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Relativistic PT -symmetric fermionic interacting systems are studied in 1 + 1 and 3 + 1 dimensions. The
noninteracting Dirac equation is separately P and T invariant. The objective here is to include non-Hermitian
PT -symmetric interaction terms that give rise to real spectra. Such interacting systems could be physically
realistic and could describe new physics. The simplest such non-Hermitian Lagrangian density is L = L0 +
Lint = ψ̄ (i/∂ − m)ψ − gψ̄γ 5ψ . The associated relativistic Dirac equation is PT invariant in 1 + 1 dimensions
and the associated Hamiltonian commutes with PT . However, the dispersion relation p2 = m2 − g2 shows that
the PT symmetry is broken (the eigenvalues become complex) in the chiral limit m → 0. For field-theoretic
interactions of the form Lint = −g(ψ̄γ 5ψ )N with N = 2, 3, which we can only solve approximately, we also
find that if the associated (approximate) Dirac equation is PT invariant, the dispersion relation always gives rise
to complex energies in the chiral limit m → 0. Other models are studied in which x-dependent PT -symmetric
potentials such as ix3, −x4, iκ/x, Hulthén, or periodic potentials are coupled to the fermionic field ψ using
vector or scalar coupling schemes or combinations of both. For each of these models the classical trajectories
in the complex-x plane are examined. Some combinations of these potentials can be solved numerically, and
it is shown explicitly that a real spectrum can be obtained. In 3 + 1 dimensions, while the simplest system
L = L0 + Lint = ψ̄ (i/∂ − m)ψ − gψ̄γ 5ψ resembles the 1 + 1-dimensional case, the Dirac equation is not PT
invariant because T 2 = −1. This explains the appearance of complex eigenvalues as m → 0. Other Lorentz-
invariant two-point and four-point interactions are considered that give non-Hermitian PT -symmetric terms in
the Dirac equation. Only the axial vector and tensor Lagrangian interactions Lint = −iψ̄B̃μγ 5γ μψ and Lint =
−iψ̄Tμνσ

μνψ fulfill both requirements of PT invariance of the associated Dirac equation and non-Hermiticity.
The dispersion relations show that both interactions lead to complex spectra in the chiral limit m → 0. The effect
on the spectrum of the additional constraint of self-adjointness of the Hamiltonian with respect to the PT inner
product is investigated.
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I. INTRODUCTION

A non-Hermitian quantum-mechanical Hamiltonian H that
is invariant under combined parity (space reflection) P and
time reversal T can have real eigenvalues [1,2]. If the spec-
trum is entirely real, we say that H has an unbroken PT sym-
metry. However, if H has complex eigenvalues, we say that
H has a broken PT symmetry. Numerous theoretical studies
of classical and quantum-mechanical PT -symmetric systems
have been done and many experiments on such systems have
been performed. The remarkable features of PT -symmetric
systems include PT symmetry breaking in coupled wave
guides, unidirectional invisibility, enhanced sensing at excep-
tional points, level bifurcation in superconducting wires, and
robust wireless power transfer [3–10].

In quantum mechanics x → −x under parity P and i →
−i under time reversal T . Thus, the quantum-mechanical
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Hamiltonian H = p2 + x2(ix)ε (ε real) is PT invariant; H
has a real positive discrete spectrum when ε � 0 [1]. This
quantum theory generalizes to relativistic quantum field the-
ory if the operator x(t ) is replaced by the pseudoscalar field
φ(t, x) so that φ(t, x) → −φ(t,−x) under P and φ(t, x) →
φ∗(−t, x) under T . The analogous bosonic field-theoretic
Hamiltonian density (∂φ)2 + φ2(iφ)ε also appears to have a
real spectrum; this was shown to first order in ε for 0 � D < 2
[11].

While PT -symmetric bosonic systems have been studied
heavily (there are over 4000 papers on such systems), only
a few papers have been written on PT -symmetric fermionic
systems. Early work on matrix models of fermionic systems
can be found in Refs. [12–15]. The Lagrangian density for a
free relativistic fermionic field with mass m was extended by
including a non-Hermitian axial mass term Lint = −gψ̄γ 5ψ ,
where g is a real mass parameter [16]. Further developments
were made in Ref. [17] in which quantum electrodynamics
was extended to include such a term and the restoration
of gauge symmetry was investigated. In Ref. [18] the rela-
tionship between conserved currents and invariances of the
Lagrangian in the framework of non-Hermitian field theories
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was examined. An application of PT -symmetric fermionic
field theory to neutrino species oscillation was proposed in
Ref. [19] in which an eight-dimensional Dirac equation was
analyzed. Neutrino oscillations in the context of PT symme-
try were studied further in Ref. [20].

PT -symmetric fermionic field theories in 1 + 1 dimen-
sions share the property with quantum-mechanical and
bosonic field theories that T 2 = 1 [16]. However, in Ref. [13]
it was noted that PT -symmetric fermionic systems in 3 + 1
dimensions have the property that T 2 = −1. To explain this
we first examine what happens in 1 + 1 dimensions, where the
gamma matrices are [21]

γ 0 =
(

0 1
1 0

)
, γ 1 =

(
0 1

−1 0

)
. (1)

Note that (γ 0)2 = 1, (γ 1)2 = −1, and γ 5 = γ 0γ 1 = −σ3,
where σ3 is a Pauli matrix. Let us identify the discrete sym-
metries of the free Dirac equation

[iγ 0∂0 + iγ 1∂1 − m]ψ (t, x) = 0. (2)

(Here ∂0 = ∂t and ∂1 = ∂x). To determine the effect of a space
reflection we let x → −x and then multiply (2) on the left by
γ 0 to get

[iγ 0∂0 + iγ 1∂1 − m]γ 0ψ (t,−x) = 0.

Because this equation has the same form as (2) we identify
that the action of parity reflection P on the spinor ψ (t, x) is
given by

P : ψ (t, x) → Pψ (t, x)P−1 = γ 0ψ (t,−x). (3)

Next, to determine the effect of time reversal T we let
t → −t in (2), take the complex conjugate of the resulting
equation, and again multiply on the left by γ 0. We get

[iγ 0∂0 + iγ 1∂1 − m]γ 0ψ∗(−t, x) = 0.

