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In a recent series of works [Ebler et al., Phys. Rev. Lett. 120, 120502 (2018); arXiv:1809.06655v2;
arXiv:1810.10457v2], it has been shown that the quantum superposition of causal order—the quantum switch—
offers an enhancement of classical and quantum channel capacity through noisy channels, a phenomenon that
was coined “causal activation.” In this paper, we attempt to clarify the nature of the advantage, by comparing the
quantum switch to a class of processes that can be interpreted as quantum superposition of processes with the
same causal order. We show that some of these processes can match or even outperform the quantum switch at
enhancing classical and quantum channel capacity, and argue that they require the same resources as the switch.
We conclude, in agreement with Abbott et al. [arXiv:1810.09826v1], that the aforementioned advantages appear
to be attributable to the ability to coherently control quantum operations, and not to indefinite causal order per
se.
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I. INTRODUCTION

Quantum mechanics, as it is usually formulated, operates
on a definite causal structure. There has been significant recent
interest in investigating physically relevant situations in which
the causal ordering between events is itself governed by quan-
tum mechanics [1–4]. One interesting such causal structure is
the quantum superposition of causal orders, also known as the
quantum switch [3]. In the quantum switch, a quantum system
controls the order of applications of two quantum channels:
when the state of the control qubit is |0〉, the channel MA is
applied on a target system before MB, while if the control
qubit is |1〉, MB is applied before MA. The control qubit can
be the path of a photon in an interferometer, but more exotic
realizations where gravity plays a role have also been studied
[5–7]. It has been established theoretically that the quantum
switch offers various information processing advantages over
causally ordered quantum mechanics [8–10], and there have
been multiple experimental implementations of the switch
[11–17]

More recently, a series of papers [18–20] have investigated
the role of the switch in the context of classical and quantum
Shannon information theory, and they have shown that the
quantum switch offers advantages for enhancing channel ca-
pacity through noisy channels. All three tasks in Refs. [18–20]
have the same basic structure:

(1) Two fixed noisy channels MA,MB are chosen.
(2) A process—a bilinear supermap—turns these into a

quantum channel W (MA,MB). The specific process that is
considered is the quantum switch.

(3) The information transmitting properties of W are stud-
ied and it is concluded on these grounds that, for example, that
“when the order of the communication channels in between
them is a quantum degree of freedom, it can increase the

entanglement and enable transmission of quantum informa-
tion beyond what was possible in a definite causal order” [19].

The effects described in Refs. [18,19] have been repro-
duced experimentally [15,17]. In Refs. [18,19], the authors
are comparing the switch against a class of processes in which
MA is applied, say, before MB, and there is no available “side
channel” that could be used to transmit more information; in
this paper we will call them direct processes. In Ref. [20], the
authors also consider “independent channels in a superposi-
tion of alternative paths”; we comment on this in Appendix A.

Our work asks the question of whether there exists causally
ordered processes, which are not direct processes, but which
can be considered as resources equivalent to the switch.
Indeed, any advantages that the switch might have in Shannon
theory would disappear if we allowed ourselves to compare it
against arbitrary causally ordered processes such as

×
× MA MB

,
(1)

where the two-qubit gate is a swap. On the one hand, one
might rightfully object that the causally ordered process (1)
lies outside the set of permitted processes since the sender
makes use of a swap operation to directly transfer the in-
formation on a side channel which is not affected by the
action of the two noisy channels. On the other hand, it is also
important to keep a relatively large class of causally ordered
processes against which the process under consideration can
be compared; otherwise any advantage would be empty of
practical significance.

Are the above-mentioned communication advantages of-
fered by the quantum switch a mere consequence of the
presence of a side channel similar to Eq. (1), or can they be
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meaningfully attributed to indefinite causality? We attempt
to address this question by defining a class of processes
that includes the quantum switch, as well as conceptually
similar causally ordered processes, but excludes the process
of Eq. (1). We will formalize our discussion using the pro-
cess matrix formalism, but equivalent definitions could be
provided in other formalisms, for example with quantum
combs [21] in the causally ordered case, or using the Kraus
representations that were favored in Refs. [18–20].

