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Properly designed control has been shown to be particularly advantageous for improving adiabatic quantum
computation (AQC) accuracy and time complexity scaling. Here, an in situ quantum control optimization
protocol is developed to indirectly optimize state fidelity without knowledge of the instantaneous spectral gap
or the computational solution. The protocol is shown to converge to analytically derived time-optimal controls
for Grover’s search algorithm. Furthermore, the protocol is utilized to explore optimized control trajectories
for the maximum two-bit satisfiability problem, where appreciable improvement in fidelity and the minimum
spectral gap over a linear schedule is observed. The approach is also shown to be robust against system model
uncertainties (unitary control errors). This method is designed to enable robust control optimization on existing
quantum annealing hardware and future AQC processors.
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I. INTRODUCTION

Adiabatic quantum computation (AQC) utilizes controlled
adiabatic evolution of a many-body quantum system to im-
plement a quantum algorithm. The quantum system is de-
scribed by a Hamiltonian Had[x(t )] = ∑L

l=1 xl (t )Hl , where
the ground state of the initial Hamiltonian H0 = Had[x(0)]
is assumed to be easily prepared and the ground state of the
problem Hamiltonian HP = Had[x(T )] represents the solution
to the computational problem [1–3]. The system evolution
is dictated by the control schedules x(t ) = {xl (t )}L

l=1, which
effectively controls the amplitude of each noncommuting,
linearly independent, primitive Hamiltonian Hl .

The accuracy of AQC is determined by the adiabatic
theorem, which asserts that the system will remain in an
instantaneous eigenstate of Had(t ) provided the dynamics are
sufficiently slow. In the noise-free case, the adiabatic theorem
yields the rigorous bound on the trace-norm distance [4]
between |�0(t )〉, the instantaneous ground state of Had(t ),
and the time-evolved state |ψ (t )〉: D[|�0(T )〉 , |ψ (T )〉] � qa,
provided

T � a

q

maxs∈{0,1}
∥∥ d

ds Had

∥∥b−1

�b
min

, (1)

where s = t/T is the normalized time, ‖A‖ denotes the
operator norm, and �min is the minimum spectral gap
between the instantaneous ground state and first excited
state of Had(t ). The parameter q ∈ (0, 1), while the integer
exponents a and b depend upon the differentiability and
analyticity properties of Had(t ) and the boundary conditions
satisfied by its derivatives [5–7].

The adiabatic theorem has been the basis for a number
of studies focused on properly designing x(t ) to minimize
the adiabatic error D and reduce the lower bound on T by
modifying �min via a local adiabatic condition that seeks to
minimize ground-state transitions ∀t [8]. These approaches
have employed variational time-optimal strategies [9], optimal
control theory [10], and convex optimization [11] that exploit

accurate system models and either knowledge of the computa-
tional solution, i.e., |�0(T )〉, or the instantaneous spectral gap
�(s). In this paper, an optimization technique referred to as
closed-loop optimized adiabatic quantum control (CLOAQC)
is developed to indirectly optimize the adiabatic error using
only the time-evolved system state at t = T measured in
the computational basis. The method is shown to converge
towards known time-optimal solutions for Grover’s search
algorithm (GSA) [8,9] and substantially improve adiabatic
error and enhance �min for the maximum two-bit satisfiability
(MAX 2-SAT) problem relative to a linear schedule. The
protocol is shown to exhibit robustness to unitary control
errors and it is argued that due to the form of the objective
function the method can be readily extended to more generic
noise models.

II. CLOAQC

A. The algorithm

Closed-loop quantum control learning is an iterative op-
timization method that relies on information from previous
experiments to update control parameters and effectively op-
timize system performance with respect to a given objective
function. In the case of AQC control optimization, the learning
procedure includes three main steps: (1) the generation of a
set of control parameters, (2) the implementation of the AQC
algorithm and subsequent quantification of performance, and
(3) a learning algorithm that incorporates prior performance
information to provide updated control parameters. Observ-
ing the impact of varying the control parameters via prior
experiments is a key aspect of closed-loop learning that af-
fords inherent robustness to system uncertainty. It is exploited
here to consider a quantum processor designed to implement
quantum annealing or, more generally, AQC in a blackbox
framework where one has limited knowledge of the intrin-
sic noise processes, systematic errors, and the underlying
structure of the energy spectrum of Had(t ). To this end, it
is assumed that one only has knowledge of the Hamiltonian
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one believes is being implemented on the hardware and the
state of the system at the end of the computation measured
in the computational basis. These assumptions fit well within
the confines of currently available quantum annealing based
hardware, such as the D-wave processor [12], and future AQC
processors.