Again, from form invariance we conclude that time reversal
for spinors in 1 + 1 dimensions is given by

T : ψ (t, x) → T ψ (t, x)T −1 = γ 0ψ∗(−t, x). (4)

Since γ 0 is real we see that applying P or T twice leaves
ψ (t, x) invariant. Thus, P2 = 1 and T 2 = 1. (Interestingly,
this property of time reversal in 1 + 1 dimensions implies that
the Dirac electron behaves like a boson [22]).

In 3 + 1 dimensions the Dirac representation of the gamma
matrices is [23]

γ 0 =
(
1 0
0 −1

)
, γ i =

(
0 σ i

−σ i 0

)
,

γ 5 = iγ 0γ 1γ 2γ 3 =
(

0 1

1 0

)
, (5)

where σ i are the Pauli matrices. The actions of parity and time
reversal obtained similarly, are now [23]

P : ψ (t, x) → Pψ (t, x)P−1 = γ 0ψ (t,−x),
(6)

T : ψ (t, x) → T ψ (t, x)T −1 = iγ 1γ 3ψ∗(−t, x).

If we apply T twice, we observe a change of sign: P2 = 1,
but now T 2 = −1. This underscores the different nature of
fermions in 3 + 1 dimensions.

The purpose of this paper is to investigate the behavior
of 1 + 1- and 3 + 1-dimensional relativistic PT -invariant
fermionic theories. An exploratory study in Ref. [24] exam-
ined in part the properties of a PT -symmetric fermionic Lee
model. This paper begins by reexamining the results in [16],
where it was assumed that for real g the Lagrangian L =
ψ̄ (i/∂ − m − gγ 5)ψ is PT symmetric. We find that including
the axial term gives a dispersion relation p2 = m2 − g2 that
yields a real value for the physical mass only when m2 � g2.
This implies that the spectrum is not real in the chiral limit
m → 0. This result holds for Lagrangians in both 1 + 1 and
3 + 1 dimensions. We ask, why is this so and under what con-
ditions is it not so? Obtaining spectral reality in the chiral limit
is part of the motivation for this paper. One of our long-range
goals is to construct a PT -symmetric version of the Nambu-
Jona-Lasinio model. The challenge is to identify additional
non-Hermitian terms that are both PT symmetric and chiral
and give rise to a real spectrum in the chiral limit [25].

Two ingredients are required for a precise analysis of
fermionic systems: (i) Care must be taken in analyzing time
reversal, which is nontrivial for fermionic systems. (ii) Care
is needed in deciding on the form of PT -adjoint operators.
In this paper we focus first on time reversal and then address
the constraint of self-adjointness with respect to the PT inner
product for fermions.

For various interactions in 1 + 1 and 3 + 1 dimensions
we use the Euler-Lagrange equations to construct the Dirac
equation that results from a Lagrangian density and inves-
tigate whether this (quantum-mechanical) Dirac equation is
form invariant under the actions of P and T . This enables
us to identify the transformation properties of the interaction
term and also to calculate the dispersion relation associated
with plane-wave solutions of the Dirac equation. In addition,
by rewriting the Dirac equation in the form i∂tψ = Hψ , we
identify the effective Hamiltonian H [23] associated with the
interaction. We will see that the form invariance of the Dirac
equation under PT is equivalent to the statement that H
commutes with PT .

In analyzing the case of 1 + 1 dimensions, we find the
surprising result that for complex fermionic fields, the bilinear
interaction form −gψ̄γ 5ψ gives a Dirac equation that is odd
under time reversal and also odd under parity. Thus, the Dirac
equation with the interaction term is form invariant under PT .
The PT symmetry can also be verified by determining the
Hamiltonian H associated with this Dirac equation i∂tψ =
Hψ . The 2 × 2 matrix representation clarifies this result.
Comparing with the general result for a 2 × 2 PT -symmetric
fermionic Hamiltonian in 1 + 1 dimensions [24], it becomes
evident that in 1 + 1 dimensions the PT symmetry is broken
when m vanishes. In a second example, due to the similarities
in the transformation properties of this interaction with those
of φ(t, x), we surmise that higher integer powers of the
interaction Lagrangian density −g(ψ̄γ 5ψ )N might lead to a
spectral relation that has real energies; we investigate this
for N = 2 and 3. We find that the PT symmetry is always
broken if we assume that the expectation value 〈ψ̄γ 5ψ〉 is
negative imaginary. There are no other matrix potentials in
1 + 1 dimensions.

We then turn to further examples for which x-dependent
PT -symmetric potentials ix3, −x4, and iκ/x introduced via
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vector or scalar coupling various combinations, as well as
the complex PT -symmetric lattice potentials iκ cot(x) +
iγ 0 sin(x) and the Hulthén potential are included in the Dirac
equation of motion. In order to gain some understanding of
these systems, we construct the analogous classical systems
for which a classical phase structure can be obtained.

The situation in 3 + 1 dimensions is different because
T 2 = −1. Studying the algebra in 3 + 1 dimensions, we
confirm that the interaction term −gγ 5ψ in the equation of
motion is even under time reversal. Since the parity transfor-
mation is still odd in 3 + 1 dimensions, we conclude that the
interaction term in the Dirac equation is not invariant under
PT . While the dispersion relation is superficially the same
as for the 1 + 1-dimensional case, which implies that there
is no region in which the spectrum is real in the chiral limit,
the associated interaction Hamiltonian is anti-PT symmetric,
which is consistent with the complex nature of the spectrum.

In 3 + 1 dimensions, we search for other bilinear com-
binations of fermionic fields with the aim of determining
all possible combinations that give a Dirac equation that is
form invariant under PT and that are not Hermitian. We
find two types of terms having either an axial vector or a
tensor structure. The spectra of both of the non-Hermitian
PT -symmetric interactions are analyzed. Here too we find
that the PT symmetry is always broken in the chiral limit.
We also look at the consequences of imposing an additional
condition that the Hamiltonian be self-adjoint under the PT
inner product for fermions [13,14] and investigate the restric-
tions that this implies. We demonstrate that the PT symmetry
is always broken in the chiral limit, a feature that prevails in
the analysis of the Dirac equation in the dimensions studied.

This paper is organized as follows: In Sec. II we investigate
possible PT -symmetric interactions in 1 + 1 dimensions.
We analyze Lint = −gψ̄γ 5ψ in Sec. II A and extensions to
this as −g(ψ̄γ 5ψ )N in Sec. II B. We introduce the spatially
dependent potentials ix3, −x4, and iκ/x, and the lattice and
Hulthén potentials in Sec. II C. In Sec. III we analyze 3 +
1-dimensional interactions, starting with Lint = −gψ̄γ 5ψ in
Sec. III A and other two-body (four-point) interactions in
Sec. III B. Our conclusions and outlook are presented in
Sec. IV.

