chain
with spin interactions that follow a power-law decay (1/rα).
Efficient implementation of such variable interactions has
been possible with recent developments in AMO physics,
in particular with cold atoms [7], where the parameter α

can be tuned. Other systems include Rydberg atoms [8],
trapped ions [9], and polar molecules [10]. Incidentally, it is
known that such power-law decay in the Heisenberg chain can
lead to the breakdown of quasilocality [20,29]. An important
ramification of this is that the area law no longer bounds the
entanglement entropy [28] (cf. [63,64]), especially for α � 1.
In the same vein, intuitively, one would expect that the spatial
nonlocal effects induced by the long-range interactions would
result in quantum phases with enhanced global entanglement.
To explore this further, we characterize the multiparty entan-
glement in both the ground and quenched states of the con-
sidered Hamiltonian. We observe a clear dichotomy between
two different regimes, depending on whether the interactions
in the x-y spin plane are antiferromagnetic (AFM) or ferro-
magnetic (FM). We note that while the ground states in the
FM regime have enhanced multiparty entanglement for an in-
creased range of interactions in the system, counterintuitively,
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for the AFM regime the global entanglement weakly dimin-
ishes. Interestingly, we note that this is no longer the case
when quantum states are quenched with such long-range
interactions. Here, we start from a completely separable or
product spin state and switch on the interactions. The subse-
quent growth of multipartite entanglement in the time-evolved
system is then numerically analyzed. Here, we observe that
the AFM interactions with long range are more favorable
towards the growth of multiparty entanglement, in contrast to
the FM interactions, where the growth appears to be almost
independent of the range of interactions. Thus, our findings
clearly demonstrate that long-range interaction selectively
enhances quantum resources, such as global entanglement in
the system, and this is important for experimental efforts to
generate entanglement and implement quantum information
and computation protocols using systems with variable-range
interactions.

This paper is arranged as follows. We introduce the spin-
1/2 Heisenberg chain with long-range interactions in Sec. II.
Our measure of genuine multipartite entanglement and its
computation are discussed in Sec. III. In Sec. IV, we analyze
the genuine multiparty entanglement in the ground states of
the long-range model. The growth of entanglement under
quantum quench is then investigated in Sec. V, before we end
with a final discussion of the results in Sec. VI.

II. MODEL

We start by introducing the physical system of interest,
the one-dimensional (1D) quantum spin lattice, consisting of
spin-1/2 particles coupled via long-range interactions with
power-law decay. The Heisenberg Hamiltonian governing
such a system can be written as

H =
∑

i< j

1

|i − j|α
(
Jxσ

x
i σ x

j + Jyσ
y
i σ

y
j + �σ z

i σ z
j

)
, (1)

where α � 0 is the continuous exponent that controls the
long-range interaction. Jx and Jy are the coupling constants
along the x and y spin axes, respectively, and � is the
anisotropy along the z direction. Here, σ m are the Pauli spin
matrices (m ∈ {x, y, z}). For Jx, Jy < 0, the interaction in the
x-y plane is ferromagnetic, while for Jx, Jy > 0, we obtain
the antiferromagnetic coupling. The above Hamiltonian, in
the presence of long-range interactions, has a rich phase
diagram. For Jx = Jy = −1, an exotic continuous symmetry
breaking (CSB) phase emerges [20] for low values of α,
apart from the known XY and AFM phases observed in the
short-range Hamiltonian. This is a true hallmark of the quasi-
nonlocal effect and the change in effective dimensionality of
the system induced by long-range interactions. This is due to
the fact that spontaneous breaking of continuous symmetry
typically appears only in higher-dimensional spin lattices and
is otherwise forbidden in low-dimensional systems by the
Mermin-Wagner theorem [65] (also see Ref. [20]). For α =
∞, the model reduces to the short-range Heisenberg model
with nearest-neighbor (NN) interactions. A schematic of a 1D
long-range quantum spin system of arbitrary size and with
power-law decay of interactions is provided in Fig. 1. In our
study, we consider periodic boundary conditions for the spin

FIG. 1. Schematic of a quantum spin chain with interactions that
follow a power-law decay, 1/rα . The thick black and red dotted lines
show the short- and long-range coupling between the jth and other
spins in the quantum system.

chain. In order to do that we always choose the interaction
corresponding to the shortest distance, |i − j|, from one site
and another in the periodic spin chain. We note that at � = 0,
for Jx = Jy, the above Hamiltonian gives us the long-range
XX model, which we analyze in our study. Moreover, for
� = Jx = Jy and α = 2, the model reduces to the exactly
solvable Haldane-Shastry model [66–68].