A function space is used to parametrize the control func-
tions for each constituent Hamiltonian Hi in Had[x(s)]. Each
control function is defined as

xi(s) =
d+1∑
j=1

λi jφ j (s), (2)

where λi j denote weights for each of the jth basis functions
φ j (s). Thus, the optimization parameter space is defined by
� ≡ {λi j}L,d+1

i, j=1 , which includes the weights for the d basis
elements in the function expansion for all L controls. Note
that the function representation has advantages over piecewise
control in that the parameter space is drastically reduced
and variations in control parameters result in global rather
than local changes in control functions. Here, the polynomial
basis φk (s) = sk−1 is chosen for simplicity; however, one
can readily consider any alternative. Intrinsically band-limited
functions such as the discrete prolate spheroidal sequences
may be attractive for imposing intrinsic bandwidth constraints
on control profiles [13].

Traditional state fidelity metrics, such as the trace-norm
distance,

D[|ψ (T,�)〉 , |�0(T )〉] =
√

1 − | 〈ψ (T,�)|�0(T )〉 |2, (3)

require knowledge of |ψ (T,�)〉 and |�0(T )〉. While one
may estimate |ψ (T,�)〉 by sampling the AQC algorithm,
knowledge of |�0(T )〉 implies knowledge of the computa-
tional solution. One may envision control protocols that ex-
ploit partial or approximate solutions obtained from classical
algorithms; however, the focus of this paper is the case where
the computational solution is unknown and additional clas-
sical preprocessing (i.e., approximate solution optimization
algorithm) can be avoided.

State fidelity metrics are circumvented by employing
the energy of the system with respect to HP, E (�) =
〈ψ (T,�)|HP|ψ (T,�)〉 to evaluate the performance of a given
set of control parameters �. The expectation value is esti-
mated by accumulating samples of the final state measured
in the computational basis {|ψ̃i(T,�)〉}M

i=1 from M imple-
mentations of the AQC algorithm; this estimate is denoted as
Ê (�). Note that E (�) serves as a viable surrogate objective
function that achieves a minimum value when |ψ (T,�)〉 =
|�0(T )〉. Alternative objective functions based on the average
energy have been discussed as a means for optimizing control
schedules for quantum annealing. In Ref. [14], the energy
difference at each point in time is employed as a figure of
merit, while in Ref. [15] the average energy appears via the
fluctuation-dissipation theorem. In both studies, the control
schedules rely on information about the system at times t ∈
[0, T ]. CLOAQC relaxes this constraint, requiring only an
estimation of the energy of the system at t = T .

Due to sampling statistics, function calls to the Ê (�)
are stochastic. Therefore, a stochastic optimization tech-
nique must be employed to perform the control optimization.

Simultaneous perturbative stochastic approximation (SPSA),
an iterative gradient-based optimization technique that re-
quires two function calls per iteration to estimate the gradient,
is selected for this task [16]. Note that SPSA has been previ-
ously used for quantum information applications [17–19]. For
each iteration k, the first step is to generate a random search
vector �k , where each of the i = 1, 2, . . . , |�| elements is a
Bernoulli distributed variable, i.e. �k j = ±1. The estimated
gradient is

gk = Ê (�k + βk�k ) − Ê (�k − βk�k )

2βk
�k, (4)

where the control parameter update is given by

�k+1 = �k + αk[gk + λad∇Jad(�k )] (5)

and λad = 0.005 in all subsequent simulations. The update
includes an additional analytically calculated gradient for the
objective function

Jad =
∑
μ∈x

∫ 1

0
‖μ̇(s)‖ds, (6)

which seeks to enforce adiabaticity by minimizing the deriva-
tive of each control field over the total time interval [10].

The functions αk and βk are convergence parameters and
typically defined as

αk = α0

(k + 1 + R)δ
, βk = β0

(k + 1)ζ
, (7)

where α0, β0, and R are chosen following the procedure
outlined in Ref. [20]. The remaining parameters δ = 0.602
and ζ = 0.101 are typically good values [16] and appear to
be good choices for the problem presented in this paper. It is
also found that the asymptotically optimal values δ = 1 and
ζ = 1/6 yield similar results [21].

