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Microscopically conserving reduced models of many-body systems have a long, highly successful history.
Established perturbative theories of this type are the random-phase approximation for Coulomb fluids and the
particle-particle ladder model for nuclear matter. There are also more physically comprehensive diagrammatic
approximations, such as the induced-interaction and parquet models. Notwithstanding their explanatory power,
some theories have lacked an explicit Hamiltonian from which all significant system properties, static and
dynamic, emerge canonically. This absence can complicate evaluation of the conserving sum rules, essential
consistency checks on the validity of any theory. In a series of papers Kraichnan introduced a stochastic
embedding procedure to generate explicit Hamiltonians for common approximations for the full many-body
problem. Existence of a Hamiltonian greatly eases the task of securing fundamental identities in such studies.
I revisit Kraichnan’s method to apply it to correlation theories for which such a canonical framework has been
missing. I exhibit Hamiltonians for more elaborate correlated models incorporating both long-range screening
and short-range scattering phenomena. These are relevant to the study of strongly interacting electrons and
condensed quantum systems broadly.
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I. INTRODUCTION

In the last century, within a remarkably brief span, the
study of strongly correlated quantum systems witnessed a
series of crucial innovations. The earliest example, for the
electron fluid, is the random-phase approximation (RPA) of
Pines and Bohm (see Refs. [1,2]), still a paradigm of many-
body analysis today. Within the perturbative, or diagram-
matic, philosophy the RPA was rapidly followed by formal
developments from Martin and Schwinger [3], influencing
the Green-function approach of Kadanoff and Baym (see
Refs. [4,5]). Russian studies contributed in a major way [6],
the Keldysh formalism [7,8] being the most familiar and in
widespread use. Of the plentiful and thorough reference works
surveying this vast area, we cite four standard texts by Pines
and Nozières [2], Nozières [9], Rickayzen [10], and Mahan
[11] and a more recent treatment by Coleman [12]. These
provide a valuable cross section of different perspectives and
analytic techniques.

The high-order perturbative models developed in this pe-
riod, with their more specialized variants (as for supercon-
ductivity and superfluidity), offered tractable approximations
beyond the long-ranged RPA to cover finer-scale, short-range
correlations in condensed systems from the electron gas, to
nuclear matter, to the helium fluids. The theories here in
discussion are almost always cast in the language of Green
functions and their dynamical equations.

Despite their technical ingenuity and effectiveness, many
diagrammatic theories have had to be constructed bottom-up.
A central conceptual tool has been missing by way of an
explicit Hamiltonian underpinning. At times this has caused
confusion around the interpretation of their dynamical sum
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rules (essential tests of the conservation laws), not to mention
a level of ad hoc patchwork to try to fix these.

Amid these historical developments a canonical, top-down
strategy for building model Hamiltonians was devised by
Kraichnan [13,14], who turned his construction to the dom-
inant correlation theories of the time. Kraichnan’s stochastic
approach to microscopic many-body dynamics revolutionized
the different field of turbulence theory [15] although, while
freely acknowledged to be of fundamental importance to cor-
related quantum systems [5], his innovation and its potential
do not appear to have gained wide currency in the community.
To this writer’s mind it is an opportunity to be fully grasped;
his sense is informed by an early and time-consuming effort
to prove a higher frequency-moment sum rule for a correlated
model of the electron gas [16]. It should really be enough to
demonstrate the result once and for all and rely on the univer-
sality of the procedure. Knowing the Hamiltonian particular
to an approximation would doubtlessly help.

Nondiagrammatic analyses have developed side by side
with diagram-based ones and, as with the latter, they natu-
rally start from a fundamental originating Hamiltonian. Two
of the better-known nonperturbative approaches are density-
functional theory [17,18] and the coupled-cluster formalism
[19,20], but there, equally, a reduced Hamiltonian tailored to
some model may not emerge on the path to a tractable ap-
proximation. Depending on which questions call for answers,
as with diagrammatic theories, the lack of such a tool may
have its disadvantages.

While the current paper is diagrammatically oriented, the
model-Hamiltonian philosophy it adopts is wider than any
specialized approach, with possible implications for nondi-
agrammatic approaches also. As an illustration one recalls
the valuable insight of Jackson, Lande, and Smith [21] into
the correspondence between a specific, nonperturbative varia-
tional model and a self-consistent diagrammatic one. In such
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a context the possibility of constructing a model Hamiltonian
for one approximate description would immediately reflect
upon the other.

In this paper I return to Kraichnan’s methodology to show
how it can be adapted readily to many-body formulations
beyond the approximations analyzed by him, and for which an
explicit Hamiltonian has not been available. The next section
reviews the general method for building model Hamiltoni-
ans. It should be stressed that, while the focus will be on
the uniform electron gas, Kraichnan designed the method to
apply equally well to any system, finite or extended, with
pair interactions. To establish familiarity with the approach,
Sec. III revisits the classic approximations originally analyzed
by him: the random-phase model, Hartree-Fock (HF), the ring
approximation, and the particle-particle (Brueckner) ladder
summation. Section IV introduces more complex operations
for Hamiltonian models, both to single out RPA-related effects
and long-range screening and then to unify them with strong
ladder correlations dominant at short range. One such theory
was applied by Green et al. [22], set up in part to understand
angle-resolved inelastic x-ray scattering off metallic films
[23]. Section V discusses two comprehensive theories of cor-
relations: the maximally coupled parquet model [21,24–27]
and a simplification of it, the induced-interaction approxima-
tion of Babu and Brown (see Refs. [28,29]) suited to such
systems as nuclear matter and liquid helium, and extended
later to low-density electron fluids [30]. The summary is given
in Sec. VI.

Two Appendices follow the main body of the paper.
Appendix A reviews the third frequency-moment sum rule
in the electron gas as an example of how sum-rule validity,
albeit generic to stochastic Hamiltonian models, also requires
discretion when extracting the physical content of a reduced
correlation theory. Appendix B looks briefly towards possi-
ble implications of the stochastic-Hamiltonian approach for
nonperturbative analyses of correlated systems. As recalled
above, these (in particular density-functional theory [17,18]
and coupled-cluster analysis [19,20]) coexist with perturba-
tive methods and likewise derive from an exact originating
Hamiltonian. The potential for establishing explicit model
structures for these alternative and powerful formulations of
the quantum many-body problem could repay a thorough
study.

II. STOCHASTIC HAMILTONIAN MODELS

A. Basic formulation

We begin with the standard Hamiltonian for a fermion
system, comprising a single-particle part and an interaction
part interacting via a pairwise potential:

H =
∑

k

εka∗
k ak + Hi,

Hi = 1

2

∑
k1k2k3k4

′〈k1k2|V |k3k4〉a∗
k1

a∗
k2

ak3 ak4 ,

〈k1k2|V |k3k4〉 ≡ δs1s4δs2s3V (k1 − k4). (1)

Notation is as follows. Index k denotes state wave vector k
and spin s so a∗

k is the creation operator in state k and ak is
the annihilation operator; both satisfy the usual anticommu-

tation relations. Here, the potential is spin independent. The
summation

∑′
k1k2k3k4

comes with the momentum conservation
restriction k1 + k2 = k3 + k4. In a uniform Coulomb system
with neutralizing background, the terms in V (0) are excluded.