II. PROCESS MATRICES

The process matrix formalism is a general framework for
quantum mechanics that dispenses with the need to preassume
a causal order between events. We quickly review the for-
malism here, and refer to the original references for a more
complete introduction. A process matrix can be defined as
a supermap [22] acting on local quantum channels [23]. To
each local laboratory (or party) is associated an input Hilbert
space HAI and an output Hilbert space HAO (here A is a
label for the laboratory of Alice), with finite dimensions dAI

and dAO respectively. A quantum channel MA : L(HAI ) →
L(HAO ) is a completely positive trace-preserving (CPTP)
map, where L(H) denotes the space of linear operators on
H. It is convenient to define the Choi-Jamiołkowski (CJ)
isomorphism [24], which associates to every quantum channel
M a corresponding quantum state

MAI AO :=
dAI∑

i, j=1

|i〉〈 j|AI ⊗ M(|i〉〈 j|)AO . (2)

It will also be useful to define a “pure” version of the
CJ isomorphism: if K : HAI → HAO is a linear map, then

|K〉〉AI AO := ∑dAI
i=1 |i〉i ⊗ (K|i〉)AO .

We define here process matrices in the bipartite case (Alice
and Bob), its generalization to more parties is straightforward.
Let HP,HF be Hilbert spaces corresponding to the “past”
and “future”, respectively. A process is a bilinear supermap
that sends any pair of local quantum channels MA,MB, to
a quantum channel G(MA,MB) : L(HP ) → L(HF ). Mathe-
matically, a process matrix is an operator W ∈ L(HP ⊗ HAI ⊗
HAO ⊗ HBI ⊗ HBO ⊗ HF ), such that

GPF := trAI AOBI BO (W TAI AOBI BO · MAI AO ⊗ MBI BO ), (3)

is (the Choi operator of) a CPTP map from HP to HF

whenever MAI AO and MBI BO represent CPTP maps. In
Eq. (3), TAI AOBI BO designates the transposition on the spaces
HAI ,HAO ,HBI ,HBO Hilbert spaces, while HP and HF are left
untouched. A pure process [23] is a process such that GAB

is a unitary channel whenever MAI AO and MBI BO are unitary
channels. It can be shown that all pure processes are rank-1
projectors W = |w〉〈w| [23].

In what follows we restrict our attention to cases where
dAI = dAO = dBI = dBO =: d . We call W a direct pure process
(in opposition to a process with side channels), if dF = dP =
d , and the induced channel G(MA,MB) is

T MA U MB V (4)

or

T MB U MA V , (5)

for some fixed unitaries T,U,V . Such processes can be
represented as rank-1 projectors: W = |w〉〈w|. We will later
consider MA,MB noisy channels (e.g., depolarizing chan-
nels).

Definition 1: Superpositions of direct pure processes
(SDPPs): Let {|wi〉PAI AOBI BOF }N

i=1 be a collection of pure direct
processes. Then the (equal) superposition of these processes is
defined by |w〉 = 1√

N

∑
i |i〉C |wi〉PAI AOBI BOF , which is a pure

process with future Hilbert space HC ⊗ HF . We call HC the
control Hilbert space, and HF the target Hilbert space.

It is clear that the quantum switch |w〉switch =
1√
2
(|0〉C | I〉〉PAI | I〉〉AOBI | I〉〉BOF + |1〉C | I〉〉PBI | I〉〉BOAI | I〉〉AOF ) is

a SDPP. However, it is also possible to take the superposition
of two direct pure processes |w1〉 and |w2〉 with the same
causal order, for example with A before B in both cases. It
seems that any reasonable resource theory that contains the
quantum switch—a superposition of direct pure processes
with different causal orders—should also allow superpositions
of direct pure processes with the same causal order. If some
communication advantage is not a generic property of SDPPs,
but only of those processes which are causally nonseparable
[25–28], this would yield credence to the claim that the
advantage is due to indefinite causality. We note that all
SDPPs can be implemented using interferometric setups
very similar to those used for implementing the switch
in Refs. [11,12,14,16]; we will return to this point in the
Discussion.

