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Tensor-network approach to compute genuine multisite entanglement
in infinite quantum spin chains
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We devise a method based on the tensor-network formalism to calculate genuine multisite entanglement in
ground states of infinite spin chains containing spin-1/2 or spin-1 quantum particles. The ground state is obtained
by employing an infinite time-evolving block decimation method acting upon an initial matrix product state for
the infinite spin system. We explicitly show how such infinite matrix product states with translational invariance
provide a natural framework to derive the generalized geometric measure, a computable measure of genuine
multisite entanglement, in the thermodynamic limit of quantum many-body systems with both spin-1/2 and
higher-spin particles.
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I. INTRODUCTION

In recent years, entanglement [1] has turned out to be
an important characteristic in the study of low-dimensional
strongly correlated quantum systems, especially from the
perspective of critical phenomena in the low-temperature
regime of many quantum many-body systems [2–5] and im-
plementation of quantum information protocols using solid-
state, cold gas, and other physical substrates [6–10]. While
most of the attention in studying these systems has been
bestowed on bipartite entanglement measures such as en-
tanglement of formation, concurrence, or block entangle-
ment entropy, an important albeit difficult to estimate quan-
tity is the multipartite entanglement in quantum many-body
systems (see Ref. [1]). Interestingly, it has often been ob-
served that there exist some cooperative phenomena where
bipartite entanglement and other known order parameters
fail to detect the interesting physics, which are then cap-
tured by multipartite entanglement [11–15]. Moreover, the
study of multiparty entanglement in quantum systems with
higher spins, even for finite-sized systems, remains largely
unexplored.

When expanding the study of multipartite entanglement
to understand complex quantum phenomena in the ther-
modynamic limit, for both spin-1/2 and higher-spin quan-
tum particles, the innate difficulty is to characterize com-
putable entanglement measures (for recent developments, see
Refs. [11–21]). In most instances, for quantum many-body
systems, the complexity in measuring multipartite entangle-
ment scales exponentially with increasing dimension of the
total Hilbert space, which in turn is associated with the
number of quantum systems involved in the problem, and
can often be unamenable even with approximate methods.
In recent years, numerical techniques such as density matrix
renormalization group (DMRG) [22], matrix product states

(MPS) [23], and projected entangled pair states (PEPS) [24]
have allowed unprecedented access to physical properties of
many-body systems, including estimation of global entangle-
ment in low-dimensional spin systems [11–13]. The growth
of newer tensor-network methods [25], such as multiscale en-
tanglement renormalization ansatz (MERA) [26], along with
other significant developments in higher-dimensional [27] and
topological quantum systems [28], provide newer directions
to explore the role of multipartite entanglement in generic
quantum systems.

In this work, we employ a tensor-network based approach
to estimate the genuine multipartite entanglement, which
for pure quantum states characterizes the situation where
the many-body system cannot be formed by states that are
products across some bipartition(s) of the multiparty system.
We investigate this behavior in the thermodynamic limit of
infinite chains of both spin-1/2 as well as spin-1 quantum
systems. We show that matrix product states for infinite one-
dimensional quantum spin systems provide a natural frame-
work to estimate the generalized geometric measure (GGM)
[19] (see also [16–18]), which is a computable measure of
genuine multipartite entanglement, defined by using the ge-
ometry of the space of multiparty states. To demonstrate the
efficacy of our formalism, we first consider a set of prototyp-
ical Hamiltonians of low-dimensional quantum spin systems.
For instance, we obtain the ground states for spin-1/2 systems
such as the transverse Ising and the XYZ models, using infinite
time-evolving block decimation (iTEBD) [29] of an initial
state. We show how the GGM in the thermodynamic limit
of the system can be estimated from the final infinite matrix
product state (iMPS). Subsequently, we extend our study
to more complex models such as the spin-1 Ising model
with transverse single-ion anisotropy. Here we observe that
the genuine multipartite entanglement in the thermodynamic
limit can clearly highlight the different quantum phases of
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the many-body system and the scaling of entanglement can
identify the critical points.