The matrix element of the potential satisfies hermiticity
and pairwise exchange symmetry:

〈k4k3|V |k2k1〉 = 〈k1k2|V |k3k4〉∗,
〈k2k1|V |k4k3〉 = 〈k1k2|V |k3k4〉. (2)

The Hamiltonian presented is assumed exact for the system
of interest. The first step in the Kraichnan construction is to
posit a large number N of Hamiltonians identical to that of
Eq. (1) but the fermion states of which are distinguishable. In
other words, an additional N-fold spinlike label is assigned to
each system. We form the total Hamiltonian for the assembly:

HN =
N∑

n=1

∑
k

εka∗(n)
k a(n)

k

+ 1

2

N∑
n=1

∑
k1k2k3k4

′ 〈k1k2|V |k3k4〉 a∗(n)
k1

a∗(n)
k2

a(n)
k3

a(n)
k4

; (3)

the additional superscript n distinguishes the populations.
Next we map the assembly in Eq. (3) to a “collective”

description. This is done by canonically transforming the
operators into a complementary set over the large, but still
finite, space N . For integer ν � N introduce

a∗[ν]
k ≡ N−1/2

N∑
n=1

e2π iνn/N a∗(n)
k and

a[ν]
k ≡ N−1/2

N∑
n=1

e−2π iνn/N a(n)
k (4)

with the usual Fourier-series convention that sums of collec-
tive indices ν are defined modulo N . The collective operators
of Eq. (4) satisfy the same anticommutation relations as the
original operators. The total Hamiltonian becomes

HN =
N∑

ν=1

∑
k

εka∗[ν]
k a[ν]

k + 1

2N

∑
k1k2k3k4

′
N∑

ν1ν2ν3ν4

δν1+ν2,ν3+ν4

×〈k1k2|V |k3k4〉 a∗[ν1]
k1

a∗[ν2]
k2

a[ν3]
k3

a[ν4]
k4

. (5)

B. Stochastic ansatz

The ground is ready for Kraichnan’s procedure. The ob-
ject described by Eq. (5) remains in every respect the exact
Hamiltonian, merely replicated N times in distinguishable but
otherwise identical Hilbert spaces. Within its new collective
representation, however, it is possible to modify the interac-
tion by introducing couplings specifically tailored to enhance
certain classes of correlated expectation values, suppressing
the remainder. In the process the modified collective Hamilto-
nian retains its functional properties.

All of the Hilbert-space machinery and the consequences
from the fundamental equation of motion continues to ap-
ply to the collective Hamiltonian. After ensemble averaging,
those identities particularly determined by analyticity of the
expectation values will survive averaging, since their causal
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structure is preserved. More care is needed with any identities
that depend explicitly on completeness in Hilbert space, which
may not survive averaging. This is discussed in Appendix A.

Following Kraichnan we define restriction variables
ϕν1ν2|ν3ν4 to adjoin to the interaction potential. The ensemble
interaction Hamiltonian becomes

Hi;N = 1

2N

∑
k1k2k3k4

′
N∑

ν1ν2ν3ν4

δν1+ν2,ν3+ν4ϕν1ν2|ν3ν4

×〈k1k2|V |k3k4〉a∗[ν1]
k1

a∗[ν2]
k2

a[ν3]
k3

a[ν4]
k4

. (6)

To maintain the hermiticity and label symmetry of V itself,
the parameter ϕν1ν2|ν3ν4 must satisfy its corresponding form
of Eq. (2), noting that the collective creation and annihilation
operators in Eq. (6) bind together the collective labels ν j and
system basis-state labels k j for j = 1, 2, 3, 4.

The properties of V shared by ϕ are crucial to the entire
exposition. They establish the microscopic equivalence of
the Kraichnan procedure to the Baym-Kadanoff rules [4,5]
for constructing conserving, or “�-derivable,” models of the
interacting free-energy functional. Given these constraints,
the introduced variable will couple the formerly independent
Hamiltonian components in any way one wishes without
upsetting the analytic structure of the N-fold system. In par-
ticular, they can be assigned randomly determined values.

When the choice of ϕ is not random, the consequences are
immediately reflected in the N-fold Hamiltonian. When the
choice is random the Hamiltonian, altered in this way, is to be
embedded within a still larger ensemble. Each member of this
supercollection has an identical form in terms of the restriction
parameters but each is characterized by its own specific set
of stochastic values. Depending on the restrictions’ internal
structure, certain products of them will cancel within the
diagrammatic expansion of the ground-state energy. These
terms are the subset of correlations designed to survive the
final ensemble averaging over the assigned value of ϕ. All
other terms will tend to interfere destructively, to be quenched
in the ensemble average.

Thus Kraichnan’s calculational philosophy is exactly that
of Bohm and Pines’s RPA, albeit far more flexible. In prin-
ciple, such a construct is able to generate models with a
vast range of selected perturbation terms—to all orders when
required—naturally dictated by the physical context to be
captured. The selection is expressed through the particular
restrictions imposed via ϕ.

Every such implementation is a truncation to the complete
many-body problem, although the truncation can be very
sophisticated. Throughout the reduction, each model still pos-
sesses a well-defined Hamiltonian ensemble respecting—in
its own reduced fashion—all of the relevant analytic identities,
and their inter-relationships, inherent in the exact description.
Quantitatively, of course, the changes might be drastic while,
qualitatively, the generic behavior and development of the
system under its Hamiltonian will always apply. The power
of the approach consists precisely in this.

Before reviewing classic examples of reduced Hamiltoni-
ans (including from the original Kraichnan study) and going
on to different and more comprehensive correlation models,
we recapitulate the procedural logic.

(1) Conceptualize a sufficiently large number N of dy-
namically identical, but distinguishable, copies of an exact
Hamiltonian. Each retains the same interaction potential but
all copies are mutually uncoupled. This enlarged Hamiltonian
exhibits physics completely identical to any one of the embed-
ded copies of the exact system.

(2) Fourier transform the state operators of each copy
to a new set of operators for a coherent pseudocollective
superposition of the N systems. The transformation generates
a new set of indices, formally analogous to the wave-vector
states in reciprocal space.

(3) For the pseudocollective description, introduce a set of
restriction factors labeled by the new collective indices. Ad-
join each factor to the basic (unaffected) interaction potential.

(4) The functional form of the factor must satisfy the same
label symmetries as does the potential with respect to its
state labels. This is equivalent to the Baym-Kadanoff rules
[4,5] and preserves the modified Hamiltonian as a Hermitian
operator, with all the canonical identities also preserved.

(5) The N copies are now interlinked via the introduced
factors, and these couplings can be assigned values within any
desired protocol; in particular, they may be defined stochasti-
cally.

(6) Finally, ensemble average the system over the distribu-
tion governing the coupling factors. Since each parametrized
N-fold Hamiltonian retains its fundamental properties, ana-
lytic relations among expectation values will be preserved
functionally—but not usually numerically—after averaging.

The central element is to have made sure that all such
model Hamiltonians retain the analytic characteristics of the
original physical Hamiltonian. To establish quantitative re-
sults from the model, one simply follows the same theoretical
steps applicable to the exact system. This is of enormous
help in confirming microscopic conservation for any model,
notably through the dynamical sum rules that condition its
response and fluctuation structure [2].

Whether or not the resulting numbers are adequate to the
physical situation one wants to analyze depends strictly on
how the ensemble parameters ϕ are chosen, just as in the more
directly intuitive and synthetic �-derivable approach [4,5].
Nevertheless, certain basic inner relationships such as sum
rules among derived quantities remain valid throughout.

III. INSTANCES OF MODEL HAMILTONIANS

We preface the later extension of Kraichnan’s construction
to other many-particle model systems by reviewing the classic
examples. We first introduce the RPA model before revisiting
the classic formulations first analyzed by Kraichnan.

A. Random-phase approximation

The Bohm-Pines RPA can be obtained by defining its
variable as

ϕRPA
ν1ν2|ν3ν4

= δν1ν4δν2ν3 . (7)

This nonrandom assignment fulfils the symmetries of Eq. (2).
Its effect is illustrated in Fig. 1 via its contributions to the
ground-state correlation-energy functional. In a many-body
system, only “linked” diagrams, namely, those consisting of
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FIG. 1. Structure of the random-phase approximation, or RPA.
Continuous lines, incoming or outgoing particle; broken lines, in-
teraction. The restriction parameter ϕRPA of Eq. (7) generates the
coupling shown in (a). Successive interaction terms in the Hamilto-
nian cannot interlink through this parameter. Only the single linked
diagram shown in (b) survives to define the ground-state correlation
energy. Given the Hamiltonian, the Dyson equation, symbolized
in (c), can be set up directly for the RPA single-particle Green
function G[V ϕ] starting from the noninteracting Green function
G(0). Although the RPA correlation energy has the simplest possible
structure of any model, the high level of self-consistency is evident
through the structure of the Dyson equation (c).

a single diagrammatic unit, represent valid contributions to
the correlation energy [5]. The object that results from the
prescription in Eq. (7) is just the direct Hartree (or mean-field)
correlation energy, Fig. 1(b). All other would-be contributions
to higher order in V ϕ that do not vanish identically turn out to
be unlinked in the summation over indices, and therefore do
not enter into the canonical correlation-energy functional.