II. NON-HERMITIAN PT -SYMMETRIC FERMIONS IN
1 + 1 DIMENSIONS

A. Axial bilinear fermionic interaction

We start with the Lagrangian density for a conventional
Hermitian free fermionic field theory,

L0 = ψ̄ (i/∂ − m)ψ, (7)

where ψ̄ = ψ†γ 0 and ψ† is the Hermitian conjugate of ψ . In
1 + 1 dimensions the gamma matrices are given in (1). We
have shown that the free Dirac equation (2) associated with
(7) is form invariant under the operation of P in (3) and of
T in (4). Note that (2) is also form invariant under the com-
bined operations of P and T because the functions ψ (t, x)
and PT ψ (t, x) = γ 0γ 0ψ∗(−t,−x) = ψ∗(−t,−x) both sat-
isfy (2). A plane-wave solution to (2) gives the dispersion
relation E2 = p2 + m2. Finally, we read off the effective or
quantum-mechanical Hamiltonian H from the free Dirac

equation i∂tψ = Hψ in (2): H = −iγ 0γ 1∂1 + mγ 0. (This
form is often written using the definitions α = γ 0γ 1 and
β = γ 0 [23]).

We observe that the form invariance of the Dirac equation
under PT is equivalent to the statement that H commutes with
PT : H (PT ψ ) = PT (Hψ ). This is so because the left-hand
side is

H (PT ψ ) = H (γ 0γ 0ψ∗) = Hψ∗,

and the right-hand side is

PT (Hψ ) = γ 0γ 0[+iγ 0γ 1(−∂1) + mγ 0]ψ∗ = Hψ∗.

Next, we examine what happens if a pseudoscalar bilinear
term is included in the Lagrangian density L = L0 + Lint ,
where Lint = −gψ̄γ 5ψ and g is a real parameter. Now the
associated quantum-mechanical Dirac equation is altered to
read

(i/∂ − m − gγ 5)ψ = 0. (8)

Parity transforms this equation into

(i/∂ − m + gγ 5)γ 0ψ (t,−x) = 0, (9)

and time reversal has the effect

(i/∂ − m + gγ 5)γ 0ψ∗(−t, x) = 0. (10)

This Dirac equation is not invariant under P or T separately
but it is invariant under PT because the axial interaction term
changes sign twice; it is odd under both P and T . So this axial
non-Hermitian term is PT symmetric.

We can formulate this differently: We identify the effective
quantum-mechanical Dirac Hamiltonian associated with the
Dirac equation as

H = H0 + Hint = −iγ 0γ 1∂1 + mγ 0 + gγ 0γ 5,

where H0 = −iγ 0γ 1∂1 + mγ 0 and Hint = gγ 0γ 5. We have
shown that H0 commutes with PT , and from the effect of P
and T in 1 + 1 dimensions and the reality of Hint , we see that
Hint also commutes with PT . Thus, the effective Hamiltonian
H reflects the symmetry of the Dirac equation.

For this case the dispersion relation is obtained from a
plane-wave solution ψ (t, x), and multiplying (8) by (/p + m +
gγ 5), where /p = γ 0 p0 + γ 1 p1, yields the result [16] p2 =
m2 − g2, which is non-negative only when m2 � g2. Thus, in
the chiral limit m → 0 the spectrum is complex and the PT
symmetry is broken in this limit.

The matrix representation makes this result clearer. Re-
call that a general two-dimensional PT -symmetric fermionic
Hamiltonian, which is self-adjoint with respect to the PT
inner product for fermions and which commutes with PT ,
can be written as [24]

HPT =
(

a b
f a

)
, (11)

where a, b, and f are real numbers. The eigenvalues are E± =
a ± √

b f . Thus, if b and f have the same sign, the spectrum
is real and the PT symmetry is unbroken.
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Now, if the interaction Lagrangian density is −gψ̄γ 5ψ , the
quantum-mechanical interaction Hamiltonian is

Hint = gγ 0γ 5 = g

(
0 1

−1 0

)
.

Comparing this with (11), we confirm that Hint is PT sym-
metric and that this symmetry is always broken. Note that Hint

is non-Hermitian.
If we add the conventional mass term to the interaction, the

effective Hamiltonian in matrix form becomes

H = mγ 0 + gγ 0γ 5 =
(

0 m + g
m − g 0

)
.

We see immediately that it is PT symmetric and that the PT
symmetry is unbroken if g2 � m2.

Observe that the equation of motion resulting from the
Dirac equation with an imaginary axial term,

(i/∂ − m − igγ 5)ψ = 0, (12)

gives the dispersion relation p2 = m2 + g2. So p is real for all
g, including the chiral limit m → 0. However, this axial term
is not PT symmetric. In fact, it is anti-PT symmetric, so that
(12) is not form invariant under PT .

B. Approximate solution for higher-power
field-theoretic interactions

This section explores the effect that higher-power interac-
tion terms have in 1 + 1-dimensional systems. Our starting
point is the general Lagrangian density

L(N ) = L0 + Lint = ψ̄ (i/∂ − m)ψ − g(ψ̄γ 5ψ )N .

The Euler-Lagrange equations give the corresponding Dirac
or single-particle equation of motion as

[i/∂ − m − Ngγ 5(ψ̄γ 5ψ )N−1]ψ = 0,

which is nonlinear if N > 1. The case N = 1 reduces to that
examined in Sec. II A. In the following we examine the cases
N = 2 and N = 3.

1. N = 2

When N = 2, L(2) = ψ̄ (i/∂ − m)ψ − g(ψ̄γ 5ψ )2, and the
interaction term is PT symmetric. The associated Euler-
Lagrange equation is

[i/∂ − m − 2gγ 5(ψ̄γ 5ψ )]ψ = 0, (13)

from which we deduce that the Hamiltonian H satisfying
i∂tψ = Hψ is

H = −iγ 0γ 1∂1 + mγ 0 + 2gγ 0γ 5(ψ̄γ 5ψ ).