The paper is arranged as follows. After the brief intro-
duction in Sec. I, we discuss GGM as a measure of genuine
multiparty entanglement in Sec. II. We then look at how
expressions for the reduced states can be obtained from the
infinite MPS picture in Sec. III. In Sec. IV we look at how
the ground states of spin chain models, containing spin-1/2
or spin-1 particles, can be derived using iTEBD. In Sec. V,
we calculate the GGM for the ground states of these different
models. We conclude with a discussion in Sec. VI.

II. GENERALIZED GEOMETRIC MEASURE

A hierarchy of geometric measures of multiparty entangle-
ment [18] of an N-party pure quantum state, |�〉N , can be
defined in terms of geometric distance between the given state
and the set of k-separable states, Sk , which is the set of all
pure quantum states that are separable across at least k − 1
partitions in the system or, alternatively, are a product of states
of k subsystems. Considering fidelity subtracted from unity,
which is closely connected to the Fubini-Study and the Bures
metrics, as our choice of distance measure, one can define the
geometric measure of multiparty entanglement as [16–19]

Gk (|�〉N ) = 1 − max
|χ〉∈Sk

|〈χ |�〉N |2, (1)

where 2 � k � N and |〈χ |�〉N |2 is the fidelity. The max-
imization ensures that Gk measures how entangled (or far
away) a state |�〉N is with respect to (from) the closest
k-separable states. In principle, a set of N − 1 measures of
multipartite entanglement ({Gk}) can be defined, by employ-
ing the minimum distances from the N − 1 sets, Sk . Multipar-
tite entanglement measures, such as the global entanglement
[17], consider the distance of |�〉N from the set of completely
separable or N-separable states, Sk=N . These measures do
not detect separability that may occur across a lesser num-
ber of partitions (k < N). A more stringent measure is the
genuine multipartite entanglement, Gk=2, which corresponds
to the minimum distance from the set S2. Since Sk ⊂ Sk′ ,
if k′ � k, we get Sk ⊂ S2 ∀ k. This implies that the minimal
distance is computed by considering the minimization over
all k-separable states for all k, and thus captures the presence
of genuine multiparty entanglement in the quantum state. In
other words, nonzero value of Gk=2, in Eq. (1), implies that
|�〉N is not separable across any bipartition.

In general, computation of Gk appears to be hard, as it
involves maximization over a large set of k-separable states.
Incidentally, Gk=2 for a quantum state is equal to the general-
ized geometric measure (G) [19], which reduces to

G(|�〉N ) = 1 − max
SA:B

{
λ2
A:B|A ∪ B = {N},A ∩ B = ∅}

, (2)

where SA:B = S2 is the set of all biseparable states, with
bipartitions A and B, and λA:B = max{λi

A:B} for the Schmidt
decomposition, |�〉N = ∑

i λ
i
A:B|φi〉A|φ̃i〉B. Here N denotes

the set of N parties possessing the state |�〉N . The maxi-
mization over all k-separable states is reduced to optimization
over the set of λ2

A:B across all possible bipartitions of |�〉N .
Such simplification of G(|ψ〉N ) helps to evaluate genuine mul-
tiparty entanglement content of a multiparty state involving

an arbitrary number of parties and in arbitrary dimensions.
Note, however, that with increasing N the number of possible
choices of the bipartitions also increases exponentially and
hence computation of G becomes cumbersome. In addition
to this, if the quantum state of the system cannot be defined
uniquely, it is also not possible to compute the value of G for
the system.

We present a brief outline of the proof for GGM (G) being a
measure of genuine multipartite entanglement [19] in the Ap-
pendix A. Importantly, we now show that the measure of G can
be characterized in the language of tensor-network methods.
In particular, we consider the MPS formalism in translation-
ally invariant (TI) quantum systems, which provides a natural
framework to estimate genuine multisite entanglement.