When the Hamiltonian is augmented with an external
perturbation, the associated Heisenberg equation of motion
[11] leads systematically to both one-body and two-body
dynamical Green functions, or propagators. These contain the
necessary information for computing those response func-
tions that can be compared with experimental measurements.
Figure 1(c) shows the prototypical Dyson integral equation
[11] for the one-body propagator within the RPA entering
into the energy functional of Fig. 1(b). Notwithstanding the
structural simplicity of the random-phase approximation, this
reveals the high degree of internal nesting that lies implicitly
concealed within it, as with any nontrivial theory of many-
body correlations.

B. Hartree-Fock

The next simplest model is HF, which introduces the
primary exchange corrections to the RPA. In place of Kraich-
nan’s own choice for selecting the Hartree-Fock Hamiltonian,
we adapt the same ansatz as for RPA after antisymmetrizing
the original pair interaction following Nozières [9]. This is
done by exchanging one pair of incoming or outgoing indices,
say 3 ↔ 4 for definiteness, and using anticommutation to

FIG. 2. Correlation diagrams associated with the model Hamil-
tonian carrying the Kraichnan RPA factor ϕRPA

ν1ν2 |ν1ν2
[see Eq. (7)] now

with exchange explicitly incorporated in the interaction potential.
The allowed topological possibilities for the two-body vertex are
shown in (a). The only linked diagrams to survive the trace over ϕRPA

are those of (b), exhibiting the standard Hartree and Fock exchange-
correlation energy terms. With the potential antisymmetrized, each of
the vertices of (a) will contribute half of the total direct and exchange
terms of (b). (Combinatorial weightings for the correlation diagrams
will not be shown; they are identical to the standard derivation of the
ground-state functional [4].)

replace 〈k1k2|V |k3k4〉 with

〈k1k2|V |k3k4〉 ≡ 1
2 (〈k1k2|V |k3k4〉 − 〈k1k2|V |k4k3〉) (8)

in the full Hamiltonian. It makes no change to the physics, but
means that the RPA ansatz Eq. (7) also covers the exchange
vertex as in Fig. 2(a). The outcome is the Hartree correlation
energy of Fig. 1(b) once again, now accompanied by its Fock
exchange counterpart. In a Coulomb system, the long-ranged
effects remain subsumed under the Hartree structure. At
shorter range, comparable to the system’s Fermi wavelength,
the Fock term corrects for Pauli repulsion, which is absent
from RPA causing it to overestimate the Coulomb energy.

C. Shielded interaction

The first truly stochastic ansatz introduced by Kraichnan
regenerates the shielded-interaction, or “ring,” approximation
[4] closely related to but richer than the pure RPA and HF. In
a system with long-ranged potential, it provides the leading
short-range correlation corrections to the screening properties
of the system. For the ring model, the restricting factors are
defined in terms of a uniform random distribution of phase
angles so that

ϕ(r)
ν1ν2ν3ν4

≡ exp
[
π i

(
ζν1ν4 + ζν2ν3

)]
, ζνν ′ ∈ [−1, 1];

ζν ′ν = −ζνν ′ . (9)

The phase reverses when the roles of an outgoing and incom-
ing pair of lines reverse (particle ↔ hole). Kraichnan’s choice
of a phase ansatz always follows a possible action of the
local particle operators (creation and annihilation) inside the
diagrammatic structures one wants to highlight. Here, ζνν ≡ 0
for a self-closing line.
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FIG. 3. Allowed vertex contributions for the RPA stochastic
Hamiltonian model [see Eq. (9)]. (a). Lowest-order (Hartree) term.
(b). All other surviving terms can only adopt a repeated chain-link
topology. The outer open lines of all terms may link in two different
ways, leading either to open chains or simple rings.

Consider Fig. 3(b) to second order in the interaction. Clos-
ing the intermediate lines enforces equality of the intermediate
pairs ν5, ν

′
5 and ν ′

6, ν6 to form an elementary particle-hole po-
larization “bubble.” The concatenation ϕν1ν5|ν6ν4ϕν6ν2|ν3ν5 then
leads to the net phase

(ζ14 + ζ56) + (ζ65 + ζ23) = ζ14 + ζ23. (10)

It is clear that the cancellation observed in Eq. (10) persists
to all orders in the ground-state diagram expansion. This
secures the survival of the chainlike terms. For any other
topology the phases will not cancel and will thus be sup-
pressed in the trace over the stochastic ensemble.

An illustrative example of correlated terms surviving the
ensemble average for the ring model appears in Fig. 4 where
we display its associated density-density response, or polar-
ization, function [2]. In the momentum-frequency domain the
characteristically screened interaction, as defined in Fig. 4(c),
pairs the lowest-order polarization χ (q, ω) with the bare
potential V (q). The summation runs to all orders, but only for
those components allowed by the parameter Eqs. (9) and (10).

D. Particle-particle ladder

The ring model builds upon the RPA/HF by incorporating
the next level of screening corrections at finite range, but does
not do well for shorter-ranged interactions with a hard core,
such as nucleons or neutral atomic fluids where the extreme
degree of local repulsion between particles invalidates the
finite-order Born approximation [28]. Accounting for hard-
core effects requires the ladder approximation of Brueckner
and Gammel [32], designed to accommodate the extreme
distortion in the pair-correlation function from the interaction
at close range. The aim is to incorporate the full Born series
for two-particle scattering in the interacting medium, using
the Bethe-Salpeter equation [9].

Following Kraichnan, the ladder-model Hamiltonian is
defined by the restriction parameter

ϕ
(pp)
ν1ν2|ν3ν4

≡ exp
[
π i

(
ξν1ν2 − ξν3ν4

)]
, ξνν ′ ∈ [−1, 1];

ξν ′ν = ξνν ′ . (11)

FIG. 4. Topology of the correlation corrections to the density-
density response function in the stochastic ring model. Crosses
denote coupling to an external perturbation of the density. Screened
Hartree-Fock contributions appear in (a) while (b) shows a new pair
of correlated contributions necessarily appearing in the response to
satisfy microscopic conservation at the two-body level [4,31]; note
that they are functionally distinguished by the mutual orientation of
their attached loops: in the left-hand term the screened potentials are
connected by two particle lines while in the right-hand term they
are connected by a particle and a hole. The intermediate propagators
for these processes act differently. In (c) the equation for the self-
consistent screened interaction of (a) and (b) is defined. The object
χ (q, ω) is the leading term in the total polarization response.

While ϕ(r) for the ring model favors particle-hole pair
propagation via polarization bubbles, ϕ(pp) for the ladder ap-
proximation privileges two-particle propagation mediated not
by the bare interaction but by its complete pairwise scattering
matrix. This is shown in Fig. 5. When the restriction factors
are concatenated as with Eq. (10) of the ring model, this time
the pattern for the sum of phases is(

ξν1ν2 − ξν ′
3ν

′
4

) + (
ξν ′

1ν
′
2
− ξν3ν4

) = ξν1ν2 − ξν3ν4 (12)

since the algebra of creation-annihilation pairing now forces
ν ′

1 = ν ′
4 and ν ′

2 = ν ′
3. From Eq. (12) the same cancellation

obtains under exchange ν ′
1 = ν ′

3 and ν ′
2 = ν ′

4, leading to a
contribution analogous to the Fock term in the ground-state
correlation energy. Figure 6 illustrates the polarization correc-
tions expected within the ladder approximation.

FIG. 5. Repeated sequences, or ladders, of particle-particle dy-
namical correlations with the stochastic restriction parameter of
Eq. (11). The elementary scattering term is in (a) while in (b) all
stochastic phases of inner propagator pairs cancel in all higher orders.
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FIG. 6. Irreducible corrections to the polarization response in the
particle-particle ladder approximation. These are obtained, as for the
ring model, by a standard variational procedure starting from the
many-body ground-state functional. Diagrams in (a) carry a single
particle-particle ladder-scattering vertex. Note that the exchange
term on the right of (a) is already accounted for within the term on
the left and is presented merely to bring out the internal topology
of this contribution. Diagrams in (b) display the two possibilities
(a consequence of conservation [4]) by which the particle-particle
amplitude also mediates intermediate particle-hole processes. The
Bethe-Salpeter equation for the scattering vertex, or particle-particle
T matrix T pp, is schematized in (c). The single-particle propagator
is similarly self-consistently defined by T pp through the Dyson
equation for the model.