B. Convergence and performance

SPSA convergence analyses [16,21] establish convergence
in part by imposing conditions on the convergence parameters
αk and βk , the distribution of �k , and the statistical relation-
ship between �k and measurements of E (�). Essentially, the
main conditions stipulate that (1) αk and βk both tend to zero
at rates that are neither too fast nor too slow, (2) the objective
function E (�) is sufficiently smooth near �opt, and (3) �k

defines a vector of elements of independent and symmetrically
distributed values about zero with finite inverse moments
〈|�−1

ki |〉. By selecting αk and βk according to Eq. (7) and
Ref. [20], condition 1 is satisfied. Condition 2 is inherently
satisfied, while condition 3 is satisfied by selecting �k to
follow the symmetric Bernoulli ±1 distribution.

Provided that the above conditions are satisfied, the con-
vergence in the objective function can be related to conver-
gence in the control space. According to SPSA convergence
analyses, the error in the control space reduces asymptoti-
cally as ‖�k − �opt‖ ∼ O(k−γ /2), where in typical situations
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γ ∈ [1, 0]. Utilizing this result, one obtains the bound

| f (�k ) − f (�opt)| � C

2
‖H[ f (�opt)]‖‖�k − �opt‖2 (8)

� C

2
‖H[ f (�opt)]‖k−γ , (9)

where C is a constant and ‖H ( f (�opt))‖ is the spectral
norm of the Hessian. This bound holds for any differentiable
function f satisfying ∇ f (�opt) = 0. Since both the surro-
gate E (�) and true objective D(�) satisfy these properties,
the scaling is expected to hold for both functions. In the sub-
sequent section, this claim is corroborated by numerical simu-
lations that convey the expected scaling |D(�k ) − D(�opt)| ∼
O(1/kγ ). The value of γ is extracted for different control
scenarios to determine convergence rates. It is important to
note that while asymptotic results suggest γ ≈ 1 the actual
convergence rate is highly problem dependent.

CLOAQC performance is dictated by the typical overhead
requirements of SPSA. The algorithm requires a total number
of 2MK experiments, where K is the number of iterations of
the algorithm. The factor of 2 arises from SPSA’s finite dif-
ference gradient [Eq. (4)] estimation, which differs from the
2d estimates required for standard finite difference gradient
techniques.

III. NUMERICAL EXPERIMENTS

A. Grover’s search algorithm

The efficacy of CLOAQC is explored via GSA for the
identification of a marked element in an unsorted database
of N elements [22]. GSA requires a minimum of O(

√
N )

oracle queries to identify the marked element, a quadratic
improvement over the best possible classical algorithm [23].
Recast in the language of AQC [8,9], Grover’s algorithm is
generically defined by an n-qubit Hamiltonian

HG(s) = x1(s)[I − |+〉 〈+|] + x2(s)[I − |m〉 〈m|], (10)

where x1,2(s) are the control functions, I is the identity
operator, |+〉 represents the uniform superposition over all
N = 2n computational basis states, and |m〉 is the marked
state. Time-optimal controls can be designed such that �min ∼
O(1/

√
N ), and the total runtime required to reach the ground

state |�0(T )〉 = |m〉 is T ∼ O(
√

N ), thus achieving the well-
known quadratic speedup [8,9].

The optimized control functions obtained from CLOAQC
are compared to the time-optimal GSA controls for one
independent control (IC) [x1(s) = 1 − x2(s)] and two ICs,
where x1(s) and x2(s) are linearly independent. The CLOAQC
algorithm is initialized such that �0 describes a linear ramping
control schedule. The boundary conditions x1(0) = x2(1) = 1
and x1(1) = x2(0) = 0 are enforced on the control profiles
throughout the optimization procedure. Each control function
is expanded into five basis functions, and thus the control
parameter space is described by five and ten parameters in
the one and two IC case, respectively. The total runtime T =
5/�min is chosen for all simulations (see the Appendix B for
a further analysis of CLOAQC performance as a function of
runtime).

FIG. 1. Relative difference between trace-norm distances for
time-optimal GSA controls and CLOAQC for one and two con-
trol degrees of freedom. Comparison illustrates the dependence of
CLOAQC performance on the number of algorithm implementations
M and number of qubits n.