III. ANALYTICAL FORM OF REDUCED
DENSITY MATRICES

The maximum Schmidt coefficient across a bipartition
required for GGM is the square root of the maximum eigen-
value of the reduced density matrix of the subsystems across
the bipartition. Obtaining the reduced density matrices of an
infinite-sized system, using the MPS formalism, is the primary
motivation of the paper. Let us begin with the preliminary
MPS representation of a many-body quantum state, |�〉N ,
given by [24,25]

|�〉N =
∑

i1i2···N

∑

α2...αN−1

Tr
(
Ai1

α1,α2
Ai2

α2α3
. . . AN

αN−1αN

)

× |i1, i2, i3, . . . , iN 〉, (3)

where ik is the physical index, with the local system dimen-
sion d , and αk being the auxiliary index, each with a bond
dimension D. {Aik } are thus D × D matrices corresponding to
each k site. For low values of D, the MPS representation of
|�〉N is very efficient as the number of parameters required
to express the state scales with N as ND2d , instead of dN .
This can be further reduced by considering some potential
symmetry in the system, such as translational invariance of
{Aik } matrices. Importantly, in order to obtain the reduced
density matrices of a quantum many-body system, one should
be able to efficiently compute the {Aik } matrices. However,
there are only a few cases for which the exact MPS form
of the quantum state is known [24,25]. One such example
is the unnormalized N-qubit Greenberger-Horne-Zeilinger
(GHZ) [30] state, |GHZ〉N = |0〉⊗N + |1〉⊗N , which is local
unitarily equivalent to the possible entangled ground state of
the Ising chain at large coupling strength [31]. For D = 2
(and d = 2 for qubits), the matrices for the MPS are {Aik } =
{A0(k), A1(k)} = {σ+σx, σ

−σx}, ∀ k, where σk’s are the usual
Pauli matrices and σ± = 1

2 (σx ± iσy). We note that the Aik

matrices are translationally invariant. Another example of TI
systems is the ground state of the AKLT Hamiltonian [32],
where for d = 3 and D = 2, {Aik } = {A0(k), A1(k), A2(k)} =
{σz,

√
2σ+,−√

2σ−}, ∀ k. However, in general, the matri-
ces {Aik } can have explicit site dependence. For example,
consider the N-qubit W state [33], |W 〉N = 1√

N
(|10 . . . 0〉 +

|01 . . . 0〉 + · · · |00 . . . 1〉), which is known to be the ground
state of the ferromagnetic XX model with strong trans-
verse field. Interestingly, although the state is translationally
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invariant, the {Aik } matrices are not, as shown for D = 2. Here,
{A0(k), A1(k)} = {σ+, I2}, for k < N , and {A0(k), A1(k)} =
{σ+σx, σx}, for k = N , where I2 is the 2 × 2 identity
matrix [34].

In general, for MPS with site-dependent {Aik },
calculation of reduced density matrices of quantum states
beyond moderate-sized systems may require considerable
computational effort, especially if the bond dimension D is
not small. This is a significant roadblock in the computation of
GGM. However, if the system is TI, i.e., {Aik } = Ai,∀ k, and
the Ai matrices can be efficiently estimated, then the reduced
density matrices can be obtained even for infinite sized
systems, thus allowing us to compute the genuine multipartite
entanglement of quantum states in the thermodynamic limit.
Let us begin with an MPS representation of a TI quantum
system with local dimension d and {Ai}, with bond dimension
D. The MPS could be obtained as a ground state of a physical
Hamiltonian or a time-evolved quantum state, quenched from
some initial product state. To calculate the reduced density
matrices, we first consider the case for single-site reduced
state first from the multiqubit TI MPS. For a very small system
size, viz. N = 2, and known Ai matrices, the expression for
the single-site reduced density matrix is given by ρ1 = 1

E2

tr[(A0 ⊗ Ā0)E ]|0〉〈0| + tr[(A0 ⊗ Ā1)E ]|0〉〈1| + tr[(A1 ⊗ Ā0)
E ]|1〉〈0| + tr[(A1 ⊗ Ā1)E ]|1〉〈1|, where E = ∑

i Ai ⊗ Āi is
the transfer matrix of the translationally invariant system and
Ā is the conjugate transpose of A. Similarly, for N = 3, ρ1 =
1