We now proceed to show that there are causally ordered
SDPPs that match (or outperform) the quantum switch for all
tasks of Refs. [18–20].

III. CLASSICAL AND QUANTUM COMMUNICATION

In Ref. [18], the authors consider two completely de-
polarizing channels: MA(ρ) = MB(ρ) = tr(ρ) Id . They find
that placing these channels inside the switch allows for a
nonzero classical channel capacity from HP to HC ⊗ HF ;
if the target system has dimension 2, they lower bound
the channel capacity by 0.049. Now consider the follow-
ing two direct pure processes |w0〉 = | I〉〉PAI | I〉〉AOBI | I〉〉BOF

and |w1〉 = |X 〉〉PAI | I〉〉AOBI | I〉〉BOF , where X is the Pauli-X
matrix, as well as their corresponding superposition |w〉 =

1√
2
(|0〉C |w0〉 + |1〉C |w1〉). This process can be represented as

the following circuit:

|+〉 •
MA MB

,
(6)

where the two-qubit gate is a controlled-NOT gate from the
control to the target qubit, and |+〉 = 1√

2
(|0〉 + |1〉). This

circuit allows for perfect communication of one classical bit:
when the initial target state is |+〉, the final state of the control
is |+〉, while if the initial target state is |−〉, the final control
state is |−〉. This is a manifestation of phase kickback, which
has been identified as a unifying feature common to many
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quantum algorithms [29]. Thus, we have found a causally
ordered SDPP that outperforms the switch for the task of
Ref. [18]. We further note that a one-party SDPP would have
been sufficient to obtain this effect [since removing MB in
circuit (6) does not change the final state], but we are sticking
to the bipartite case to allow for direct comparison with the
quantum switch.

In Ref. [20], quantum communication through the channels
MA(ρ) = MB(ρ) = 1

2 (XρX + Y ρY ), where X and Y are
Pauli matrices, is considered. It is shown that inserting these
channels in the quantum switch allows one to perfectly send
one qubit from HP to HC ⊗ HF . We now show that the
process of Eq. (6) also allows perfect communication of one
qubit, when the same channels are inserted in it.

First note that the composition of the two channels yields
MB[MA(ρ)] = 1

2 (ρ + ZρZ ), i.e., a probability 1
2 phase-flip

channel. The process (6) plays a role analogous to that of
a quantum error correcting code. The information about |ψ〉
can be recovered as follows: first measure the target qubit in
the computational basis. If the outcome is |0〉, then it can be
checked that the state of the control qubit will be |ψ〉. If we
get the outcome |1〉, the state of the control qubit will be X |ψ〉,
which can be corrected by applying a Pauli-X gate.

Finally, in Ref. [19] the authors consider the two chan-
nels MA(ρ) = (1 − p)ρ + pXρX and MB(ρ) = (1 − q)ρ +
qZρZ , and show that the quantum switch allows for a viola-
tion of the bottleneck inequality, an inequality asserting that
the quantum channel capacity of the concatenation of two
channels MA ◦ MB is upper bounded by the smallest of the
quantum channel capacities of the two individual channels
MA and MB [19]. Consider the following causally ordered
SDPP:

|+〉 •
MB H MA H

.
(7)

The composition of MB, and MA conjugated by Hadamard
gates is a phase-flip channel. Therefore, the previous argu-
ments establish that this process can be used to perfectly
send one qubit of quantum information, thus violating the
bottleneck inequality.

In Appendix B, we present a causally ordered SDPP de-
rived from the Shor quantum error correcting code [30–32],
that allows for perfect transmission of one qubit of informa-
tion for all noisy channels MA,MB. This shows that taking
the set of SDPPs as a resource (if one puts no limit on the
number of control qubits) trivializes the problem of enhancing
quantum and classical capacity.