A comparison of performance indicates a convergence in
CLOAQC solutions toward the time-optimal GSA solutions
with increasing iteration. In Fig. 1, CLOAQC is compared to
the Roland-Cerf (RC) [8] and the quantum adiabatic Brachis-
tochrone (QAB) [9] GSA solutions for various values of
sampling parameter M and number of qubits n using 100
realizations of CLOAQC. The top and bottom rows illustrate
the relative difference in adiabatic error D between CLOAQC
and RC and QAB, respectively, as a function of iteration k.
Median CLOAQC performance is denoted by the solid col-
ors, while the shaded region denotes the interquartile range.
Although both RC and QAB solutions require knowledge of
the spectral gap �(s), CLOAQC is capable of converging
toward the equivalent time-optimal solutions using only the
state of the system at the end of the computation. In panels
(a) and (c), the convergence rate of CLOAQC is shown
to be approximately independent of the sampling parameter
M. The most considerable improvement in performance is
observed between M = 10 and 100 for both control scenarios.
CLOAQC convergence does not convey a compelling depen-
dence on n [see Figs. 1(b) and 1(d)]. Therefore, CLOAQC
performance is dependent on the dimension of � and not on
the underlying hardness of the AQC algorithm. Note that each
panel includes a fit for n = 4 with M = 100, along with the
corresponding convergence parameter γ . Note that γ appears
to be consistent with the typical SPSA scaling for both control
scenarios.

CLOAQC optimized control profiles are qualitatively sim-
ilar to the time-optimal GSA solutions. In particular, for one
IC, optimized controls closely resemble the RC solution,
while deviations from the QAB control profiles are more
significant for two ICs. Higher-order polynomial expansions
are needed to more accurately reproduce the QAB profiles.
Note that despite such a distinction between CLOAQC and
QAB paths their adiabatic errors only differ by less than 10−3

for the n values considered here (see the Appendix A for a
more detailed discussion).
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B. MAX 2-SAT

The utility of CLOAQC is further illustrated via the MAX
2-SAT problem, where optimized controls are shown to offer
substantial reductions in adiabatic error and amplification of
�min relative to a linear control schedule. MAX 2-SAT offers
variability in the energy spectrum, including location and
magnitude of �min, that is highly problem instance dependent.
By focusing on unique satisfying assignment (USA) instances
(i.e., instances with nondegenerate ground-state manifolds),
CLOAQC’s ability to maintain adiabaticity and effectively
navigate the ground-state manifold without knowledge of the
specifications of �min is demonstrated. CLOAQC’s ability to
enhance adiabatic error is supplemented by gap amplifications
that generally become more pronounced with increasing ICs.

CLOAQC performance is assessed with respect to an en-
semble of 100 USA 2-SAT instances. Each 2-sat instance is
a logical AND of Mc clauses, where each clause Cj itself
is a logical OR of exactly two Boolean variables from the
set {xi}n

i=1. Each 2-SAT problem Hamiltonian is constructed
by associating the binary values of each Boolean variable
x j with the ±1 eigenstates of the Pauli spin operator σ z

j for
the jth qubit and summing the Mc clause Hamiltonians [1].
After rescaling and dropping the constant term, the resulting
problem Hamiltonian is

HP =
∑

j

h jσ
z
j +

∑
i, j

Ji jσ
z
i σ z

j , (11)

where h j = −∑
m vm

j and Ji j = ∑
m vm

i vm
j [24]. The vari-

ables vm
j ∈ {−1, 0, 1}, where j = {1, 2, . . . , n} and m =

{1, 2, . . . , Mc} label the variables and clauses, respectively,
and encode the specifications of Cm. Namely, if x j appears
negated (un-negated) in the mth clause then vm

j = −1(+1).
vm

j = 0 for all clauses where x j does not appear. The USA
ensemble is generated using the approach in Ref. [2] and
found to possess an average clause density α̂ = n/Mc ≈ 1.2.
Clause density is known to play a role in discerning problem
hardness. α̂ is found to be sufficiently close to the critical
clause density αc = 1, where the most (classically) difficult
MAX 2-SAT problems lay [25].