E3 tr[(A0 ⊗ Ā0)E2]|0〉〈0| + tr[(A0 ⊗ Ā1)E2]|0〉〈1| + tr[(A1 ⊗
Ā0)E2]|1〉〈0| + tr[(A1 ⊗ Ā1)E2]|1〉〈1|. For an arbitrary N
and local dimension, d = 2 (qubit), the expression for the
single-site density matrix is given by

ρ1 =
1∑

i, j=0

tr[(Ai ⊗ Ā j )EN−1]

EN
|i〉〈 j|. (4)

At this stage, our aim is to generalize Eq. (4) for very
large and, eventually, infinite systems. To this end, we first
consider the spectral decomposition of the transfer matrix,
in the MPS formalism for infinite system, known as iMPS,
EN = ∑

i λ
N
i |Li〉〈Ri|, where |Li〉 and |Ri〉 are the left and

right eigenvectors, respectively. For N → ∞, E has 1 as a
nondegenerate eigenvalue and all other eigenvalues have mod-
ulus smaller than 1, i.e., EN = |L0〉〈R0| + ∑D2

j=2 λN
k |Lk〉〈Rk|.

Hence, as N → ∞, EN → |L0〉〈R0|. Thus the elements of ρ1,
as expressed in Eq. (4), are given by

ρ1
i j = 〈L0|Ai ⊗ Ā j |R0〉

〈L0|R0〉 . (5)

Similarly, one can obtain the form of all m-consecutive site
l, l + 1, l + 2, . . . (m � 2) reduced density matrices, using
the relation

ρm
i j = 〈L0|Ai1 Ai2 . . . Aim ⊗ Ā j1 Ā j2 . . . Ā jm |R0〉

〈L0|R0〉 , (6)

where i = i1i2 . . . im and j = j1 j2 . . . jm. For nonconsecutive
sites, l, l + r1, l + r1 + r2, . . . the expression of the m-site

reduced density matrix is given by

ρm
i j = 〈L0|Ã1Er1−1Ã2Er2−1 . . . Ãm|R0〉

〈L0|R0〉 ,

where Ãk = (Aik ⊗ Ā jk ).
This has remarkable significance as the number of pa-

rameters required to represent the m-site density matrices is
reduced from dm to D2d . The reduced density matrix can
thus be used to estimate the genuine multisite entanglement
in systems described using infinite MPS.

IV. GROUND-STATE MPS USING iTEBD

We briefly describe the algorithm to simulate the ground
state of an infinite, one-dimensional quantum many-body
Hamiltonian, H, using the infinite MPS formalism. We start
with an arbitrary MPS, |�〉N , as expressed in Eq. (3), and
then eventually build the ground state iMPS using an infinite
time-evolving block decimation method. To this end, starting
from |�〉N , we perform an imaginary time evolution: |�〉N →
e−τH|�〉N . The ground-state configuration |�0〉N is then ob-
tained when τ becomes very large, i.e., |�〉N ∼ |�0〉N +∑dN

i=1 e−τ (Ei−E0 )|�i〉N
τ→∞−−−→ |�0〉N . In order to perform the

iTEBD, we first use second-order Suzuki-Trotter (ST) decom-
position [35] on the exponential unitary operation and express
each term in the TI matrix product operator (MPO) form
[36,37]. This essentially helps to change the optimization
problem of the energy for the total system to the optimization
associated with each decomposed TI MPO. After one such
ST iteration, we obtain an MPS, |�t 〉, which, in general, has
a bigger bond dimension than the initial MPS. Therefore, one
needs to truncate this to the allowed bond dimension D. We
then normalize the imaginary time evolved state and choose
that as a seed for the next time iteration. After each such
ST step, energy per site (E0/N = 1

N 〈�t |H|�t 〉) is calculated
and the expressions of the {Ai} matrices for the iMPS of the
ground state of the given Hamiltonian are then obtained by
minimizing the energy. In general, energy per site scales with
the size of the system. However, through some intermediary
steps, one can show that, for N → ∞, it converges to E∞
(say). Hence the final {Ai} matrices are obtained when the
energy per site converges.