To solve (13) approximately we replace ψ̄γ 5ψ by its average
value 〈ψ̄γ 5ψ〉 = 〈φ〉. This is suggested by the fact that Wick
contracting the fields would lead to this result in a first-level or
mean-field approximation. Furthermore, by operating on the
approximate version of (13) by (i/∂ − m − 2gγ 5〈φ〉) we can
solve for the spectrum. In the chiral limit m → 0 this is

p2 = −4g2〈φ〉2. (14)

Now, noting that the expectation value of a bosonic pseu-
doscalar field should be negative imaginary [11],

〈φ〉 = −iA,

where A is a constant, it follows from (14) that p2 = 4g2A2 is
real. However, with this choice of 〈φ〉, Hint = 2gγ 0γ 5〈φ〉 is
anti-PT symmetric, as is the interaction term in (13). Thus,
the quantum-mechanical Dirac equation is no longer form
invariant under PT ; also PT does not commute with H . Yet
we obtain a real spectrum because now Hint is Hermitian.
The opposite case, namely, when the Dirac equation is PT
symmetric and H commutes with PT , can be simulated by
letting g → ig. Then p2 < 0 so, as in Sec. II A, PT symmetry
is again realized in the broken phase.

2. N = 3

When N = 3, L(3) = ψ̄ (i/∂ − m)ψ − g(ψ̄γ 5ψ )3. This re-
sembles the case for N = 1. The Euler-Lagrange equation
now reads

[i/∂ − m − 3gγ 5(ψ̄γ 5ψ )2]ψ = 0. (15)

It follows that the interaction part of the Hamiltonian is

Hint = 3gγ 0γ 5(ψ̄γ 5ψ )2. (16)

Again, to find an approximate solution we replace (ψ̄γ 5ψ )2

by its average value 〈(ψ̄γ 5ψ )2〉. Solving (15) we get

p2 = −9g2〈(ψ̄γ 5ψ )2〉2,

in the chiral limit. We expect 〈(ψ̄γ 5ψ )2〉 to be real, so p2 < 0
and the PT symmetry is always broken. We can confirm this
explicitly by noting that (16) is simply proportional to γ 1 and
thus only has off-diagonal values of opposite sign, see (1).
Comparing this with (11), we note that (16) is manifestly PT
symmetric.

We conclude that (i) if we construct a 1 + 1-dimensional
Lagrangian density containing the axial PT -symmetric inter-
action (ψ̄γ 5ψ )N (N odd), our approximation scheme shows
that we obtain an equation of motion that is form invariant un-
der PT , and correspondingly a PT -symmetric Hamiltonian.
The PT symmetry is broken in the chiral limit. (ii) For even N
the equation of motion contains an anti-PT -symmetric term
and the associated interaction Hamiltonian is also anti-PT
symmetric but we obtain a dispersion relation that has real
masses as a result of Hermiticity. If we modify the interaction
by replacing g → ig, we obtain a PT -symmetric system but
once again the PT symmetry is broken.

C. Dirac particle in PT -symmetric potentials

In 1 + 1 dimensions there are no other γ -matrix-based
interactions. However, in addition to these, we can include
PT -symmetric potentials having a spatial dependence such as
ix3, −x4, iκ/x, or even periodic potentials into the relativistic
Dirac equation and study the effects of these. Unlike nonrela-
tivistic potentials, which are scalars and can only be included
as such in the Schrödinger equation, in the Dirac equation,
such potentials can be incorporated either as the nonvanishing
scalar part of the four-vector potential (which we refer to
as vector coupling), or as pure scalar interactions, or as
combinations thereof. We consider some examples below.
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Re(x)

Im(x)

FIG. 1. Stokes sectors in the complex-x plane for ψ1 with an
opening angle of π/4 for the massless Dirac particle in the vector
coupled potential ix3; ψ1 vanishes exponentially as |x| → ∞ inside
these sectors.

1. Vector coupling with ix3

The 1 + 1-dimensional Dirac equation that includes the
non-Hermitian PT -symmetric vector-coupled potential ix3

reads

(i/∂ − ix3γ 0)ψ (t, x) = 0. (17)

This is form invariant under PT and the associated relativistic
Hamiltonian

H = −iα∂x + ix3 (α ≡ γ 0γ 1),

is also PT invariant. If we look for solutions of the form
ψ (t, x) = e−iEtψ (x), we arrive at the corresponding eigen-
value problem

Hψ = (−iα∂x + ix3)ψ = Eψ.

The eigenvectors ψ1(x) and ψ2(x) that solve this equation
have the asymptotic behavior

ψ1(x) ∼
(

e−x4/4

0

)
, ψ2(x) ∼

(
0

ex4/4

)
.

The convergence domain for ψ1(x) and ψ2(x) in the complex-
x plane are the PT -symmetric Stokes sectors shown in Figs. 1
and 2, respectively. In these sectors ψ1,2(x) vanish exponen-
tially as |x| → ∞.

To obtain the self-energy of the propagating particle we
apply i/∂ to (17) and obtain the differential equation

(
E2 + ∂2

x

)
ψ = −(x6 + 3x2γ 1γ 0 + 2x3∂xγ

1γ 0)ψ. (18)

Since the matrix γ 1γ 0 = diag(1,−1) is diagonal, the two-
component equations in (18) decouple. Although they are not
Schrödinger-like, each is individually PT symmetric. We first
examine the classical analog of these equations obtained by

Re(x)

Im(x)

FIG. 2. Stokes sectors in the complex-x plane for ψ2 with an
opening angle of π/4. In this case, the sectors rotate below the real-x
axis; ψ2 vanishes exponentially as |x| → ∞ inside these sectors.

replacing −i∂x by p,(
E2 − p2 0

0 E2 − p2

)

=
(−x6 − 2ipx3 − 3x2 0

0 −x6 + 2ipx3 + 3x2

)
.

The classical Hamiltonian associated with ψ1 is H1 =√
p2 − 2ix3 p − x6 − 3x2. The equation of motion of a classi-

cal particle described by H1 is obtained by combining Hamil-
ton’s equations dx/dt = ∂H1/∂ p and d p/dt = −∂H1/∂x:
dx/dt = ±

√
1 + 3x2/E2. By rescaling both x and t this equa-

tion becomes

dx

dt
= ±

√
1 + x2.

We find that x(t ) forms open trajectories in the complex-x
plane, as shown in Fig. 3.