E. Particle-hole ladder

The particle-hole ladder model extends the exchange struc-
ture of Hartree-Fock in the way that the ring model does
for the direct random-phase approximation. This particular
scattering channel will be needed in Sec. V. With a slight
change to the particle-particle mechanism, we generate its
particle-hole analog. Consider

ϕ
(ph)
ν1ν2|ν3ν4

≡ exp
[
π i

(
ϑν1ν3 + ϑν2ν4

)]
, ϑνν ′ ∈ [−1, 1];

ϑν ′ν = −ϑνν ′ . (13)

Particle-hole pairings in the elementary interaction vertex are
coupled as if the hole were a particle; reversing the roles
in the pair reverses their phase, as one would expect. The
leading corrections to the polarization for the particle-hole
ladder model, analogous to those of Fig. 6 for the particle-
particle ladder, are in Fig. 7 including the terms of Fig. 7(b) of
second order in the total scattering amplitude and required by
conservation.

This ends the review of the Hamiltonian formulations first
presented by Kraichnan for standard correlation models. We
have added the random-phase approximation in its own right
(otherwise subsumed by Kraichnan under his Hartree-Fock
prescription) as well as the particle-hole ladder. In the fol-
lowing section we explore more comprehensive Hamiltonian
models.

IV. EXTENSIONS OF KRAICHNAN’S METHOD

A. Systematic removal of correlations: Screened Hamiltonian

We start by posing the problem of how an interacting
Hamiltonian may change when certain components are re-
moved selectively, as one would do for closer analysis of
the remnant correlations. As an example we isolate the RPA
Hamiltonian from the exact description. There is no loss of
physical content in recasting Eq. (5) as

H = HRPA + 1

2N

∑
1234

δ1+2,3+4

(
1 − ϕRPA

ν1ν2|ν3ν4

) 〈k1k2|V |k3k4〉a∗
1

a∗
2

a3 a4 where

HRPA =
∑



εka∗
a + 1

2N

∑
1234

′ ϕRPA
ν1ν2|ν3ν4

〈k1k2|V |k3k4〉a∗
1

a∗
2

a3 a4 . (14)

To streamline the notation from now on, in the second expression of Eq. (14) we have grouped the joint variables {k, ν} in
a[ν]

k into one symbol  so a[ν]
k ≡ a. Summations over  encompass summations over both k and ν; Kronecker deltas are now

products of those in ks and νs and, again,
∑′

1234
is under the constraint 1 + 2 = 3 + 4 standing in for k1 + k2 = k3 + k4

and ν1 + ν2 = ν3 + ν4.
So far nothing has changed; nor is there loss of any formal attribute on introducing the reduced RPA-free version

Hsc[ψ] ≡
∑



εka∗
a + 1

2N

∑
1234

′ (
1 − ϕRPA

ν1ν2|ν3ν4

)
ψν1ν2|ν3ν4 〈k1k2|V |k3k4〉a∗

1
a∗

2
a3 a4 (15)

as long as the restriction parameter ψ has the symmetries
required by Eq. (2).

The object in Eq. (15) represents all the correlations of
physical interest except for the collective plasmon mode [2].

In the language of Bohm and Pines this is the Hamiltonian
for the screened assembly: the part responsible for the near-
field dynamics experienced by a test particle immersed in the
system.
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FIG. 7. Irreducible polarization corrections for the particle-hole
ladder interaction associated with Eq. (13). Diagrams in (a) carry
a single ladder-scattering vertex. Diagrams in (b) display the two
additional topological possibilities in which the vertex also medi-
ates intermediate particle-hole propagation within the polarization
function. The Bethe-Salpeter equation for the particle-hole ladder is
essentially that for particle-particle scattering except that one set of
particle lines is reversed and exchange is excluded.

First and foremost the screened Hamiltonian Hsc has
experimental relevance to metallic electron systems in the
normal state, since an external magnetic field will couple to
the spin density but not to the total charge density. In this
situation RPA screening does not contribute.

Besides this essential practical application, the theoretical
relevance of separating out the random-phase part is for the
sum rules. We illustrate the case of the f -sum rule, a familiar
identity expressing particle and energy conservation. Its proof
(see, for example, Nozières [9]) relies on the fact that the time-
dependent operator in the Heisenberg picture [11],

ρ′ (t, t ′) ≡ a∗(t )a′ (t ′),

commutes with any pairwise interaction Hamiltonian—exact
or reduced—as long as the same label symmetries of the
interaction are satisfied both in physical and in Kraichnan’s
pseudocollective spaces.

The f -sum rule connects the net energy absorbed from
an external perturbation to the energy distribution among the
available excitations of the system. In the classic case of the
uniform electron gas at zero temperature, it states (adopting
units in which h̄ and the free-electron mass are set to 1)∫ ∞

−∞

dω

2π
ωS(q, ω) = q2

2
n, (16)

in which q is the momentum transferred by the perturbation
and n is the electron density. The dynamic structure factor
S(q, ω) is the density of states for all the system’s excited
modes at momentum energy (q, ω); it is the negative imag-
inary part of the total dynamic polarization χ (q, ω), including
the contribution from the collective plasmon mode.

Proof of the f -sum rule follows from the dynamical equa-
tions for ρ′ governed by the Hamiltonian. The rule asserts
that, no matter how the absorbed energy is redistributed
throughout the perturbed system (in more or less intricate
ways), in sum it is conserved and must account for the energy

gained per particle. The question is: does the electron gas
have an analogous rule when the dominant plasma mode is
“removed” in a sense to be made precise?

The answer to the above is yes. This is almost obvious,
since the right-hand side of Eq. (16) has no dependence on
the interaction (and consequently is insensitive to all internal
correlations and all modifications to the potential that do not
alter its symmetries). In this form the rule is known commonly
as the conductivity sum rule.

One knows already that any canonical derivation for the
full Hamiltonian, for instance, the f -sum rule, will be valid
for a reduced Hamiltonian. The logical form of such a proof,
once given for the exact case, does not care about the nature
of any appropriate reduction. Accordingly, let Ssc(q, ω) be the
dynamic structure factor appropriate to Hsc[ψ] of Eq. (15). If
we now perturb this system, conservation nevertheless applies
and we obtain ∫ ∞

−∞

dω

2π
ωSsc(q, ω) = q2

2
n, (17)

or the conductivity sum rule, with essentially zero effort.
The Hamiltonian system Hsc[ψ =1] preserves all non-RPA

contributions to the true ground state. This is because its one-
body propagators are unchanged by screening as the Hartree
mean-field term in the self-energy [11] is always canceled by
local charge neutrality. For nonuniform Coulomb systems this
is not true in general, but in the uniform situation the polar-
ization χ sc(q, ω), the imaginary part of which is −Ssc(q, ω),
contains only the “proper” correlations for the original system,
that is, all those that are not RPA. In that sense the sys-
tem becomes formally shielded from its long-range physics.
The consequent ability to validate sum-rule consistency for
any screened reduced model is of central importance; while
Eq. (17) then conveys no additional physical information,
it does provide an essential numerical test in implementing
models of the uniform electron fluid.

B. Systematic addition of correlations: Ring-plus-ladder model

In the previous section we discussed two paradigms: the
ring model, which improves upon Hartree-Fock by including
some shorter-ranged correlations from the screened interac-
tion (RPA, essentially), and the particle-particle ladder model
to treat strong short-ranged effects beyond exchange. A com-
bination of both was implemented by Green, Neilson, and
Szymański [22] for the electron gas to interpolate between
dominant long-range Coulomb screening and the short-range
Coulomb correlations expected to prevail at wavelengths ac-
cessible in high-energy x-ray scattering [23].