A variety of control scenarios are considered by defining
the MAX-2 SAT algorithm as

H2S (s) = x1(s)H0 + x2(s)HI + x3(s)HP,1 + x4(s)HP,2. (12)

The initial Hamiltonian H0 = ∑
j σ

x
j represents a transverse

field on each qubit, thus defining the initial ground state
to be the uniform superposition state over all computational
basis states. The intermediate Hamiltonian HI = ∑

i �= j σ
x
i σ x

j
is only present for t ∈ (0, T ) and defines a nonstochastic
contribution. Nonstochastic Hamiltonians have been studied
for the MAX 2-SAT problem [26], and they have been shown
to benefit algorithmic performance for certain algorithms
[27–29]. Here, their advantages in the presence of optimized
control are investigated. The last two terms in Eq. (12),
HP,1 = ∑

j h jσ
z
j and HP,2 = ∑

i, j Ji jσ
z
i σ z

j , denote the 1- and
2-local terms of the problem Hamiltonian HP = HP,1 + HP,2.
The number of independent controls is varied by impos-
ing constraints on xi(s). Four scenarios are considered here:

FIG. 2. Comparison of CLOAQC vs a linear schedule for 100
instances of the MAX 2-SAT problem for n = 8 qubits and four
different control scenarios.

(1) one IC, where x1(s) and x4(s) = 1 − x1(s) are nonzero;
(2) two ICs, where x2(s) = 0 and x3(s) = x4(s); (3) three
ICs, where x3(s) = x4(s); and (4) four ICs, where all control
functions vary independently. In all cases, x1(0) = x3(1) =
x4(1) = 1, x1(1) = x3(0) = x4(0) = 0, and x2(0) = x2(1) = 0
are imposed on the control functions.

CLOAQC is shown to outperform a linear control schedule
for the ensemble of 100 USA instances in Fig. 2. Median
adiabatic error D̃ is obtained from an ensemble of 25 realiza-
tions of CLOAQC for each problem instance, with �CLOAQC

corresponding to the minimum gap for the control profile that
produces D̃. CLOAQC is implemented for 1000 iterations
with M = 100 and T = 10/�min.

Performance features between different control scenarios
are remarkably distinct. Letting rD and r� denote the me-
dian ratios D̃CLOAQC/Dlin and �CLOAQC/�lin with respect to
the distribution of problem instances, control scenarios are
compared against each other by their median improvement in
adiabatic error and gap enhancement. In the one control case,
rD ≈ 0.066 and no gap amplification is observed. A minimum
of two ICs are required to achieve gap amplifications, where
r� ≈ 2 and the median adiabatic error ratio improves to rD ≈
0.011. Further improvements in adiabatic error and minimum
gap size are achievable by including HI with optimized con-
trol; however, the degree of improvement is strongly depen-
dent upon the choice of HI and problem instance; this is
consistent with previous findings [28]. The distribution for the
three IC case is fairly localized in adiabatic error and broad
in gap enhancement, where the median performance ratio
rD ≈ 0.011 and r� ≈ 2.97. Note that in some cases the gap
enhancement is as large as approximately 4.4 × �lin. While
a subset of the instances do benefit from four ICs, a majority
of the instances do not. The median ratio of adiabatic error
is rD ≈ 0.062 and the median gap enhancement is r�2.538
for the distribution of instances. The degradation in perfor-
mance is due to the fixed number of CLOAQC iterations
and increasing dimension of the search space. Increasing the
number of iterations to K = 2000, CLOAQC performance
improves to rD ≈ 0.020 and a modest median gap enhance-
ment of r� ≈ 2.89. Further improvements in D likely require
an increase in M and K , specifically in the high fidelity
regime where achieving nonzero Ê (�) values may require
M  1.
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FIG. 3. Comparison of CLOAQC vs a linear schedule for 100
instances of the MAX 2-SAT problem for n = 8 and four different
control scenarios. Panels (a) and (b) convey results for HI = H (y)

and HI = H (xz), respectively.