FIG. 3. Classical trajectories in the complex-x plane described
by H1 = √

p2 − 2ix3 p − x6 − 3x2.
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FIG. 4. Classical trajectories in the complex-x plane described
by H2 = √

p2 + 2ix3 p − x6 + 3x2.

The open classical trajectories of the particle in the
complex-x plane reflects the behavior seen in the quantum
case: By setting p = 0, we observe that the self-energy 1 of
the particle corresponding to ψ1 is given by 2

1 = −x6 − 3x2,
which implies that 1 cannot be real [26].

On the other hand, the trajectories of the classical particle
in the complex-x plane that are associated with the classical
Hamiltonian H2 =

√
p2 + 2ix3 p − x6 + 3x2, are closed, as

can be seen in Fig. 4. In the quantum system, the self-energy
corresponding to ψ2 is 2

2 = −x6 + 3x2. By parametrizing x
as −i(

√
1 + ir − 1) where r is real, ψ2 vanishes exponentially

as r → ±∞. We note that the ends of this path lie in the left
and right Stokes sectors of Fig. 2 as |x| → ∞. When − 4

√
3 <

x <
4
√

3, 2
2 is positive. Thus, the self-energy associated with

the particle is real.

2. Scalar coupling with ix3 and vector coupling with iκ/x

In the previous subsection we treated the PT -symmetric
potential ix3 in a vector-coupling scheme; now we consider
it as a scalar potential, where, in addition, the Dirac particle
is also under the influence of a complex PT -symmetric
Coulomb potential. The non-Hermitian PT -symmetric Dirac
equation now reads

[i/∂ − (iκ/x)γ 0 − ix3]ψ (t, x) = 0, (19)

where κ is a real parameter. The associated relativistic
quantum-mechanical Hamiltonian is

H = −iα∂x + iκ/x + βix3 (β ≡ γ 0).

Again, looking for solutions of the form ψ (t, x) = e−iEtψ (x)
leads to an eigenvalue problem

Hψ = (−iα∂x + iκ/x + βix3)ψ = Eψ.

Writing the eigenfunction ψ (x) in terms of its two spinor
components, ψ (x) = (φ1(x), φ2(x)) [27] we find two coupled
differential equations for the scalar functions φ1,2(x),

iφ′
1 + iκφ1/x + ix3φ2 = Eφ1, (20)

−iφ′
2 + iκφ2/x + ix3φ1 = Eφ2. (21)

Re(x)

Im(x)

FIG. 5. Stokes sectors in the complex-x plane for φ1 in (22). φ1

vanishes exponentially inside these sectors.

We can eliminate the second component φ2 from (20) by
exploiting (21), and after rescaling φ1, and choosing κ to be
−3/2 for convenience, we obtain the simple form

−φ′′
1 − x6φ1 = E2φ1, (22)

which is a Schrödinger-like equation with a −x6 potential. On
the real-x axis this upside-down potential is unstable, but by
imposing appropriate PT -symmetric boundary conditions we
can obtain a real spectrum. As in the previous subsection, we
find that to have a convergent eigenfunction, we must treat the
problem in the complex-x plane.

The WKB approximation for the solutions of (22) to lead-
ing order is [28]

φWKB(x) = C±[Q(x)]−1/4e±i
∫ x ds

√
Q(s), (23)

where Q(x) = E2 + x6. For large |x| the exponential compo-
nent of this asymptotic behavior is

φ1 ∼ e±ix4/4. (24)

There are eight Stokes sectors in the complex-x plane, each
with an opening angle of π/4. To have a PT -symmetric pair
of Stokes sectors, we choose the minus sign in (24) for the
right Stokes sector, which is located just below the positive-
real-x axis. For the left Stokes sector we choose the positive
sign in (24), which determines a sector located just below the
negative-real-x axis. These two Stokes sectors are depicted in
Fig. 5.

We can also approximate the eigenenergies of (22). To do
so, we first find the two turning points which are determined
by E = −x6 and which lie in the Stokes sectors in Fig. 5.
These two points are

x1 = 6
√

Ee−5iπ/6, x2 = 6
√

Ee−iπ/6.

The WKB quantization condition is∫ x2

x1

ds
√

E2
n + s6 = (

n + 1
2

)
π (n → ∞).
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FIG. 6. The contour (solid line) on which the eigenvalue problem
in (22) is posed (blue). The dashed lines (red) denote the edges of the
sectors.

Thus,

En = ±[
4
√

π/3�
(

2
3

)
(2n + 1)/�

(
1
6

)]3/4
(n → ∞).

For n = 0 or 1, we obtain E0 = ±1.0 and E1 = ±2.27.
An exact calculation of the eigenvalues can be made on

parametrizing x as −i(
√

1 + ir − 1), where r is a real vari-
able. As depicted in Fig. 6, the ends of this path lie inside
the Stokes sectors as |x| → ∞, so we pose the eigenvalue
problem for the differential equation in (22) on this contour.
We determine the ground-state and first-excited-state energies
numerically as

E0 = ±1.16, E1 = ±2.29,

which illustrates the accuracy of the WKB approximation.
Thus, the energy spectrum of the Dirac particle in the com-
bined non-Hermitian PT -symmetric potentials ix3 and iκ/x
is real and discrete.

The trajectories of a classical particle in the complex-x
plane described by the classical Hamiltonian H =

√
p2 − x6

obtained from (22) are shown in Fig. 7. These trajectories are
closed, which reflects the reality and the discreteness of the
spectrum at the quantum level.

3. Vector coupling with −x4

Next, we consider a massless Dirac particle under the influ-
ence of the upside-down quartic potential −x4. In the vector-
coupling scheme, the relativistic Dirac equation is modified to
read

(i/∂ + x4γ 0)ψ (t, x) = 0. (25)

As in the previous examples, this equation is form invariant
under PT and the associated Hamiltonian

H = −iα∂x − x4,

commutes with PT . Looking for solutions of the form
ψ (t, x) = e−iEtψ (x) leads to an eigenvalue equation
Hψ = Eψ , whose eigenvectors behave asymptotically

FIG. 7. Classical trajectories in the complex-x plane described
by H = √

p2 − x6.

as

ψ1(x) ∼
(

e−ix5/5

0

)
, ψ2(x) ∼

(
0

eix5/5

)
.

Note that ψ1 vanishes exponentially in a Stokes sector
with opening angle π/5. This sector contains the negative-
imaginary-x axis, so it vanishes exponentially as x → −i∞.
The function ψ2 also vanishes exponentially in the same
Stokes sector, but one that has rotated upward; that is, ψ2 → 0
as x → i∞.