III. MEASURE OF GENUINE
MULTIPARTY ENTANGLEMENT

Before going into the detailed analysis of the entanglement
properties of the ground and quenched states of the long-
range Heisenberg model, we begin by defining the genuine
multiparty entanglement of a quantum state. We note that
there exists several equivalent definitions and measures of
multiparty entanglement in the literature [33]. In our work, we
are mainly focused on the genuine multiparty entanglement
of a quantum system [69], which is defined as follows: An
N-party pure quantum state |ψ〉N is said to be genuinely
multiparty entangled if it cannot be written as a product in any
bipartition. In other words, a genuine multiparty entangled
state is entangled across all bipartitions of the system [70–72].
In order to estimate this quantity in |ψ〉N , we consider the
generalized geometric measure (GGM) [72], which is a com-
putable measure of genuine multiparty entanglement of a
state. It is defined as an optimized distance of the given
quantum state |ψ〉N from the set of all states that are not gen-
uinely multiparty entangled. This can be mathematically ex-
pressed as G(|ψ〉N ) = 1 − �2

max(|ψ〉N ), where �max(|ψ〉N ) =
max |〈χ |ψ〉N |, with the maximization being over all such pure
quantum state |χ〉 that are not genuinely multiparty entangled.
Following some simplifications, one can derive an equivalent
expression for the above equation, given by [72]

G(|ψ〉N ) = 1 − max
{
λ2

A:B|A ∪ B

= {s1, . . . , sN }, A ∩ B = ∅}
, (2)

where λA:B is the maximal Schmidt coefficient of |ψ〉N , in the
bipartition A : B. The measure is then optimized over all pos-
sible bipartitions of the state |ψ〉N and, for spin-1/2 or qubit
systems, takes values in the range 0 � G(|ψ〉N ) � 1/2. In
recent years, GGM has been used to characterize genuine mul-
tiparty entanglement in strongly correlated systems, including
quantum spin liquids [73,74], doped spin lattices [75,76], and
other many-body systems [77–81].
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We note that the computation of GGM in many-body
quantum systems requires access to the complete state of
the system and all its reduced density matrices. In general,
for a quantum system with N sites, the number of such
reduced density matrices is given by

∑N/2
i=1

(N
i

)
, which in-

creases exponentially with the size of the system. Moreover,
in the presence of long-range interactions, there are no known
analytical or approximate methods, such as tensor networks
or matrix product states, which can be used to compute
GGM, as is the case in several short-range models (see
Refs. [73–75,82]). Therefore, in our case, we are restricted
to exact numerical solutions for small, finite-spin chains. In
our work, we have considered systems with up to N = 20
spins and use diagonalization and propagation methods based
on the Krylov subspace and Lanczos algorithm. To mitigate
the effect of unstable finite-size effects in the presence of
long-range interactions, we have also checked the qualitative
consistency of our main results against smaller system sizes.

IV. MULTIPARTY ENTANGLEMENT IN THE
GROUND STATE

We now study the variation of genuine multiparty entangle-
ment G in the ground states of the spin-1/2 Heisenberg chain
with long-range interactions, given by Eq. (1). Towards that
aim, we consider two distinct regimes emanating from the
Hamiltonian, (i) the ferromagnetic regime, with interactions
in the x-y plane given by Jx = Jy = −1, and (ii) the anti-
ferromagnetic regime, with Jx = Jy = 1. Here, we consider
only the antiferromagnetic interactions along the z axis, i.e.,
0 � �/J � 2 (J = |Jx| = |Jy|), where there always exists a
distinct gap between the lowest-energy values. The long-range
interaction in the system is controlled through the exponent α,
which is varied in the integer range 1 � α � 10. We exclude
the extreme points corresponding to systems with infinite
interactions (α = 0) or strictly NN interactions (α = ∞).

We start with the FM regime and consider the case where
the interaction is defined by α = 10, with variable anisotropy
between the x-y and z directions. We note that the system is
already short range for α = 10. In Fig. 2, we note that the
ground state is genuinely multiparty entangled for all values
of the anisotropy parameter �/J (0 � �/J � 2), with the
minimum G at the point �/J = 1. As the range of interaction
is increased, by decreasing α, the genuine multipartite entan-
glement increases monotonically for �/J < 1. Subsequently,
at higher values of anisotropy (�/J > 1) the local minimum
shifts to larger values of �/J for decreasing values of α.
Moreover, there is a crossover between G values of different
α, which gives rise to an interesting regime where the shortest
range (α = 10) and the longest range of interactions (α = 1)
generate ground states with higher global entanglement than
the intermediate range of interactions. More importantly, G
remains the highest at α = 1 and gradually decreases with
increasing �. Therefore, as long-range interactions in the
system increase, there is an expected hike in the genuine mul-
tipartite entanglement in the ground state of the ferromagnetic
spin-1/2 Heisenberg Hamiltonian.