To apply the above iMPS formalism we begin with a one-
dimensional quantum system consisting of spin-1/2 particles.
Such a quantum many-body Hamiltonian can be written, with
a certain degree of genericity, as

H =
∑

〈i j〉

(
JxSx

i Sx
j + JySy

i Sy
j + �Sz

i Sz
j

) +
∑

i

hSz
i , (7)

where Jx, Jy are the coupling constants along x and y direc-
tions, respectively, � is the “anisotropy” along the z direction,
h is the strength of the transverse field, Sk = σk are the Pauli
spin matrices, and 〈i j〉 denotes the nearest-neighbor sites.
Two important models that can be derived from H are the
transverse Ising (in the limit Jy = � = 0) and the anisotropic
XYZ model (Jx(y) = J ± γ and h = 0) [38–40]. Note that, in
the limit γ = 0, the XYZ model reduces to the anisotropic
XXZ model, which has gained some attention in studies on
strongly correlated systems [41]. We note that, in recent years,
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cooperative phenomena in quantum spin chains have been
widely explored in the context of quantum information theory,
especially in terms of entanglement [2–5] and other quantum
correlations [42].

We next look at the iMPS representation for more complex
quantum spin systems. For instance, we consider a quantum
many-body chain with higher-spin particles, viz. the spin-1
Ising model with a transverse field akin to parameters arising
from single-ion anisotropy generated by crystal fields [43].
These systems can also be considered to be a derivative of
the Blume-Emery-Griffiths model [44], where the quadratic
terms have been neglected. Such models have lately been
used to study phase transitions in multicomponent fluids and
semiconductor systems [45]. The Hamiltonian of the spin-1
model is thus given by

H̄ = Jz

∑

〈i j〉
Sz

i Sz
j + K

(
Sx

i

)2
, (8)

where S i’s are generalizations of the Pauli matrices for a spin-
1 system, Jz denotes the coupling along the z direction, and
K denotes the strength of the single-ion anisotropy parameter
due to the crystal field in the transverse direction. The model
undergoes a quantum phase transition at Jz

K = 2 [43].
In implementing the iMPS form and the iTEBD algorithm

for obtaining the ground state of these Hamiltonians, we fix
the bond dimension at D = 10 and choose the initial Trotter
step to be τ = 10−2, which is then gradually changed to 10−6

to improve accuracy. The convergence of the ground-state
energy is determined with an accuracy 10−6. Once the ground
state iMPS is obtained, one can access the Schmidt coeffi-
cients across all possible bipartitions of the quantum state by
contracting the tensors efficiently, as shown in Eq. (6). The
behavior of genuine multisite entanglement in ground-state
phases of the Hamiltonian, in the thermodynamic limit, can
then be estimated from the generalized geometric measure.

V. GENUINE MULTISITE ENTANGLEMENT IN
THE THERMODYNAMIC LIMIT

For the transverse Ising model, we consider a region away
from critical point (h/Jx = 1), viz. 1.1 � h/Jx � 2. The vari-
ation of GGM (G) with respect to the transverse field strength
h/Jx is depicted in Fig. 1. The thermodynamic limit of the
genuine multisite entanglement, in the infinite spin lattice, is
compared with the corresponding values obtained for finite-
sized lattices (N = 8, 10, and 12) using exact diagonalization.
In order to compute the value of GGM (G) using an exact
diagonalization method, in all the cases (N = 8, 10, 12), we
perform the optimization in Eq. (2) by taking into account all
possible bipartitions [whose number is

∑6
i=1

(N
i

)
for N = 12].

We note that, for the transverse field Ising model, maximum
value of Schmidt coefficient always comes from the single-
site reduced density matrices. We use this fact to compute the
value of GGM (G) in the thermodynamic limit using iMPS.
Therefore, in our case, Eq. (4) will serve the purpose. For
this model, in the region parametrized by 0 � h/Jx � 0.8, the
energy gap closes and as discussed earlier, it is not possible
to compute the multiparty entanglement using the measure
GGM for nonunique ground states. The figure shows a distinct