The long-range-with-short-range interpolation was built
bottom-up, as it were, by isolating its physically dominant
diagrams, the rings and ladders of Figs. 4 and 6, out of the
expansion of the exact ground-state correlation energy. These
terms were duly symmetrized to make sure that they obeyed
the Baym-Kadanoff criteria for conserving, or �-derivable,
approximations [4,5].

Typical of �-derivable theories, the ring-plus-ladder model
was set up without a Hamiltonian, rendering subsidiary
derivations more burdensome than they might have been. Here
we present a stochastic Hamiltonian for the Green et al. [22]
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prescription:

HGNS ≡
∑



εka∗
a

+ 1

2N

∑
1234

′ϕGNS
ν1ν2|ν3ν4

〈k1k2|V |k3k4〉a∗
1

a∗
2

a3 a4 ,

ϕGNS
ν1ν2|ν3ν4

≡ 1 − (
1 − ϕ

(r)
ν1ν2|ν3ν4

)(
1 − ϕ

(pp)
ν1ν2|ν3ν4

)

= ϕ
(r)
ν1ν2|ν3ν4

+ ϕ
(pp)
ν1ν2|ν3ν4

− ϕ
(r)
ν1ν2|ν3ν4

ϕ
(pp)
ν1ν2|ν3ν4

, (18)

where the restriction parameters ϕ(r) and ϕ(pp) are those de-
fined stochastically for rings, Eq. (9), and for particle-particle
ladders, Eq. (11). Hence the reduced interaction for this hybrid
meets Kraichnan’s conditions on label symmetry.

The effect of combining distinct classes of interaction in
this way is readily seen. When either class of phase factor
survives, its counterpart will not. If both combinations do
survive (as in the polarization to first and second order in
the interaction) there is no duplication. Their physics acts
cooperatively in the total correlation behavior, though never
concurrently.

Diagrammatically, whether for the exact or any approxi-
mate Hamiltonian, the functional �[ϕV ] for the correlation
energy is read off directly as the expectation of the interac-
tion part of the Hamiltonian. This involves the self-energy
�[ϕV ; G], where G[ϕV ] is the self-consistent one-body prop-
agator, or Green function. � and � are related in two ways.
The first is via the Hellmann-Feynman integral identity [2]:
the underlying pair interaction V is multiplied by a coupling
constant taken from zero to unity so

�[ϕV ] ≡ 1

2

∫ 1

0

dz

z

∑


〈 G−[zϕV ]�[zϕV ; G] 〉 (19)

in which the self-energy and propagator within the right-
hand integrand are evaluated at the coupling constant z. The
second relation complementary to Eq. (19) is the variational
derivative [5]

�[ϕV ; G] = δ�[ϕV ]

δG−

. (20)

The generic structure of �[ϕV ], whether exact or associ-
ated with a Kraichnan Hamiltonian or to its functional equiva-
lent, � derivability [4,5], has a very specific property. Within
the expansion of the exact � in powers of the underlying
potential partnered by the fully renormalized propagators G
within the description, each G “sees,” that is, is embedded in,
a correlation environment identical to any other propagator in
the given term [5]. It must not matter which G is removed
to generate the self-energy diagrams for the relation Eq. (20).
The same � must emerge. Were the above not the case, �

would lack the symmetry needed for conservation. Since its
symmetry ultimately comes from the Hermitian nature of the
Hamiltonian, it follows a priori and with no extra work that
every stochastic Hamiltonian model must possess a family of
terms making up � with the same symmetries as those that
secure microscopic conservation in the exact case. This brings
home the analytic power of Kraichnan’s procedure.

Figure 8 illustrates the consequences of the Hamilto-
nian Eq. (18) for the self-energy given by Eq. (20). Self-
consistency of the one-body Green function through the self-

FIG. 8. Structure of model self-energy for the interpolating
rings-plus-ladders model. Allowed contributions appear in (a). Other
combinations, of which those in (b) are instances, are inhibited in the
stochastic average.

energy leads to the implicit nesting of rings and ladders to all
orders in the interaction. Nevertheless there can be no ladders
with chainlike rungs; they are stochastically suppressed.

The diagrams that survive stochastic filtering are just those
of the Green et al. prescription [22]. Its polarization cor-
rections to leading order in the particle-particle T matrix
comprise the sum of the terms in Figs. 4 and 6, compensated
for overcounting. Overcounting is automatically excluded in
Eq. (18) while in any constructive �-derivable model—that of
Ref. [22] is just one instance—overcounting must be corrected
by hand because the choice of a correlation subset, while
obviously physically guided, is still a matter of piece-by-piece
selection out of the full ground-state expansion.

Equation (18) furnishes the prototype for the similarly mo-
tivated but more intricate approximations in the next section.
With a proper Hamiltonian, treatment of various sum rules in
this model becomes much more efficient. The point is made in
Appendix A, in which the third frequency-moment sum rule
is recalled and interpreted in terms applicable to all models.

Having introduced the notion of selective combination
of disparate physical correlations within a unified Hamilto-
nian, we are ready for the more comprehensive parquet and
induced-interaction series. Particularly in nuclear-matter and
liquid-helium studies, these distinguish topologically among
particle-particle ladder processes, sequential RPA-like polar-
ization processes, and the latter’s exchange counterparts the
particle-hole ladders. All three stochastic components are
available.

V. PARQUET AND THE INDUCED INTERACTION

We end this paper with the discussion of Hamiltonians
for approximate theories based on a maximal inclusion of
strictly pairwise correlations, starting with the parquet theory.
It has long been appreciated that not all correlations in the
many-body ground state are representable as structures made
up purely from sequential two-body scatterings. Irreducible
processes contribute that do not fit, topologically, the tem-
plates covered above [21]. Absent a general procedure to
include these, practical modeling efforts emphasized incorpo-
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rating all possible contributions reducible to the standard pair
processes.

A. Parquet Hamiltonian

The most elaborate attempt at constructing a comprehen-
sive theory purely out of two-body processes is parquet. A
further significant feature of parquet is its intimate connection
with variational methods offering nonperturbative calcula-
tional approaches to strong-correlation problems [21,25]. The
conceptual advantages of knowing its Hamiltonian would go
beyond the immediate precincts of diagrammatic theory.

The parquet diagrams include all those that, to all orders,
would tile the entire plane in systematic patterns, hence their
name. The ingredients for its Hamiltonian are at our dis-
posal via the only possibilities for two-body scattering: rings
and the two species of ladder, particle-particle and particle-
antiparticle. The parquet Hamiltonian is proposed to be

Hpqt =
∑



εka∗
a

+ 1

2N

∑
1234

′ϕpqt
ν1ν2|ν3ν4

〈k1k2|V |k3k4〉a∗
1

a∗
2

a3 a4 ,

ϕ
pqt
ν1ν2|ν3ν4

≡ 1 − (
1 − ϕ

(r)
ν1ν2|ν3ν4

)(
1 − ϕ

(ph)
ν1ν2|ν3ν4

)(
1 − ϕ

(pp)
ν1ν2|ν3ν4

)
.

(21)

It is a generalization of the cooperative, yet strictly sequential,
structure of restriction factors in the rings-plus-ladders Hamil-
tonian of the previous section, Eq. (18). It manifestly allows
for all possible planar topologies produced by pairwise scat-
terings in maximally complex combinations but not getting in
one another’s way, thereby ruling out any diagrams that cannot
be factorized in this sequential way. As in HGNS, overcounting
cannot occur.

A formal demonstration that Eq. (21) yields the same
correlation structure as the standard formulation of parquet
is not pursued here. What is already clear is that this proposal
generates all self-consistent admixtures of the three permissi-
ble scattering arrangements for a many-particle system with a
pair potential. The three core processes operate sequentially,
never concurrently, in any combination generated from Hpqt.

For the reasons already noted for HGNS and illustrated in
Fig. 8(b), intermediate particle-hole processes are not per-
mitted within any particle-particle ladders for correlation dia-
grams derived from Hpqt. One would need to check that this
did not restrict the parquet vertex structure [21,24–27] when
interpreted, not as the diagrammatic architecture directly seen
in the ground-state correlation energy but indeed as its func-
tional derivative [4]; refer also to Eq. (A5) of Appendix A.
Confirmation that Eq. (21) leads to standard parquet means
reproducing the complete pair-scattering equations for this
variationally generated dynamical vertex, to verify whether or
not they are identical to their parquet analogs.