IV. DISCUSSION

We now address the question of whether there are valid
reasons to devise a resource theory that regards the quan-
tum switch as an allowed process, while discarding general
SDPPs. Indeed, one might be tempted to regard the circuit
implementation of SDPPs, for example that in Eq. (6), as
an illegitimate resource for communication tasks, since the
controlled-NOT gate allows some information to bypass the
noisy channel (in other words, there appears to be signaling

FIG. 1. Comparison of the space-time diagrams corresponding
to implementations of the quantum switch (left), and the SDPP of
Eq. (6) (right). The small gray squares are beam splitters, and the
dashed red and solid blue lines represent the two paths that are
taken in an equal superposition by the photon. The noisy channels
MA,MB, and the Pauli-X unitary act on the polarization degree
of freedom of the photon. There exists inertial reference frames in
which the gate X occurs at a later (or earlier) time than the first
application of MA, which makes it impossible to assign a temporal
order between the application of MA on one side of the superposition
and that of X on the other side. Whether the action of X is part of
the initial encoding or of the propagation channel depends on the
reference frame.

from the target qubit to the control qubit before the noisy
channels are even applied). To answer this question, we
discuss here an interferometric implementation of the same
process, for which such an objection does not apply, and that
better emphasizes its similarities with the quantum switch.

Figure 1 compares the space-time diagrams of an imple-
mentation of the quantum switch and of the causally ordered
SDPP of Eq. (6). A qubit is initially encoded in the polariza-
tion degrees of freedom of a photon, which travels in an equal
superposition of the two paths (blue and red). At the end,
a localized observer can simultaneously access both modes
and perform a measurement to recover information about the
initial state of the polarization qubit. The state of the photon
at time t∗ (just before any noisy channel gets applied) is
exactly the same in both implementations. Also note that both
the target qubit and the control qubit are delocalized, and
that the channel MA at time t∗ only acts on the subspace
spanned by a†

H |�〉 and a†
V |�〉, where a†

H/V are the horizontally
(respectively, vertically) polarized modes corresponding to
the path drawn in red, and |�〉 is the vacuum state. A more
detailed analysis of the nature of the systems which are acted
upon by the channels in the switch was carried out in Ref. [33].

The recent work of Chiribella and Kristjánsson [34] builds
upon the previous studies [18–20]. In this work the authors put
forward a second-quantized Shannon theory, in which both the
internal and external degrees of freedom of the information
carriers are quantized. They do not treat all degrees of freedom
equally, but rather require a “clear-cut separation between
the role of the internal and external degrees of freedom”
[34], and in particular restrict the way that information can
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be distributed over internal and external degrees of freedom.
While this restriction might serve the purpose of selecting the
quantum switch out of all other possible SDPPs, it could be
overly limiting if the goal is to understand the information-
theoretical consequences of the fact that external degrees of
freedom are also quantized.

Chiribella and Kristjánsson thus set out to rule out pro-
cesses such as that of Eq. (6), which although (in our opin-
ion) natural in the context of second-quantized information
processing, trivialize the advantages claimed for the switch
in Refs. [18–20]. They do so by first defining an encoding
channel E : L(HQ) → L(HM ⊗ HP ) of an abstract quantum
system HQ into “path” HP and “message” HM degrees of
freedom, and require it to satisfy a nonsignalling condition

trM[E (ρ)] = trM[E (σ )],∀ρ, σ ∈ L(HQ). (8)

This nonsignalling requirement does not unambiguously
achieve the goal of ruling out the undesired processes: con-
sider once again the process at the right of Fig. 1. It is clear
from this space-time diagram that the unitary X can equiva-
lently be placed either before, simultaneously, or after the first
application of MA (and similarly for the first application of
MB). This already shows an ambiguity regarding whether X
should be considered as part of the “encoding” or not. If we—
as we do here—define the encoding to happen at time t = 0
in the space-time diagram, then the encoding is the same as
for the switch: E (ρ) = ρM ⊗ |+〉〈+|P, and it is nonsignalling
in the sense of Eq. (8). Just as it is ambiguous whether X
is part of the encoding operation, it is also unclear whether
it should be considered, in the language of Ref. [34], as a
“repeater operation” (which is required to be nonsignalling
from the internal to the external degrees of freedom) or as
a “communication channel” (for which no such restriction
applies). Repeater operations are defined as those parts of
the quantum evolution that are not labeled as communication
channels, but it is not obvious what criteria determine which
of the two labels applies for a given operation.