1.2 1.4 1.6 1.8 20

0.05

0.1

0.15

0.2
N = 8
N = 10
N = 12
iMPS

G

h/Jx

FIG. 1. Variation of GGM (G) with field strength (h) for the
transverse Ising model, for different one-dimensional lattice sizes,
viz. N = 8 (green diamonds), 10 (blue squares), 12 (black trian-
gles), and infinite N (red circles). Both axes represent dimensionless
quantities.

scaling of G at field strengths closer to the critical point,
h/Jx = 1. In this region, the difference between the GGM
(G) values, obtained using exact diagonalization method (N =
12) and iMPS, turns out to be at most ≈10−3. Away from
it, G quickly becomes scale invariant, and approaches its
thermodynamic limit even for low N . Here, the difference
between the GGM (G) values computed for N = 12 and iMPS
becomes �10−4.

Let us now consider the XYZ Hamiltonian in absence of
magnetic field, i.e., Jx, Jy,� �= 0, h = 0. The behavior of G
with �/J , for the anisotropic XYZ Hamiltonian with γ =
0.5, is depicted in Fig. 2. Unlike the Ising case, from the
exact diagonalization results for this model, we note that the
maximum value of Schmidt coefficient always comes from
the consecutive two-site reduced density matrices. We again
use this result to compute the value of GGM in the thermo-
dynamic limit using iMPS. Therefore, in this case, we use
Eq. (6) for computation of the maximum Schmidt coefficients.
As in the Ising case, here also degeneracy hinders us to find a

0.2 0.4 0.6 0.8 1

0.32

0.34

0.36

0.38

0.4

0.42

0 0.1 0.2 0.3 0.4 0.50.28

0.3

0.32

0.34

N = 8
N = 10
N = 12
iMPS

G

Δ/J

FIG. 2. Variation of GGM (G) with �/J for the XYZ model
with γ = 0.5, for different one-dimensional lattice sizes. Both axes
represent dimensionless quantities. In the inset we plot the same
quantities for γ = 0 case (XXZ model).
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FIG. 3. Variation of GGM (G) with K
Jz

for the spin-1 model
described in Eq. (8), for different one-dimensional lattice sizes, viz.
N = 4 (green diamonds), 6 (blue squares), 8 (black triangles), and
infinite N (red circles). Both axes represent dimensionless quantities.
In the inset, we show the GGM in the region close to the transition
point ( K

Jz
≈ 2).

unique ground state for the region −1 � �/J � 0. Therefore,
for this model, we consider the following region between two
critical points, for both finite and infinite lattices, parametrized
by 0.2 � �/J � 1.0. Figure 2 shows that in contrast to the
transverse Ising model, no scale invariance is achieved for G
even away from the critical points, and it is not possible to
achieve the thermodynamic limit by exactly diagonalizing a
spin model with small system size. In this case, the difference
between the GGM values computed for N = 12 and iMPS at
small values of �/J becomes �10−3, which further increases
to �10−2 as �/J tends to 1. For the XXZ model (γ = 0)
(see the inset of Fig. 2), where the critical points are known
to exist in the vicinity of �/J = ±1, a similar absence of
scale invariance is observed. Here the difference between the
GGM values computed for N = 12 and iMPS never decreases
below 10−3. Thus iMPS plays a significant role in computing
genuine multipartite entanglement in these systems.

We now look at the genuine multipartite entanglement
properties of the more complex higher-spin model, viz. the
spin-1 Ising model with single-ion anisotropy as expressed
in Eq. (8). We note that, in contrast to the spin-1/2 models,
behavior of multipartite entanglement in this spin-1 model
is unexplored even for finite spin systems. Here, we look
at the behavior of GGM in the thermodynamic limit of the
system using the iMPS formalism. The behavior of genuine
multiparty entanglement is plotted in Fig. 3. We again note
that, like the transverse Ising model, the maximum Schmidt
coefficient in this case also comes from the single-site re-
duced density matrices. Moreover, as in the previous cases,
we observe that GGM starts decreasing monotonously with
the increase of the strength of the single-ion anisotropy or
the crystal field. However, for the spin-1 model, the scaling
pattern of GGM in the thermodynamic limit shows several
interesting features. For instance, before K < 2, in most of
the regions, GGM increases with system size. On the other
hand, for K > 2, the trend is reversed, i.e., the value of GGM
decreases with the increase of N . However, the variation of

GGM with the anisotropy parameter clearly detects the critical
points in the system. We observe that, near the value K ≈
2, GGM becomes almost scale invariant, which is a known
value at which quantum phase transition occurs in the system.
Therefore, our study shows that the scaling of GGM can
identify the vital characteristics of the critical phenomena in
the spin-1 model.