Following the analysis given in Sec. II C 1, we iteratively
apply i/∂ to the corresponding Dirac equation and find the
decoupled system of equations

(
E2 − p2 0

0 E2 − p2

)

=
(

x8 + 2px4 − 4ix3 0
0 x8 − 2px4 + 4ix3

)
. (26)

The self-energies 1 and 2 of the particle corresponding to
ψ1 and ψ2 are given by 2

1 = x8 − 4ix3 and 2
2 = x8 + 4ix3.

As ψ1 and ψ2 converge on x = −ir and x = ir, the self-
energies become real.

The trajectories of the classical particle described by both
of the classical Hamiltonians obtained from (26) are closed in
the complex-x plane. In Fig. 8 this is shown for the classical
Hamiltonian H =

√
p2 + 2x4 p + x8 − 4ix3.

4. Scalar coupling with −x4 and vector coupling with iκ/x

We now treat the upside-down potential −x4 as a scalar
potential and, in addition, we consider the effect of a com-
plex PT -symmetric Coulomb potential on the Dirac particle
in a vector-coupling scheme, satisfying the modified Dirac
equation

[i/∂ − (iκ/x)γ 0 + x4]ψ (t, x) = 0,
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FIG. 8. Classical trajectories in the complex-x plane described
by H = √

p2 + 2x4 p + x8 − 4ix3.

where κ is a real parameter. This equation is form invariant
under PT and the associated Hamiltonian

H = −iα∂x + iκ/x − βx4,

commutes with PT . The search for solutions of the form
ψ (t, x) = e−iEtψ (x) requires solutions of the eigenvalue
equation

Hψ = (−iα∂x + iκ/x − βx4)ψ = Eψ.

As in Sec. II C 2, it is convenient to write ψ (x) in terms of
its (scalar) components ψ = (φ1, φ2) and derive the coupled
equations that φ1 and φ2 satisfy. Following the procedure
outlined in Sec. II C 2, we eliminate φ2 and arrive at a
Schrödinger-like equation for φ1,

−φ′′
1 + x8φ1 = E2φ1, (27)

where, for convenience, we have set κ = −2. We have thus
found an octic potential with positive sign. Hence, we pose
the eigenvalue problem on the real-x axis. As before we use
the WKB approximation to obtain the eigenvalues for large n,

En = ±
[√

π�
(

13
8

)(
n + 1

2

)
/�

(
9
8

)]4/5
(n → ∞).

From this equation we find that E0 = ±0.87 and E1 = ±2.10.
A direct numerical calculation gives E0 = ±1.11 and E1 =
±2.18. Thus, once again, we find that the energy spectrum of
a Dirac particle in the presence of combined non-Hermitian
PT -symmetric vector and scalar potentials iκ/x and −x4 is
real and discrete.

Here again we see that the reality and discreteness of
the spectrum is evident at the classical level with closed
trajectories in the complex-x plane. We recognize the classical
Hamiltonian of the system from (27) as being H =

√
p2 + x8.

Figure 9 shows that the classical trajectories described by this
Hamiltonian H are closed.

5. Complex PT -symmetric lattice potentials

The methods in the previous subsections are general
enough to be applied to a Dirac particle in complex

FIG. 9. Classical trajectories in the complex-x plane described
by H = √

p2 + x8.

PT -symmetric lattices. The relativistic Dirac equation

[i/∂ − iκ cot(x)γ 0 − i sin(x)]ψ (t, x) = 0, (28)

with κ real, has non-Hermitian interaction terms, but is form
invariant with respect to PT . The associated Hamiltonian,

H = −iα∂x + iκ cot(x) + iβ sin(x),

commutes with PT .
As before, we can search for time-independent solutions

of (28). Writing ψ (t, x) = e−iEtψ (x), we obtain coupled
equations for the components of the spinor eigenfunction
φ1 and φ2, where ψ = (φ1, φ2). Eliminating φ2, we find
a Schrödinger-like equation for φ1, which after suitably
rescaling, is

−φ′′
1 − sin2(x)φ1 = E2φ1,

where we have set κ = −1/2.
The spectrum of the operator −d2/dx2 − sin2(x) is real

and consists of spectral bands separated by infinitely many
spectral gaps [29]. The absence of discrete energies and the
reality of the band-structure manifest themselves via periodic,
open trajectories of the classical particle described by H =√

p2 − sin2(x) in the complex-x plane, as depicted in Fig. 10.
Before closing this subsection, we make a side remark: We

note that the (quantum-mechanical, nonrelativistic) Hamil-
tonian H = p2 + i sin(x) describes a particle subject to the
periodic potential V (x) = i sin(x) in a PT -symmetric crystal.
As was shown in Ref. [30], by examining a discriminant, one
can conclude that this Hamiltonian has real energy bands.
However, to verify that the band structure is real, one can
alternatively show that the eigenfunctions are PT symmetric;
that is, that the PT symmetry of the Hamiltonian is unbroken.
To this end we plot the absolute values of the eigenfunctions
of the two states of H = p2 + i sin(x) in Fig. 11 and observe
that both are in fact symmetric. The energy bands are real,
and are shown in Fig. 12. We use this technique in the next
subsection.
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FIG. 10. Classical paths for H =
√

p2 − sin2(x).

6. Scalar coupling with complex PT -symmetric Hulthén potential

The complex PT -symmetric Hulthén potential is

V (x) = e−ix

1 − e−ix
.

If we regard V (x) as a potential in the nonrelativistic time-
independent Schrödinger equation, Hψ = Eψ , with H =
p2 + V (x), we find that the band structure for the energies is
entirely complex, and, as is the case with PT -symmetric po-
tentials in the broken-symmetry phase, the eigenvalues occur
in complex-conjugate pairs. We illustrate this by plotting the
absolute values of the eigenfunctions of the two states of the
Hamiltonian that correspond to the complex-conjugate pairs
of the band-edge energies E = 0.75 ± 0.59i, see Fig. 13. Note
that the eigenfunctions display no symmetry, which implies
the complex nature of the band structure.