B. Induced interaction

The induced interaction [28,29] simplifies parquet by in-
voking a parametrized effective pair potential to stand in for
the ladder sum of particle-particle scatterings. It has been

FIG. 9. Definition of the induced-interaction approximation.
(a) The particle-particle T matrix, or ladder vertex, is replaced with
an antisymmetrized effective potential T

pp
. (b) The particle-hole

ladder series is defined by its Bethe-Salpeter equation; intermedi-
ate one-body propagators are self-consistently defined within the
approximation as a whole. (c) The self-energy derived from the
interaction Hamiltonian is determined by the particle-hole T matrix,
selected via ϕ (ph), while the shielded interaction is selected through
ϕ (r); the latter is defined as in Fig. 4(c) except that the bare potential
V is replaced with the particle-particle ansatz T

pp
schematized in

(a) above.

effective as a theory of static properties in hard-core Fermi
systems (nucleonic matter and noble-gas liquids) and their
low-energy excitations as well [29]. A Coulomb-screened
variant has been applied to the low-density electron gas [30].

In the induced interaction, explicit Brueckner-like particle-
particle scattering is omitted. Instead, the bare potential
〈k1k2|V |k3k4〉 is replaced with an antisymmetrized approxima-
tion 〈k1k2|T pp|k3k4〉 to the ladders in Fig. 6(c); compare also
Eq. (8). The Hamiltonian includes only ring and particle-hole
processes manifestly:

HBB

=
∑



εka∗
a+ 1

2N

∑
1234

′ϕBB
ν1ν2|ν3ν4

〈k1k2|T pp|k3k4〉a∗
1

a∗
2

a3 a4 ,

ϕBB
ν1ν2|ν3ν4

≡ 1 − (
1 − ϕ

(r)
ν1ν2|ν3ν4

)(
1 − ϕ

(ph)
ν1ν2|ν3ν4

)
. (22)

Figure 9 shows the essential ground-state correlation struc-
ture encoded in Eq. (22). Now we construct a pair of dy-
namical two-body scattering vertices, � for particle-hole and
� for ring processes (see Fig. 10), following the induced-
interaction template [29,30]. Note that from now on a sum-
mation over an intermediate variable  will be understood
also to include intermediate integrals in the frequency domain

062118-9



FREDERICK GREEN PHYSICAL REVIEW A 99, 062118 (2019)

subject to conservation as for momenta. In particular, the one-
body causal propagator G is now in frequency-dependent
form [10].

The effective vertices � and � subsume all noncanceling
internal responses to an external disturbance. They include,
but are not the same as, the vertex appearing in the equilibrium
self-energy the induced-interaction form of which is shown in
Fig. 9(c). Rather, they correspond to derived two-body scat-

tering processes implicit in the correlation energy functional
� but made manifest only through the dynamic response of
the system [4]. Appendix A details the behavioral difference
between the differently structured vertices.

The derived dynamical vertices should sum, consistently,
all those intermediate two-body scatterings assured of surviv-
ing the internal stochastic averaging over ϕ(ph) and ϕ(r). Thus
the � candidate is defined to have the structure

�(12|34) ≡ 〈k1k2|T pp|k3k4〉 + (
ϕ

(ph)
ν1ν2|ν3ν4

)−1 ∑
′

1
′
2

′
3

′
4

′ �(2
′
1|4

′
3)ϕ(ph)

ν2ν
′
1|ν4ν

′
3

( − δ′
1

′
4
δ′

2
′
3
G′

1
G′

2

)
ϕ

(ph)
ν1ν

′
2|ν3ν

′
4
�(1

′
2|3

′
4)

= 〈k1k2|T pp|k3k4〉 −
∑



�(2|4
′)GG′�(1

′|3), ′ =  + 3 − 1. (23)

This corresponds to the sum of “t-channel irreducible” processes [29], namely, those that cannot be separated into two subvertices
by cutting any particle-hole line pair with momentum transfer k1 − k3. The negative sign in the summation on the right-hand side
is due to exchange of one pair of particle (or hole) labels, relative to the complementary ringlike vertex �; see Eq. (24) below.
Any stochastic average with ϕ(r), for the object ϕ(ph)�, will be suppressed owing to the vertex topology.

A concomitant summation gathers all ringlike scatterings defining �, so

�(12|34) ≡ �(12|34) + (
ϕ

(r)
ν1ν2|ν3ν4

)−1 ∑
′

1
′
2

′
3

′
4

′ �(1
′
2|′

34)ϕ(r)
ν1ν

′
2|ν ′

3ν4

(
δ′

1
′
3
δ′

2
′
4
G′

1
G′

2

)
ϕ

(r)
ν ′

1ν2|ν3ν
′
4
�(′

12|3
′
4)

= �(12|34) +
∑



�(1
′′|4)GG′′�(2|3

′′); ′′ =  + 3 − 2. (24)

If we attempt an operation involving a stochastic average over
ϕ(ph) of the RPA-like object ϕ(r)(� − �), corresponding to
the induced interaction’s “u-channel irreducible” series (not

FIG. 10. Particle-hole and ringlike vertices mediate the dynam-
ical interaction between particle and hole pairs in the induced-
interaction model after its Hamiltonian, Eq. (22). These processes
determine the system’s self-consistent response to an external pertur-
bation. The topology of the two-body vertex � sums all intermediate
processes that are not automatically suppressed by stochastic aver-
aging of its accompanying restriction factor ϕ (ph). Correspondingly,
the interaction vertex � includes all possible topologies that are not
automatically suppressed by an average over the rings-only factor
ϕ (r). Also note that the phenomenological particle-particle vertex T

pp

is antisymmetrized for particle-pair exchange 1 ↔ 2 or 3 ↔ 4. Thus
the complete induced-interaction scattering amplitude � is itself
antisymmetric.

separable into two subvertices by cutting any particle-hole
line pair with momentum transfer k2 − k3), the result will be
suppressed. Inspection of the series expansion of the latter
shows that Eq. (24) has the symmetry

�(12|34) = �(12|34)

+
∑



�(1
′′|4)GG′′�(2|3

′′).

Furthermore, substituting � from Eq. (23) into the right-hand
side of Eq. (24) renders � explicitly antisymmetric under pair
exchange [29].

After averaging independently over the two stochastic
restriction factors, the vertex � emerging from Eqs. (23)
and (24) leads to the set of dynamical two-body scatter-
ing processes within the induced-interaction model. As they
stand, prior to any stochastic averaging, our vertex equations
neglect all terms carrying the restriction factors ϕ(r) and ϕ(ph)

concurrently. These remain legitimate parts of the complete
�, until the final average; when this is performed, the terms
expressly left out of the coupled self-consistent pair Eqs. (23)
and (24) are precisely those that vanish by destructive interfer-
ence. Then � becomes the induced-interaction vertex bearing
the dynamic correlations in the model and determining its
response functions, such as χ (q, ω), exhibited in Fig. 11.

VI. SUMMARY

The goal of this paper has been the rational construction
of explicit Hamiltonians for significant conserving approx-
imations lacking them, in problems of strongly interacting
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FIG. 11. Total density-density response function determined
by the self-consistent two-body vertex structure in the induced-
interaction model. Crosses indicate coupling to a weak external per-
turbing potential. (If coupling is to the current, its operator attaches to
the external vertices and the diagram describes the current autocor-
relation function.) The leading right-hand term is the renormalized
polarization with no particle-hole vertex; the second incorporates
the contributions generalizing Hartree-like (RPA) screening; the last
term holds the complementary particle-hole ladders responsible for
Fock-like exchange scattering.

assemblies. Chief among the many-body problems of interest
are short-range dynamics in charged quantum fluids such as
the electron gas, as well as nuclear matter and the noble-gas
fluids.

Conventionally, diagrammatic theories of correlations have
been set up via other microscopic prescriptions, such as �

derivability, but methods that build their correlation structure
heuristically from the bottom, so to speak, do not generate a
Hamiltonian corresponding to their model. This can make it
problematic to confirm essential canonical properties, notably
the conserving sum rules, which are hallmarks of the exact
theory and which one wants to validate equally for any
approximate description.