C. More on MAX 2-SAT: Alternative
intermediate Hamiltonians

The benefits of nonstochastic Hamiltonians combined with
optimized controls provided by CLOAQC are further explored
here for the MAX 2-SAT problem using alternative Hamilto-
nians to the two-local XX interaction Hamiltonian presented in
the main text. In Figs. 3(a) and 3(b), the intermediate Hamil-
tonian is given by H (y)

I = ∑
j σ

y
j and H (xz)

I = ∑
i j σ

x
i σ z

j +
σ z

i σ x
j , respectively. The former has been previously studied

as an additional driving term for quantum annealing, where
techniques from “shortcuts to adiabaticity” were employed to
produce optimized control for particular Ising-type problem
Hamiltonians [30]. A Hamiltonian similar to H (xz)

I has been
previously employed as a catalyst Hamiltonian that improves
the success probability and runtime scaling for a specific
choice of HP [27]. This paper focuses on potential improve-
ments provided by each HI in conjunction with CLOAQC op-
timized control for the 100 USA problem instances discussed
in the main text.

The addition of H (y)
I leads to improvements in adiabatic

error and no substantial improvements in the minimum spec-
tral gap. In Fig. 3(a), the median performance of CLOAQC
is compared to the one control linear ramping schedule. The
one and two control schedules are included for reference,
with the results for three and four controls constituting the
HI -dependent distributions. Significantly more localized than
the XX interaction Hamiltonian, H (y)

I with optimized con-
trol generally offers improvements in adiabatic error without
the need for gap amplification for the 100 USA problems
considered here. Degradations in adiabatic error for the four
control case are still observed and again attributed to fixing
the number of iterations and energy samples used for the
CLOAQC optimization experiments.

In contrast H (y), improvements in adiabatic error and min-
imum gap size are strongly instance dependent when utilizing
H (xz)

I . Improvements in adiabatic error up to a factor of
approximately 10−3 and 10−4 are observed for three and four
independent controls, respectively, with gap amplifications up
to approximately 4.5 × �lin. While substantial improvements
are observed for a subset of instances, approximately 1/3 of

TABLE I. Summary of median improvements in adiabatic error
and gap amplifications for the distribution of 100 MAX 2-SAT USA
problem instances for each nonstochastic Hamiltonian considered.
Data are formatted as (rD, r�). SAA denotes “same as above” for
equivalent results among different intermediate Hamiltonians.

No. of controls

HI 1 2 3 4

H (xx)
I (0.065, 1) (0.014, 1.735) (0.012, 2.973) (0.062, 2.538)

H (y)
I SAA SAA (0.009, 1.673) (0.011, 1.658)

H (xz)
I SAA SAA (0.023, 2.604) (0.031, 2.722)

the instances do not benefit from the addition of H (xz)
I with

optimized control. Tracking the adiabatic error as a function
of iteration, the addition of H (xz)

I appears to induce stability
issues in CLOAQC that lead to limited success in optimiza-
tion over the 25 realizations. By altering the convergence
parameters, it is possible to improve median performance and
overcome such issues at the cost of an increase in the number
of iterations.

Median improvements in adiabatic errors and gap ampli-
fication taken over the distribution of problem instances are
summarized in Table I for all choices of HI .

D. Robustness to noise

CLOAQC possesses a degree of inherent robustness to
uncertainty in Had(s) due to the fact that it is a closed-loop
protocol and it relies on the minimization of the average
energy with respect to HP, the problem Hamiltonian one
wishes to encode on the AQC hardware. CLOAQC’s robust-
ness is assessed here by including an additive, unitary control
error with three different types of ramping schedules. The
Hamiltonian

H ′
ad(s) = Had(s) + HE (s) (13)

is used to describe the faulty AQC algorithm, with the
additional additive term HE (s) = �(s)

∑n
i m̂i · �σi contribut-

ing to the deformation of the ground-state manifold. m̂i =
(mi,x, mi,y, mi,z ) is a unit vector where mi,μ is generated from
a zero mean normal distribution with unit standard deviation.
The ramping schedule �(s) is chosen in accordance with
Ref. [31] and takes three forms: (a) �(s) = Cs, (b) �(s) =
C sin(πs), and (c) �(s) = 1/2 sin(Cπs), where C ∈ R.
Figure 4 compares CLOAQC to a linear, RC, and QAB control
profile for GSA, with each panel corresponding to the three
�(s) schedules, respectively. Median performance is shown
for a distribution of 25 realizations of CLOAQC, using a
realization of HE (t ) that does not exhibit favorable recur-
rences in D with increasing C [31]. CLOAQC conveys con-
siderable improvements in adiabatic error and robustness for
sufficiently small and slow-oscillating unitary control errors,
most notably for ramping schedules (b) and (c), where one
control CLOAQC outperforms (two control) QAB. CLOAQC
performance exhibits an abrupt degradation in performance
at critical C values where the dynamics are dominated by
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FIG. 4. Comparison of CLOAQC against linear, RC, and QAB
control schedules for the three unitary control error models discussed
in the main text. Median CLOAQC performance is shown for a
distribution of 25 realizations of CLOAQC using n = 4, K = 1000,
and M = 100.