We now consider the relativistic Dirac equation that in-
cludes the PT -symmetric Hulthén potential in a scalar-
coupling scheme, together with an additional PT -symmetric
vector potential:

(
i/∂ − κ

1

1 − e−ix
γ 0 − e−ix

1 − e−ix

)
ψ (t, x) = 0, (29)

FIG. 12. The energy bands associated with the potential i sin(x)
in the first Brillouin zone.

with κ being a real parameter. This equation has been con-
structed so as to be form invariant with respect to PT and the
associated Hamiltonian

H = −iα∂x + κ
1

1 − e−ix
+ β

e−ix

1 − e−ix
,

once again commutes with PT . Following the same pro-
cedure as in the previous subsections, we search for time-
independent solutions of the Dirac equation, and find the
equations for the components of ψ = (φ1, φ2). On eliminating
φ2, we obtain a Schrödinger-like equation for the first compo-
nent of the two-component spinor eigenfunction as

−φ′′
1 + 1

(1 − eix )2
φ1 = E2φ1, (30)

where we have set κ = −1/2 for convenience.
By using spectral methods, we determine numerically that

the band structure in (30) is entirely real; that is, the symmetry
is unbroken. We have shown the absolute values of the first
two eigenfunctions in Fig. 14, which are clearly symmetric
as expected. The (real) energy bands corresponding to this
potential are shown in Fig. 15.

The classical Hamiltonian associated with this system is
H =

√
p2 + 1/(1 − eix )2. The trajectories of the classical par-

ticle, as shown in Fig. 16, are periodic and open. This appears
to correspond to the fact that the quantum Hamiltonian has
real energy bands but no discrete eigenvalues.

FIG. 11. Absolute values of the eigenfunctions corresponding to the band-edge energies of 1.08 (left panel) and 3.97 (right panel) of
H = p2 + i sin(x).
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FIG. 13. Absolute values of the eigenfunctions corresponding to the band-edge energies 0.75 + 0.59i (left panel) and 0.75 − 0.59i (right
panel) for H = p2 + e−ix/(1 − e−ix ).

III. NON-HERMITIAN PT -SYMMETRIC FERMIONS IN
3 + 1 DIMENSIONS

A. Axial bilinear fermionic interaction

In 3 + 1 dimensions, we again start with the free fermionic
Lagrangian L0 = ψ̄ (i/∂ − m)ψ of (7) and the Dirac equation
of motion,

(i/∂ − m)ψ (t, x) = 0, (31)

and recall that the actions of P and T are given in (6), where
the gamma matrices are given in (5). Equation (31) is form
invariant under the combined operations P and T because the
functions ψ (t, x) and PT ψ (t, x) = γ 0(iγ 1γ 3)ψ∗(−t,−x)
satisfy the same equation. For the free Dirac equation, this
is true for Pψ = γ 0ψ (t,−x) and T ψ = iγ 1γ 3ψ∗(−t, x)
individually. By setting x → −x in (31), it becomes

(iγ 0∂0 − iγ i∂i − m)ψ (t,−x) = 0,

where i = 1, 2, 3 denote the spatial components. Multiplying
this result from the left with γ 0 and using the anticommutation
relations {γ μ, γ ν} = 2gμν , with gμν = diag(1,−1,−1,−1)
results in

(i/∂ − m)γ 0ψ (t,−x) = 0.

On the other hand, taking the complex conjugate of (31) and
replacing t → −t gives

[−i(−γ 0∂0 + γ 1∂1 − γ 2∂2 + γ 3∂3) − m]ψ∗(−t, x) = 0,

because (γ 2)∗ = −γ 2. Multiplying this equation from the left
by iγ 1γ 3 and using the anticommutation relations for the
gamma matrices then gives

(i/∂ − m)iγ 1γ 3ψ∗(−t, x) = 0.

The form invariance of the equation satisfied by PT ψ (t, x)
then follows.

Next we include an axial non-Hermitian bilinear term
into the Lagrangian density, L = L0 + Lint , where Lint =
−gψ̄γ 5ψ . The corresponding Euler-Lagrange equation

(i/∂ − m − gγ 5)ψ (t, x) = 0 (32)

superficially resembles the 1 + 1-dimensional case. However,
here, while parity transforms this equation into

(i/∂ − m + gγ 5)γ 0ψ (t,−x) = 0, (33)

time reversal transforms it into

(i/∂ − m − gγ 5)iγ 1γ 3ψ∗(−t, x) = 0. (34)

Note the minus sign before the last term in (34): While
parity flips the sign of the axial term, time reversal in 3 + 1
dimensions does not. Parity is odd, but time reversal is even
in 3 + 1 dimensions. So the combination of PT does not lead
to a form-invariant Dirac equation. The axial term by itself is
anti-PT symmetric. This differs from the 1 + 1-dimensional
case [see (9) and (10)].

The dispersion relation that one obtains from (32) is for-
mally the same as in the 1 + 1-dimensional case; assuming

FIG. 14. Absolute values of the eigenfunctions corresponding to the band-edge energies of E = 0.65 (left panel) and E = 0.98 (right
panel), obtained from (30). The symmetry of the eigenfunctions implies the reality of the energy band.
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FIG. 15. The energy bands for the potential (1 − eix )−2 in the
first Brillouin zone.

plane-wave solutions of the form ψ = e−ipμxμ and multiplying
(32) by (/p + m + gγ 5), we arrive at the same spectral relation
as in 1 + 1 dimensions,

p2 = m2 − g2,

which is non-negative only when m2 � g2 and is complex in
the chiral limit m → 0.

As before, the form invariance of the Dirac equation under
PT implies that H (PT ψ ) = PT (Hψ ), where H is the Dirac
Hamiltonian identified through i∂tψ = Hψ . Thus, we can
ascertain the properties of various interaction terms by testing
them with this commutation relation. For (32) the associated
Hamiltonian is

H = α(−i∇ ) + βm + βgγ 5.

Let us check the symmetry of the axial interaction term Hint =
gγ 0γ 5 under P and T . Using (6), we evaluate PT ψ (t, x) =
γ 0iγ 1γ 3ψ∗(−t,−x) and apply Hint:

Hint (PT ψ ) = gγ 0γ 5γ 0iγ 1γ 3ψ∗ = −γ 0iγ 1γ 3gγ 0γ 5ψ∗

= −PT Hintψ
∗ = −PT H∗

intψ

= −PT (Hintψ ). (35)

FIG. 16. Classical trajectories in the complex-x plane described
by H = √

p2 + 1/(1 − eix )2.