A systematic strategy for constructing model Hamiltonians
was formulated by Kraichnan. It consists in (i) embedding
the exact interacting problem within a large ensemble of
identical but distinguishable system copies, (ii) adjoining,
to their exact interaction potential, randomly chosen factors
coupling stochastically all the copies in the collection, and
(iii) designing the coupling scheme so that only specific re-
stricted sets of expectation values for correlations will survive
stochastic averaging over the introduced couplings. All other
combinations will be suppressed by destructive interference
and vanish in the limit of an infinite ensemble average.

Correlations selected in that way will bring out the effects
believed to prevail in a given physical context. For example,
one form of stochastic coupling will pick out screening cor-
relations in a characteristically long-ranged Coulomb system.
Another form will promote repeated particle-particle scatter-
ing in systems with a hard-core potential.

First, the technicalities of Kraichnan’s construction were
recalled. Next came a survey of applications originally given
by Kraichnan. Included were the random-phase and Hartree-
Fock approximations and their refinement in the shielded
potential, or ring, model, and the ladder series for hard-core
systems such as nuclear matter. These steps set the scene for
the third part: adaptation of the stochastic method to more
elaborate correlation theories for which a Hamiltonian has not
been at hand.

Three approximations of interest were discussed and
Hamiltonians were identified for them. All involve a micro-

scopically consistent unification of short-range with long-
range correlations. They are the ring-plus-ladder model, the
parquet theory, and the induced-interaction construction. For
the latter an explicit pair of particle-hole dynamical scattering-
vertex equations was described, based on a generalized defini-
tion of the stochastic coupling factor. I showed that the vertex
equations definable within the stochastic Hamiltonian formal-
ism are the same as their heuristic counterparts establishing
the induced interaction.

Appendix A examines the role and interpretation of the
sum rules in conserving models, concentrating on the third
frequency-moment sum rule. The sum-rule structure for a con-
serving approximation follows canonically from its Hamilto-
nian (when known) inheriting its analytic properties from the
complete system description. However, care has to be taken
with how these relations are evaluated and interpreted. Other
identities that are not sum rules and valid for the exact system
need not hold in an approximation [33], the price of any
simplification. Still, an advantage of knowing the Hamiltonian
is automatic validity for all sum rules that come out of micro-
scopic conservation plus the causal boundary conditions. One
has only to apply the rules discerningly. Appendix B contains
brief remarks on possible relations between the existence
of approximate interacting Hamiltonians and complementary
nondiagrammatic solutions to general correlation problems.

Future work would include a demonstration that the pro-
posed parquet Hamiltonian Eq. (21) yields a dynamical two-
body vertex structure identical to that originally worked out in
the parquet literature. To the extent that parquet in particular
has an intimate link to nonperturbative variational methods in
strong correlations [21,25], any consequences of confirming
the parquet Hamiltonian follow through for those approaches.
At a more general level, as sketched in Appendix B, similar
considerations might be applied to any interacting model
reliant on an underlying Hamiltonian. One could also explore
how Kraichnan’s stochastic Hamiltonians may apply with
increasing sophistication and physical fidelity beyond linear
response and in lower dimensions [14,34], not only in uniform
Coulomb systems but in inhomogeneous interacting systems
of all types. As a conceptual tool, some of its power may have
been demonstrated in this paper. As a practical tool it awaits
further thought.
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APPENDIX A: THIRD FREQUENCY-MOMENT SUM RULE

The importance of the third frequency-moment sum rule
for short-range correlation properties, Coulomb fluids in-
cluded, was first highlighted by Goodman and Sjølander [35].
They gave a proof of the rule and analyzed the information it
contains about the near environment, or “correlation hole,” of
a typical particle within its interacting medium.
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Here we focus upon the relevance of this sum rule as
a paradigm for the way in which approximate correlation
models, despite being assured of satisfying the sum rules
of the full case, call for a more careful understanding of
what the sum rules may have to tell. We will not detail the

proof of the third-moment rule, relying on Ref. [35]; a more
diagrammatically oriented proof is in Ref. [16].

We state the rule as it applies to the electron fluid. If one
takes the dynamic and static structure factors for the system
[2,35], respectively S(q, ω) and S(q), the third-moment rule is

∫ ∞

−∞

dω

2π
ω3S(q, ω) = q4n

2
M3(q),

M3(q) ≡ q2

4
+ 2

∑
k

εk〈a∗
k ak〉 + V (q)n

⎧⎨
⎩1 − n−1

∑
q′

(q̂ · q̂′)2[S(q′) − S(|q − q′|)]
⎫⎬
⎭. (A1)

Unlike the first-moment ( f -sum) rule, this identity gives
weight to the high-frequency (short-time, thus also
short-ranged) properties of the assembly. Hence it is much
more sensitive to the correlation structure. That is evident
through the second right-hand term of the factor M3(q), which
is the expectation of the kinetic energy over the interacting
Fermi sea. Sensitivity to correlations comes out even more
clearly in the last contribution, explicitly dependent on the
static structure factor the nature of which we now discuss.

In addressing the structure factor S(q) we make an im-
portant observation. Through its manifest sensitivity to the
correlations in the system, Eq. (A1) for the third-moment rule
will equally reflect the correlation properties of any approx-
imation to the exact physics. By that it may also accentuate
the physical shortcomings of the approximation, so the rule
is an important quantitative gauge of a model. The latter does
not touch the architecture of the rule, which remains valid; it
means that one must be careful how the right- and left-hand
sides of Eq. (A1) have to be evaluated.

Commonly termed the “static” structure factor, S(q) is the
instantaneous pair-correlation function in Fourier space:

S(q) ≡
∑
kk′

〈a∗
k+qaka∗

k′−qak′ 〉. (A2)

Mathematically it is generated by direct removal of an inter-
action line in the diagrammatic expansion for �:

S(q) ≡ δ�

δV (−q)
; (A3)

its inner structure therefore represents the equilibrium correla-
tion structure directly [16]. By contrast, the dynamic structure
factor is the density response to a weak, but external, pertur-
bation itself coupling to the density. This is in sharp functional
distinction to S(q), which is strictly determined in the ground
state. We stress that S(q, ω) is not an equilibrium property
although it is computed in terms of equilibrium expectation
values.

Now we look at how � is perturbed. A weak external
potential U couples to the density operator through a one-
body term U (q, ω)a∗

k+qak added to the Hamiltonian, Eq. (1).
This changes the correlation energy:

�[U ] = �[0] + 1
2U ∗(q, ω)χ (q, ω)U (q, ω)

+O(|U |4); (A4)

there is no linear term since � is a minimum at equilibrium.
However, obtaining the response function is no longer a
simple matter of removing an interaction line from �, as for
S(q). We must track down every occurrence of U including
its appearance in the self-consistently recurrent structure of
the propagators G[U ]. A clear and very detailed exposition of
the process is in Refs. [4,5].

Let �[G] be the vertex defining the correlation energy
so that, symbolically, the perturbed self-energy is � ≡ U ∗ +
�[G] :G[U ] where for brevity we denote by “:” internal
integrations over momentum energy. The dynamic response
to lowest order in the perturbation is encoded in the quantity

δ� = 1

2
U ∗ :

[
δG

δU
+ δG

δU ∗ :
δ2�

δGδG′ :
δG′

δU

]
: U

= 1

2
U ∗ :

[
δG

δU
+ δG

δU ∗ : � :
δG′

δU

+
(

δG

δU ∗ :
δ�

δG′′ :
δG′′

δU
:G′ + G :

δG′′

δU ∗ :
δ�

δG′′ :
δG′

δU

)]
: U .

(A5)

Aside from the leading term δG/δU = GG on the right-hand
side of the second expression (the renormalized zeroth-order
polarization), comparison of Eqs. (A4) and (A5) shows that
the diagrammatic structure of the dynamic response χ (q, ω)
is not solely determined by that of �, the terms of which
appear in the ground-state energy functional directly defining
the conserving one-body �[G], but also, and crucially for
microscopic conservation at the two-body level, by the new
contributions generated through self-consistency of the cor-
relations in the system [4,31]. The phenomenon is illustrated
in Figs. 4(b), 6(b) and 7(b) for the three primary models of
Sec. III and in Fig. 11 for Sec. V.