Moreover, it is clear that both the switch and the SDPP
in Fig. 1 require two spatial modes to be implemented. In
neither case is it possible for a single spatial mode to be used
to transmit information, since no information is extractable
from a single mode after all the noisy channels have been
applied. The only way to send information through either of
these two processes is to prepare a quantum superposition of
the two spatial modes, and to recombine them after the noisy
channels in order to read out the information. This suggests
that there is no fundamental difference, regarding their status
as a resource for Shannon theory, between the quantum switch
and causally ordered SDPPs, and therefore, that the activa-
tion of channel capacity cannot be unambiguously attributed
to indefinite causal order. Judging from Fig. 1, a possible
interpretation is that the counterintuitive channel capacities
allowed by SDPPs are rather a consequence of the ability to
delocalize noisy channels in space-time. This feature allows
establishing correlations between the noise in the different
arms of the interferometer, which can be useful in protecting
against noise.

Finally, one might say that the arguments of this section
only apply to a particular implementation, and that they do

not apply to the quantum switch, when seen as an abstract
primitive. Indeed our arguments have shown that the notion
of encoding depends on the implementation, and it is not a
property of an abstract process matrix. The abstract way to
know whether a process contains a “side channel” is to look
at the reduced process [25], where Alice and Bob are traced
out,

Wr = 1
4 trAI AOBI BO |w〉〈w|switch

= 1
4 I

PCF + 1
8 (|0〉〈1| + |1〉〈0|)C ⊗ | I〉〉〈〈I |PF . (9)

We see that in the case of the quantum switch, the reduced
process Wr is a quantum channel which allows for direct
communication from HP to HC ⊗ HF , no matter what noisy
operations are being applied at A and B. As means of compar-
ison, the reduced process for the SDPP of Eq. (6) is

W ′
r = 1

4 (IPCF +X P ⊗ XC ⊗ IF ). (10)

Thus if one accepts this abstract definition of a side channel,
both the quantum switch and the process of Eq. (6) contain a
side channel that allows direct signaling from P to F . We leave
open the question of whether the two side channels should be
considered equivalent, or whether they can be differentiated
in a physically meaningful way.

V. CONCLUSION

References [18–20] have shown that the quantum switch
allows for certain enhancements of classical and quantum
channel capacity, when compared against a restricted class
of causally ordered processes, and have coined the term
causal activation for this phenomenon. In this paper, we
have examined whether these advantages can be univocally
attributed to indefinite causality, or whether there are causally
ordered processes that offer the same advantages and can be
considered as equivalent resources. We have found insuffi-
cient reasons to reject any process belonging to a class that
we named superpositions of direct pure processes. Some of
the processes belonging to that class are causally ordered,
but can match—or outperform—the quantum switch at the
proposed tasks. We have also shown that the Shor quantum
error correcting code can be used to find an SDPP that protects
against arbitrary Pauli errors on the target qubit. Thus, we
suggest that “controlled activation” might be a more apt name
for the above-mentioned phenomenon.

Our findings bear similarities with those of Ref. [35].
In that work, an enhancement of channel capacity through
quantum-controlled noisy channels is also found to be pos-
sible without indefinite causal order. However, the controlled-
noise operations of Ref. [35] are not process matrices, and
thus their results depend on the specific implementation
of the noisy channels. Our results, however, as those of
Refs. [18–20], are about process matrices and are independent
of the way in which the noise is implemented. We elaborate
on these comments in Appendix A.