In the AFM regime, the situation is drastically different.
For the short-range interaction (α = 10), the genuine mul-
tiparty entanglement of the ground state is the minimum at

FIG. 2. Variation of genuine multipartite entanglement. Here, we
consider a Heisenberg chain with N = 20 spins and FM interactions
(Jx = Jy = −1) in the x-y plane. The plot shows the variation in
G with the parameter �/J , where J = |Jx| = |Jy|, for ten different
integer values of the exponent α, ranging from α = 1 (red squares)
to α = 10 (green circles). Here, the dashed lines are fits to the plotted
data points. The regime � = 0 corresponds to the XX model, which
also mimics the result obtained for the Heisenberg chain at low �.
We note that the plots for higher α values are very close together,
which shows that the short-range character is reached fairly quickly.
Moreover, the solid red vertical arrows highlight specific parameter
regimes where G increases with decreasing α (or increasing long-
range interactions), whereas the dashed green vertical arrows show
regions where G increases, but now for increasing α (or decreasing
long-range interactions). Both the axes are dimensionless.

�/J = 1, with a distinct symmetry around the point, as shown
in Fig. 3. In contrast to the FM regime, �/J = 1 is the local
minimum of G for all values of α, although in the vicinity
of this point the multipartite entanglement increases for more
long-range interactions, which is similar to the FM regime.

FIG. 3. Variation of genuine multipartite entanglement. Here, we
consider a Heisenberg chain with N = 20 spins and AFM interac-
tions (Jx = Jy = 1) in the x-y plane. The plot shows the variation in
G with the parameter �/J (where J = |Jx| = |Jy|) for ten different
integer values of the exponent α, ranging from α = 1 (red squares)
to α = 10 (green circles). Once more, the dashed lines are just fits to
the plotted data points, and both axes here are dimensionless. The red
and green vertical arrows here imply the same behavior as outlined
in Fig. 2.
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FIG. 4. Variation of genuine multiparty entanglement G in the
ground states of the long-range Heisenberg chain consisting of N =
20 spins in the �/J-α plane for (a) AFM and (b) FM interactions
in the x-y plane. Here, J = |Jx| = |Jy|. We note here that the dashed
yellow lines represent the extremal (minima) points of G. However,
they serve only as a visual aid to deconstruct the known quantum
phases of the model (see Ref. [20]). Both the axes and the color bar
are dimensionless.

However, away from this point, G decreases as the long-range
interaction in the system is increased. This intriguing behavior
of genuine multipartite entanglement is in direct contrast to
the behavior of the system in the FM regime and implies a
negative interdependence between global entanglement and
long-range-induced nonlocal effects in the system. This is
significant from the perspective of physical implementation of
quantum protocols where multiparty entanglement is an im-
portant resource. In the AFM regime, long-range interactions
appear to be detrimental to generating large entangled states,
compared to the FM regime.

The difference in the behavior of the genuine multipartite
entanglement between the FM and AFM regimes can be partly
explained using a heuristic description of the ground state in
these regimes based on our numerical simulations. Here, the
competition between different ground-state configurations in
interacting many-body systems gives rise to the phenomenon
of entanglement frustration [83] (also see Refs. [61,79]),
which can potentially define the complex behavior of entan-
glement in our model. In the long-range interaction model that
we consider, the ground state can be written as a superposition
between two stable, but competing, configurations, such that
|ψg〉 = a |ψN〉 + b |φN̄〉. Here, |ψN〉 is the state arising due
to the Néel order at � > 1 (for J = 1). It is expected that
at large �, the ground state will be closer to the Néel state
for both the AFM and FM models. For large α, this is
simply given by |ψ〉 = | ↑↓↑ · · · ↓〉, where {↑,↓} are the
eigenstates of σz. However, the complementary configuration
|ψ ′〉 = | ↓↑↓ · · · ↑〉 is also a likely ground state at large �.
Hence, at dominant � values, frustration ensures that |ψN〉 =
β1|ψ〉 + β2|ψ ′〉. The parity symmetry of H results in β1 =

±β2 = 1/
√

2, which ensures |ψN〉 is maximally multiparty
entangled. On the other hand, |φN̄〉 refers primarily to the non-
Néel configurations in the ground state, which are orthogonal
to both |ψ〉 and |ψ ′〉. These states are significant in regimes
where � is not large and seem to arise from the XY terms
in the Hamiltonian. However, unlike |ψN〉, the entanglement
properties of |φN〉 are a priori not known.