VI. DISCUSSION

In this work, we have shown how the tensor-network
approach provides a natural structure to study genuine mul-
tiparty entanglement, quantified by generalized geometric
measure, in many-body quantum systems. In particular, the
method involved matrix product states to efficiently obtain
the reduced density matrices of infinite quantum spin lattices,
which upon making use of symmetries such as translational
invariance of the matrices allowed us to accurately estimate
the generalized geometric measure of systems consisting of
both spin-1/2 and higher spins. The method thus provided us a
viable theoretical framework to look at interesting cooperative
and critical phenomena by investigating multiparticle physical
quantities in the thermodynamic limit of quantum many-body
systems.

Importantly, this approach to compute generalized geo-
metric measure using tensor networks is in principle also
applicable for higher-dimensional lattices, provided the rele-
vant tensors under the iMPS formalism are accessible using
available numerical techniques. Finally, we also note that
the formalism presented in the work may provide useful
directions in investigating genuine multipartite entanglement
properties in several quantum systems, including condensed-
matter, photonic, and other topological systems, where tensor-
network methods have turned out to be successful in studying
physical properties.
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APPENDIX: PROOF OF GGM AS A MEASURE OF
GENUINE MULTIPARTY ENTANGLEMENT

Here, we present a very concise proof for the GGM to
be a measure of genuine multiparty entanglement, starting
from the concept of k separability and the definition of the
geometric measures of multiparty entanglement in Eq. (1).
An important point to note is that G2 is the minimum dis-
tance from the set of all k-separable quantum states, Sk∀ k.
However, in principle, as measurements over general en-
tangled bases yield higher or equal values as compared to
those over product bases, the maximum fidelity in Eq. (1)
can always be considered from the set Sk with lowest k, as
they contain more clustered partitions. Hence, for G2, the set
S2 of biseparable states contains a closest separable state.
Let {λi

A:B}d
i=1 and {|φi〉A, |φ̃i〉B}d

i=1 be the set of real, non-
negative Schmidt coefficients and corresponding orthogonal
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vectors, respectively, across the bipartition A : B, where d =
max{dA, dB}. A biseparable state, in general, can be written as
|χ〉 = |η〉A|η̃〉B. The fidelity is then given by

|〈χ |�〉N | =
∣∣∣∣∣
∑

i

λi
A:B〈η|φi〉A〈η̃|φi〉B

∣∣∣∣∣

=
∣∣∣∣∣
∑

i

λi
A:B f i

A gi
B

∣∣∣∣∣. (A1)

A value of fidelity, possibly nonmaximal, corresponds to
|η〉A = |φk〉A and |η̃〉B = |φ̃k〉B, such that f k

A = gk
B = 1,

where k gives λA:B = λk
A:B = max{λi

A:B}. Thus we have

|〈χ |�〉N | � λA:B. However,

|〈χ |�〉N | �
∑

i

λi
A:B

∣∣ f i
A
∣∣∣∣gi

B
∣∣ � λA:B

∑

i

∣∣ f i
A
∣∣∣∣gi

B
∣∣ � λA:B,

where we have used the triangle law for absolute values and
the relations

∑
i λA:B � ∑

i λ
i
A:B and

∑
i | f i

A||gi
B| � 1. This

gives us the desired relation |〈χ |�〉N | = λA:B = max{λi
A:B}.

For all biseparable states, |χ〉, λA:B = 1, and as expected
G(|�〉N ) = 0. From Eq. (2), we see that the maximum among
the real and positive Schmidt coefficient squared, across all
possible bipartitions, subtracted from unity gives the GGM,
which measures the genuine multipartite entanglement in the
system.
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