The central message of this discussion is that, for any
description of a correlated system, S(q, ω) as the negative
imaginary part of χ (q, ω) has explicit extra terms appearing
in it that are otherwise dormant in the ground-state energy
functional. In any approximate picture of correlations, in other
words, the dynamical vertex and its S(q, ω) on the one hand
will not have the same diagrammatic structure as the ground
state and its S(q) on the other.

These objects lead to quite different results. This does not
contradict the fact that all the sum rules that apply to the
full theory—including the correlation-sensitive third-moment
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rule—remain valid in any approximation built on the Kraich-
nan or functionally equivalent �-derivable pattern. It comes
down to a consistent reading of the sum rules.

Equation (A1) in any approximate model is interpreted
correctly if, and only if, the dynamic structure factor on the
left-hand side derives from Eq. (A5) while, on the right-hand
side, the static structure factor is obtained from Eq. (A3). That
is because, in diagrammatic terms, the prime physical basis of
S(q) resides directly in the ground-state properties through �

[16]; true in the exact case, it is thus true for any properly
constituted approximation.

Confusion has sometimes arisen over this conceptual point,
not just for the third-moment sum rule but for other in-
stances such as the compressibility sum rule [36]. In the
exact theory—and in the exact theory alone—the static factor
S(q) has another, possibly more familiar, expression as the
frequency integral of S(q, ω) [2]:

S(q) =
∫ ∞

0
dωS(q, ω). (A6)

In experiment this relation gives the scattering cross sec-
tion from an angle-resolved measurement uncollimated for
inelastic energy loss ω, the cross section of which as mea-
sured would be S(q, ω). Interpreted theoretically, its strongly
model-dependent form is not a sum-rule identity obtained
from standard arguments using analyticity and the Kramers-
Krönig relations [11], the causal structure of which is immune
to ensemble averaging.

If applied in any approximation to the full problem,
Eq. (A6) fails to yield the same result as Eq. (A3). For the
RPA, Eq. (A3) results in a trivial pair-correlation function in
real space with no features at all, while Eq. (A6) for RPA
results in a pair-correlation function that becomes unphysi-
cally negative [11]. Thus, by itself, formal conservation hardly
secures good numbers in a model, but feeding the evaluation
of Eq. (A6) into the right-hand side of Eq. (A1) makes matters
worse by breaking sum-rule consistency.

Suppose we had obtained, from Eq. (A3), a poor esti-
mate for S(q) compared to measurement. We might turn to
Eq. (A6), somewhat unsystematically in this context, expect-
ing a better answer (with no guarantee of improvement).
Unfortunately this forfeits its canonical pedigree from the
model Hamiltonian because the third-moment sum rule would
be violated with that choice.

As far as is known the equivalence of (A3) and (A6) is only
for the exact ground state [33]. The reason appears to be the
dependence of Eq. (A6) on Fermi’s “golden rule” [2], itself
exploiting completeness of the many-body eigenstates in Fock
space. In the Kraichnan ensemble average, the contribution of
whole families of states is washed out (albeit, prior to averag-
ing, the completeness of Fock space holds for each individual
member in the ensemble of stochastic Hamiltonians). This
kills the state coherence essential to Eq. (A6).

It is reasonable to surmise that the distinction between a
set of virtual (dormant) dynamic correlations in S(q) and their
real manifestation in S(q, ω), mandated by conservation [4],
applies to the actual exact description. Then Eq. (A6) reveals
a deeper and extremely rigid constraint on the terms beyond
those in � on the right-hand side of Eq. (A5), impossible
to meet within any approximation [33]. The discrepancy

between the two evaluations of S(q), canonical for Eq. (A3)
but in practice empirical for (A6), is the price paid by any
truncation of the full problem, no matter how elaborate.
Indeed, it could be used as an in-built measure of the mismatch
between a reduced correlation theory and its fully correlated
parent.

APPENDIX B: KRAICHNAN’S CONSTRUCTION
AND NONDIAGRAMMATIC ANALYSES

This Appendix remarks informally on how the stochastic-
Hamiltonian approach may relate to self-consistent correlated
theories not reliant on diagrammatic analysis characteristic
of Green-function methodology. We focus on two nonper-
turbative examples: density-functional theory [17,18] and the
coupled-cluster formalism [19,20].

1. Density-functional theory

Basic to density-functional theory (DFT) is the proof that
the ground-state energy expectation of a many-body system
interacting in the normal state is a unique functional of its
particle-density distribution [17]. Then, given an independent
constitutive relation between particle density and exchange-
correlation energy density, the problem of determining the
interacting system’s behavior can be closed and solved.

There are many ways to negotiate approximate closures for
DFT, but the exact formulation of its basic Hohenberg-Kohn
and Kohn-Sham theorems [17] is not negotiable. The question
arises whether there exist physically meaningful approxima-
tions to correlated systems for which the foundational DFT
theorems are equally valid. That indeed there are such models
was established by Langreth [18].

In brief, Langreth demonstrates that any �-derivable cor-
relation model (its exchange-correlation energy functional
meets the Baym-Kadanoff criteria for microscopic conserva-
tion [4,5]) will satisfy the DFT theorems. Hence any method
for solving the DFT equations is applicable to this wide
class of model. These offer a different quality and order of
approximation over and above strategies such as local-density
and generalized-gradient methods [17], ordinarily invoked to
solve density-functional problems.

Our present paper has shown how extended models of
correlations based on Kraichnan’s Hamiltonian structures are
equivalent to the �-derivable description of their free-energy
functional. From Ref. [18] it follows that there are physically
nontrivial density-functional theories that, while approximate,
possess a fully defined and valid Hamiltonian in the sense
of Kraichnan. Any useful implications for DFT praxis fall
outside our ambit here and would need closer study within
that specific context.

2. Coupled-cluster method

The situation of the coupled-cluster method (CCM) (also
known as “exp S”) [19,20], vis à vis the existence of model
Hamiltonians, at first glance is not dissimilar to the case
of DFT. One way to make a connection is to note that the
coupled equations defining the exp S method [19] address
certain overlap integrals for the Hamiltonian, selecting the
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set of “linked” amplitudes that determine the irreducible con-
tributions to the correlation-energy functional �[V ], already
discussed in Sec. IV.

If one embeds the Hamiltonian of the CCM using the
Kraichnan prescription for its interaction part Eq. (6), along
with a physically guided choice for the restriction param-
eters ϕν1ν2|ν3ν4 , then an appropriate coupled-cluster formu-
lation exists for each member of the Kraichnan ensemble
as well as collectively. Subsequently this assembly would
be subject to stochastic averaging just as in the diagram-
matic approach. One would need to ask how the exp S
equations changed in any process of reduction and, impor-
tantly, whether the operation of taking overlap integrals in
exp S should be expected to commute with that of stochas-
tic averaging, for the same distinction seen in Appendix A
would arise between canonical procedures immune to stochas-
tics and those sensitive to the accompanying loss of state
completeness.

Answers to these issues may lie in the fact that the (nondi-
agrammatic) coupled-cluster formalism has a correspondence
to the (diagrammatic) Goldstone time-ordered expansion [19]
and therefore in principle has a path back to � derivability [5].
Further investigations along such lines would be enlightening.

A different aspect of CCM is its hierarchical truncation of
linked amplitudes (“SUB2”, “SUB3,” etc., within the termi-
nology). It is difficult to tell—at this point—whether suitable
Kraichnan restriction parameters ϕ could be systematically
defined for these. A possible analogy is the treatment of
RPA and Hartree-Fock within the Kraichnan approach (see
Secs. III A and III B) where truncation via their corresponding
ϕ is not stochastic at all, but simply sets to zero anything
beyond those two basic correlations. Even diagrammatically
it is an open question whether something equally prescriptive
and not stochastic operates at higher orders of correlation. It
suggests a very interesting problem that could also, in its turn,
shed light on the nature of Kraichnan’s program itself.
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