While the above description is intuitively appealing for
regimes that correspond to either large or small values of the
anisotropy parameter, numerical analysis suggests that it can
also provide a broad picture of the ground state for inter-
mediate values of �. By investigating the quantum fidelity
of the ground state to |ψ〉 and |ψ ′〉, one can deduce that
the overall entanglement of the ground state is dependent on
the trade-off between the states |ψN〉 and |φN̄〉, i.e., the ratio
a/b. In the AFM case, two distinct regimes emerge for all
α, symmetric around the point � = 1, viz., the region with
a > b (for � > 1) and the one with b > a (for � < 1). We call
these the Néel and non-Néel regimes. Later, we discuss how
these regimes closely correspond to the AFM and XY phases,
respectively. In the Néel regime, we observe that the ratio a/b
increases not only with � but also with α, resulting in higher
entanglement for shorter-range interactions. Interestingly, in
the non-Néel regime the opposite behavior is observed. Here,
it can be numerically shown that the ratio b/a increases for
decreasing � values, resulting in more entanglement close to
� = 0. However, b/a also increases with increasing α, which
again leads to higher entanglement in short-range systems.
This allows a distinct symmetry in multiparty entanglement
to emerge around the vicinity of � = 1 (in the region, 0 �
� � 2) for all values of α in the AFM model, but with
short-range interactions leading to more entanglement, as
shown in Fig. 3. Things look more interesting in the FM case,
where the effects of long-range interactions become more
prominent. First, for α > 1, the transition from the Néel to
the non-Néel regime is no longer centered at � = 1, apart
from the short-range cases (α > 6). The different points of
transition on � increase for decreasing α. This allows for
crossover between the multiparty entanglement corresponding
to different values of α. Second, more importantly, there is
no Néel to non-Néel transition for α = 1 in the FM case, at
least within the considered parameter regime. Therefore, the
ground state always corresponds to high values of b/a (in
the non-Néel regime) and has high multiparty entanglement
compared to other values of α (see Fig. 2).

Incidentally, we note that in the short-range limit (i.e.,
α = 10), due to the SU(2) invariance of the Hamiltonian, the
AFM and FM model turns out to be the same at � = ±1.
Moreover, in the short-range limit, the FM and AFM models
here are also connected via local unitary operations (spin-flip
operations at alternate sites in the spin chain) that keep the
global entanglement unchanged. This is reflected in Figs. 2
and 3, where the plots for multiparty entanglement G at α =
10 are almost the same for both the FM and AFM cases.

The dichotomy in the behavior of genuine multipartite
entanglement in the ground state of the FM and AFM regimes
of the Heisenberg Hamiltonian is closely related to their
respective phase structures. In Fig. 4, we show that the
genuine multipartite entanglement is able to deconstruct the
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different phases in these regimes, as has been established in
earlier work [20]. For large α, the phases are similar to their
counterparts corresponding to the NN spin-1/2 Heisenberg
chain, with two distinct phases: the XY spin liquid phase and
the AFM Ising-like phase. Figures 4(a) and 4(b) show how G
distinctly highlights these phases in both the AFM and FM
regimes, respectively. We note that the ferromagnetic phase
corresponding to � < −1 is not shown in the diagram, as G
cannot be uniquely computed for degenerate ground states.
The anomalous behavior arises as α is decreased and one
enters the quasinonlocal regime. For the AFM case, a regime
of a relatively weak entangled phase appears, with lower
values of G. In contrast, in the FM regime, the continuous-
symmetry-breaking phase emerges with decreasing α (α �
2) [20], which is marked by a region of high genuine mul-
tiparty entanglement. Therefore, in terms of the phase dia-
gram, the increase in genuine multipartite entanglement with
increasing long-range interactions is related to the XY-CSB
phase transition in the FM regime. In addition to this, at the
truly long range interaction limit (α ∼ 1), the ground state
mostly remains in the CSB phase, which apparently does not
decrease quickly even when the anisotropy and Néel order
increase with �.