HE (s) and insufficient sampling of the HP ground state
exists.

While the focus here is unitary control errors, given the
form of the objective function, CLOAQC is expected to be
robust against more generic noise sources. For example, the
algorithm also exhibits robustness to time-dependent semi-
classical stochastic noise processes as well (results not shown
here). Generically, CLOAQC can be expected to outperform a
linear schedule when ‖Had(s)‖  ‖HE (s)‖, where ‖HE (s)‖ <

∞ and ‖ · ‖ is the operator norm, and the dynamics generated
by HE (s) are sufficiently slow ∀s. The development of rigor-
ous bounds and potential relaxations of this local condition on
HE (s) related to CLOAQC performance in the open quantum
system setting is left for future work.

IV. CONCLUSIONS

A blackbox AQC control optimization protocol (referred to
as CLOAQC) is presented and shown to drastically improve
algorithmic performance solely using the state of the quantum
system at the end of the computation and no knowledge of
the minimum spectral gap. CLOAQC is shown to converge
towards Grover’s search algorithm’s time-optimal control
solutions with increasing iteration and achieve robustness to
uncertainties in the Hamiltonian, specifically unitary control
errors. Further exploring the utility of the approach, CLOAQC
is used to optimize control profiles for the MAX 2-SAT prob-
lem and achieve improvements in computational accuracy and
the size of the minimum energy gap relative to a linear control
schedule. CLOAQC is designed to be conducive to current
quantum annealing hardware and future AQC processors.
Furthermore, the algorithm is quite versatile and can be
adapted to alternative control scenarios, e.g., inhomogeneous
driving [32].
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FIG. 5. Comparison between CLOAQC optimized control paths
and RC (top) and QAB (bottom) control paths for n = 4. CLOAQC is
implemented with K = 10 000 and M = 100. The median paths are
shown by dark lines while shaded regions correspond to interquartile
range for 100 realizations of CLOAQC. CLOAQC control paths
correspond to the results presented in the main text (Fig. 1).

APPENDIX A: CONTROL SCHEDULES

1. Grover’s search algorithm

A comparison between CLOAQC and the time-optimal
GSA solutions corresponding to the main text results (Fig. 1)
for n = 4 and M = 100 is shown in Fig. 5. The one con-
trol case yields optimized controls that closely resemble the
RC control path, as seen from the top panel of Fig. 5.
Deviations from the RC solution are attributed to the trun-
cated polynomial expansion used to define the CLOAQC
control field. In contrast, the complexity of the QAB pro-
file is far more difficult for CLOAQC to reproduce un-
der the fifth-order polynomial expansion; hence, a greater
distinction between the CLOAQC optimized path and the
QAB profile is observed (see Fig. 5, bottom panel). In-
terestingly, even with such a distinction, the relative dif-
ference in performance between CLOAQC and the QAB
path is roughly only 10−3 for n = 4 and less than that for
n = 6 and 8.

2. MAX 2-SAT

The CLOAQC optimized control paths for one MAX 2-
SAT instance are shown in Figs. 6 and 7. The main text
results for H (xx)

I are shown in Fig. 6 for one to four in-
dependent controls. Lines correspond to the median path,
while shaded regions denote the interquartile range for 25
CLOAQC realizations. Figure 7 displays similar results for
H (y)

I and H (xz)
I for three and four controls only. The mini-

mum spectral gap for this particular problem instance lies
between s = 0.6 and 0.8 for a majority of the control sched-
ules. Note that the most significant ramping of the con-
trol schedules typically occurs within this range for x j (s),
j = 2, 3, 4.
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FIG. 6. CLOAQC control paths resulting from 25 realizations
of CLOAQC implemented with n = 8, K = 1000, and M = 100.
Results for one to four independent controls are shown in panels
(a)–(d), respectively. The intermediate Hamiltonian is the two-local
XX interaction discussed in the main text.