Let us conclude with an attempt at interpreting the differ-
ence between the previously discussed tasks and other infor-
mation processing tasks for which only an indefinite causal
order yields an advantage [8–10,36]. A possible explanation
for why there are causally ordered SDPPs that display a
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channel capacity activation is that in the protocols considered
here the same noisy channels get applied in all runs of the
protocol—they are not subject to interventions by any parties.
Instead, all previously known advantages of the quantum
switch over causally ordered processes rely crucially on the
possibility to controllably change the local operations across
different runs [8–10,36]. This is a significant difference, as
the operational definition of causality is formulated in terms
of interventions.
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APPENDIX A: SUPERPOSITIONS OF PATHS

In Ref. [35], it was already pointed out that the advantages
of the switch for classical communication and for violating the
bottleneck inequality can be also obtained through “superpo-
sitions of paths.” The type of scenario that they considered is
the following: let {Ki} and {Lj} be Kraus operators of the noisy
channels MA and MB, and consider the channel obtained
from the isometry

|ψ〉 �→ 1√
2
|0〉C

∑

i

Ki|ψ〉T |i〉E0 |ε1〉E1

+ 1√
2
|1〉C

∑

i

L j |ψ〉T |ε0〉E0 | j〉E1 , (A1)

after tracing out the ancillary Hilbert spaces E0 and E1.
In the above equation, C designates the control degree of
freedom, and T the target. In Ref. [20], it was shown that
this type of superposition of paths does not permit noiseless
transmission of one qubit, while such a feat is possible using
the quantum switch. The authors of Ref. [20] stated that
their “findings highlight a fundamental difference between the
type of interference arising from independent channels in a
superposition of alternative paths and independent channels
in a superposition of alternative orders.” In what follows
we attempt to clarify the previous statement, by comparing
Eq. (A1) with the SDPPs defined in the main text.

First, note that the isometry in Eq. (A1) does not define
a valid process matrix. Indeed, the channel that one gets after
tracing E0 and E1 depends on the particular Kraus definition of
MA,MB [35,37]. Therefore, that channel cannot be obtained
from a process matrix—a bilinear map acting on the quantum
channels MA,MB. In contrast, the SDPPs (which include the
quantum switch) that we have been considering in this paper
are indeed process matrices.

Second, it is important to make a distinction between
independent channels and correlated noise. Both in Eq. (A1)
and for SDPPs, the channels MA,MB are independent in
the sense that they can be chosen independently. However, in
Eq. (A1), the noisy channels that get applied in each of the two
paths are uncorrelated: the Kraus operators corresponding to
MA only appear in the path |0〉C , and those corresponding to
MB, only in |1〉C . This is not the case for SDPPs: the noisy
channels MA,MB are correlated. Thus, what the findings of
Ref. [20] highlight is rather a difference between interference
arising from uncorrelated channels in a superposition of alter-
native paths, and interference arising from channels that are
correlated via a superposition of direct pure processes.

APPENDIX B: SHOR CODE AS A SDPP

The Shor quantum error correction code [30,31] uses nine
physical qubits to encode one logical qubit, in a way that
protects it against arbitrary single qubit errors:

|ψ〉 • • H • •

E

• • H • • |ψ〉
|0〉 •
|0〉 •
|0〉 H • • • • H •
|0〉 •
|0〉 •
|0〉 H • • • • H •
|0〉 •
|0〉 •

(B1)
where E is an arbitrary single-qubit error channel. The Shor
code can be interpreted as a SDPP, by using circuit identities
to flip the direction of the controlled gates. Furthermore, if we
are merely interested in correcting errors on the target qubit
only (the top qubit in the circuit above), we can remove qubit
numbers 5, 6, 8, 9. The following circuit is a simplified version
of the Shor code [where we omit the part of circuit (B1) that
happens after the error channel], and it can be implemented as
a uniform superposition of 24 processes with the same causal
order. Since we are interested in correcting errors on the target
qubit only [the lowest qubit in circuit (B2)], it turns out we can
use only five physical qubits.

|+〉 •
|+〉 •
|+〉 •
|+〉 •
|ψ〉 H H MA MB

.

(B2)

This SDPP allows us to perfectly transmit one qubit of quan-
tum information, for all channels MA,MB. Thus, the SDPP
of Eq. (B2) generalizes, and improves upon, the observations
made in the main text.
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This example shows that SDPPs (if one puts no limit
on the number of control qubits) can be used to perfectly
send one qubit of information, essentially trivializing the

problem of enhancing quantum and classical channel ca-
pacity if one were to take the set of all SDPPs as a
resource.
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