V. GENERATING ENTANGLEMENT THROUGH
QUANTUM QUENCH

We now look at how genuine multipartite entanglement
can be generated through a quantum quench mediated by the
variable-range interactions in either the FM or AFM regime
of the spin Hamiltonian. In particular, we start with a product
or completely separable initial state of the system, given by
|ψ〉in = ∏N

i |φ〉i, where |φ〉i = 1√
2
(|0〉i + |1〉i ). Here, |0〉i and

|1〉i are the eigenstates of σ z
i . The initial states here can be

thought to be ground states of some local Hamiltonian acting
identically on all the spins. For the quantum quench, the
long-range interactions are instantaneously switched on in the
spin system. Subsequently, the initially separable quantum
state rapidly evolves in time, leading to potential growth
of multiparty entanglement in the system. We note that the
quench performed in our study is motivated from the per-
spective of various quantum information and computation
protocols, where entanglement is necessary for successful
implementation of the protocol. To this end, in our quench
process we begin with a completely separable product state,
which is a resourceless state, and wish to generate a useful
resource (entanglement) in the system. Our main aim here is
to see whether the presence of long-range interactions in the
Heisenberg Hamiltonian can generate higher entanglement or
a quantum resource in these quenched states compared to a
process that invokes only short-range interactions during the
quench.

The initial state is subjected to a quantum quench and co-
herently evolves to |ψ (t )〉 = exp(−iHt )|ψ〉in. Subsequently,
we measure how much GGM is generated in the quenched
state; that is, we calculate G(|ψ (t )〉). We are interested in the
parameter regimes away from � = 1, where the dichotomy
between the ground states in the FM and AFM cases appears
to be the most distinct. Figure 5 shows the evolution of
the state after the quench. Surprisingly, for the quenched

FIG. 5. Genuine multiparty entanglement after a quantum
quench. The growth of G in a system consisting of N = 12 spins
after a quantum quench of the initially product state |ψ〉in for (a) and
(b) AFM and (c) and (d) FM interactions in the x-y plane. Here,
J = |Jx| = |Jy|, and the plots correspond to α = 1 (red squares), 2
(green circles), 5 (yellow triangles), and 10 (orange circles). The red
vertical arrow here implies the same behavior as outlined in Fig. 2.
The axes are all dimensionless.

dynamics, long-range interactions (α = 1) appear to play a
strong role in the growth of multipartite entanglement when
|ψ〉in is quenched in the AFM regime. In contrast, the gen-
eration of multipartite entanglement in the FM regime is
almost independent of the range of interactions in the system.
This implies that highly entangled quantum states can be
generated through quenching in the FM regime even in the
absence of any significant long-range interactions. Therefore,
in quenched dynamics long-range interactions seem to affect
the multiparty entanglement favorably in the AFM regime,
while remaining ambivalent in the FM regime. This is the
converse to the outcome that was observed in the ground-state
phases of the system.

VI. DISCUSSION

In this work, we have demonstrated how the quasinonlo-
cal effect induced by long-range interactions in many-body
systems selectively affects the multipartite entanglement of
the system. By investigating different ground-state phases of
the spin-1/2 Heisenberg Hamiltonian we observed that mul-
tiparty entanglement can be enhanced or, counterintuitively,
can decrease as the range of interactions is increased. In par-
ticular, these opposing effects were observed for two distinct
ground-state phases depending on whether the interaction in
the x-y plane was ferromagnetic or antiferromagnetic. While
the global entanglement is expectedly boosted with more
quasinonlocal effects for the FM regime, in contrast, long-
range interactions appear to act detrimentally in the AFM
case. A possible reason for the unexpected behavior in the
AFM regime, as we observed in our ground-state analysis, is
the entanglement frustration arising from Néel and non-Néel
terms, which appears to favor more global entanglement in the
short-range limit. In the FM case, no transition occurs between
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the Néel and non-Néel regimes for long-range interactions,
leading to higher entanglement.

Interestingly, the observed dichotomy in these regimes
was intriguingly different while considering the generation
of multiparty entanglement through quenched dynamics of
initially separable states. Here, long-range interactions allow
for robust growth of global entanglement in the AFM regime,
in contrast to the FM regime, where there is no perceptible ad-
vantage in using longer interactions in the quenched dynam-
ics. Overall, our results clearly demonstrate that the system
in the ferromagnetic interaction regime is more susceptible to
allowing significant global entanglement for both short- and
long-range interactions.

Our findings provide significant insights for physical
implementation of quantum protocols where multiparty

entanglement is a necessary resource, such as measurement-
based computation and secure multiparty communication.
With recent technological breakthroughs in experimental
atomic, molecular, and optical physics, where the systems
often contain tunable long-range interactions, it is essential
to determine the optimal range of interactions that will allow
for maximal global entanglement in these system, which can
then be harnessed in the quantum protocol.
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