APPENDIX B: PERFORMANCE AS A
FUNCTION OF RUNTIME

While CLOAQC performance varies as a function of run-
time, numerical results indicate that the algorithm typically
performs no worse than a linear schedule and typically con-
verges towards known optimal solutions with increasing T . In
this section, the performance of CLOAQC is examined as a
function of runtime for both GSA and MAX 2-SAT using one
independent control as an example of the typical convergence
behavior of the algorithm. In Fig. 8, CLOAQC performance
is assessed as a function of T for GSA. CLOAQC opti-
mizations are performed with K = 5000 and M = 100 for
100 realizations of the protocol. The relative difference

FIG. 7. CLOAQC control paths resulting from 25 realizations of
CLOAQC implemented with K = 1000 and M = 100. Panels (a) and
(b) correspond to the H (y)

I intermediate Hamiltonian for three and
four independent controls, respectively. Panels (c) and (d) correspond
to the H (xz)

I intermediate Hamiltonian for three and four independent
controls, respectively.

FIG. 8. CLOAQC performance as a function of the adiabatic
runtime T for GSA using n = 4 qubits and one independent con-
trol. (a) Relative difference in adiabatic error between CLOAQC
optimized path and RC solution. (b) Average energy for the initial
(linear) control schedule, RC, and CLOAQC. Distributions include
100 realizations of CLOAQC with markers and whiskers denoting
medians and interquartile ranges, respectively. CLOAQC is imple-
mented using K = 5000 and M = 100.

between CLOAQC adiabatic error and the RC solution adia-
batic error is displayed in panel (a) along with average energy
for both the initial (linear) schedule, RC, and CLOAQC
optimized control schedule in panel (b). In Fig. 9, the ratio
of adiabatic errors and average energy for the linear and
CLOAQC optimized controls are compared in panels (a)
and (b), respectively, for the MAX 2-SAT problem with one

FIG. 9. CLOAQC performance as a function of the adiabatic
runtime T for one representative n = 8 MAX 2-SAT USA instance
using one independent control. (a) Ratio of adiabatic errors for the
CLOAQC optimized path and the linear control schedule. (b) Av-
erage energy for the initial (linear) control schedule and CLOAQC.
Distributions include 25 realizations of CLOAQC with markers and
whiskers denoting medians and interquartile ranges, respectively.
CLOAQC is implemented using K = 1000 and M = 100.
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independent control. CLOAQC is implemented with K =
1000 and M = 100 for 25 realizations. Figure 9 focuses
on one USA instance explored in the main text; however,
the results shown here capture the typical behavior for the
remaining 99 instances considered. Note that for both the
GSA and MAX 2-SAT results markers denote medians, while
whiskers denote the interquartile range.

CLOAQC successfully optimizes control schedules when
initialized with controls paths that yield relatively low prob-
abilities of sampling the ground state of HP. As T increases,
CLOAQC is able to more accurately reproduce the optimal
RC path for GSA and offer improvements in adiabatic error
over the linear schedule for MAX 2-SAT. This observation
is evident from both the trace-norm distance and the average
energy, where the ground-state energy E0 is sampled with
near unit median probability for the CLOAQC optimized
path at T ≈ 7/� and ≈20/� for GSA and MAX 2-SAT,

respectively. In the case of GSA, the linear schedule only
achieves an average energy of 〈E〉 ≈ 0.3, which corresponds
to a ground-state sampling probability of P(E0) ≈ 50%. Sim-
ilar results are found for the MAX 2-SAT problem, where
CLOAQC is shown to double the ground-state probability.
Substantial improvements in 〈E〉 and P(E0) are also ob-
served for shorter T values. For example, for GSA, CLOAQC
can achieve a median 〈E〉 ≈ 0.04 and P(E0) ≈ 96% at T ≈
4/�, where the linear control schedule yields 〈E〉 ≈ 0.42
and P(E0) ≈ 38%. Similarly, for MAX-2SAT, at T ≈ 15/�,
CLOAQC achieves 〈E〉 ≈ 0.01 and P(E0) ≈ 96% using an
initial linear schedule that yields 〈E〉 ≈ 0.1 and P(E0) ≈
35–40% for all problem instances considered. Lastly, it is
important to note that CLOAQC is also capable of attaining
nonzero P(E0) when initialized at T values where P(E0) = 0.
Such is the case at T ≈ 1/� for a majority of the MAX 2-SAT
USA instances discussed here.
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