Hint anticommutes with PT , confirming that this term is not
PT symmetric. It thus explains the complex nature of the
dispersion relation in the chiral limit. By contrast, if Hint is
imaginary, that is Hint = igγ 0γ 5, we have a PT -symmetric
Hamiltonian, which is also Hermitian, and does have a real
spectrum for all g, p2 = g2 in the chiral limit.

Once again, to clarify this point, we turn to an explicit
matrix representation. Then Hint becomes

Hint = g

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠, (36)

which is not Hermitian. By comparison, a general four-
dimensional PT -symmetric fermionic Hamiltonian that is
invariant under PT and also self-adjoint under the PT inner
product has a matrix form [13,14,31]

H =

⎛
⎜⎜⎜⎝

a0 0 −C− −B−
0 a0 −B+ C+

C+ B− −a0 0

B+ −C− 0 −a0

⎞
⎟⎟⎟⎠, (37)

where B± = b1 ± ib2 and C± = b3 ± ib0. The parameters a0,
b0, b1, b2, and b3 are real. This matrix has twofold degenerate
real eigenvalues

E± = ±
√

a2
0 − b2

0 − b2
1 − b2

2 − b2
3, (38)

for a2
0 � ∑3

i=0 b2
i [32]. Equation (36) is not a special case

of (37), so it does not represent a PT -symmetric fermionic
Hamiltonian.

Evidently, the symmetry properties of the axial term
−gγ 5ψ in the Dirac equation in 1 + 1 dimensions differ
from those in 3 + 1 dimensions. The Dirac equation is form
invariant in 1 + 1 dimensions under PT , but not in 3 + 1
dimensions. This corresponds to a relativistic PT -symmetric
quantum-mechanical Hamiltonian in 1 + 1 dimensions, but
not in 3 + 1 dimensions. This difference is caused by the
different effect of time reversal in 1 + 1 and 3 + 1 dimensions.
The spectrum obtained in both cases is formally the same, so
we conclude that the PT symmetry is always broken in 1 + 1
dimensions when m → 0. However, in 3 + 1 dimensions the
Hamiltonian is anti-PT symmetric in the chiral limit, which
explains the complex nature of the spectrum when m → 0.

Interestingly, if we include the conventional mass term
mγ 0, (36) becomes

Hint =

⎛
⎜⎜⎜⎝

m 0 g 0

0 m 0 g

−g 0 −m 0

0 −g 0 −m

⎞
⎟⎟⎟⎠, (39)

which is neither Hermitian nor PT symmetric. However,
Hint is pseudo-Hermitian in the sense of [33] because H†

int =
γ 0Hint (γ 0)−1. Hence, this Hamiltonian can be used to de-
scribe pseudo-Hermitian fermions.

We can construct fermionic creation and annihilation oper-
ators which are quadratically nilpotent, and investigate their
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anticommutation relations. First, we note that the eigenvalues of (39) are

E± = ±ω = ±
√

m2 − g2,

with corresponding eigenvectors

|E (1)
− 〉 = 1√

2w

⎛
⎜⎜⎜⎝

0

−√
m + w(m − w)/g

0√
m + w

⎞
⎟⎟⎟⎠, |E (2)

− 〉 = 1√
2w

⎛
⎜⎜⎜⎝

−√
m + w(m − w)/g

0√
m + w

0

⎞
⎟⎟⎟⎠,

|E (1)
+ 〉 = 1√

2w

⎛
⎜⎜⎜⎝

0

−√
m − w(m + w)/g

0√
m − w

⎞
⎟⎟⎟⎠, |E (2)

+ 〉 = 1√
2w

⎛
⎜⎜⎜⎝

−√
m − w(m + w)/g

0√
m − w

0

⎞
⎟⎟⎟⎠.

The spectrum is twofold degenerate and is real if g2 �
m2. This degeneracy is the analog of the phenomenon of
Kramer’s theorem in conventional Hermitian quantum me-
chanics, where the Hamiltonian is invariant under odd time
reversal, as is the case with (39).

We introduce the annihilation operator for the Hamiltonian
(39) as

η = 1

2w

⎛
⎜⎜⎜⎝

g 0 m − w 0

0 g 0 m − w

−m − w 0 −g 0

0 −m − w 0 −g

⎞
⎟⎟⎟⎠,

which is nilpotent (η2 = 0) as required. We verify that

η|E (1)
− 〉 = η|E (2)

− 〉 = 0,

η|E (1)
+ 〉 = |E (1)

− 〉, η|E (2)
+ 〉 = |E (2)

− 〉.
The creation operator reads

η′ = 1

2w

⎛
⎜⎜⎜⎝

g 0 m + w 0

0 g 0 m + w

−m + w 0 −g 0

0 −m + w 0 −g

⎞
⎟⎟⎟⎠.

One can now establish the anticommutation relations

{N, η} = −η, {N, η′} = −η′,

where N is the number operator, N = η′η, as well as the pe-
culiar anticommutation relation ηη′ + η′η = −1. The minus
sign indicates that the number operator gives the negative of
the state occupation number. For further illustrations of this in
the context of PT symmetry see Refs. [15,24].

Finally, we comment that in terms of the number opera-
tor N , we can write the four-dimensional pseudo-Hermitian
fermionic Hamiltonian in (39) in the form of a free (bosonic)
harmonic oscillator as

H = �ω(−N ) + ω−1,

where �ω = ω+ − ω− and 1 is the four-dimensional identity
matrix.

B. Other matrix-type two-body (four-point) PT - and
anti-PT -symmetric interactions and the resulting

PT -symmetric Hamiltonians

Having determined that an axial non-Hermitian interaction
Lagrangian density of the form −gψ̄γ 5ψ in 3 + 1 dimensions
does not give rise to a Dirac equation that is form invariant
with respect to PT , we seek other types of interactions that
are PT symmetric but non-Hermitian. Usually, the standard
method of analyzing two-body (four-point) interactions in-
volves constructing the 16 independent bilinears from the 16
4 × 4 independent matrices and considering the Lagrangian
density associated with each of these. The standard Hermi-
tian combinations are (1) ψ̄ψ , (2) ψ̄γ μψ , (3) ψ̄σμνψ , (4)
ψ̄γ 5γ μψ , and (5) iψ̄γ 5ψ . This Lagrangian-density approach
is suitable for a discussion of symmetries that lead to con-
served currents through Noether’s theorem, but the analysis
of PT symmetry is most simply done by examining the form
invariance of the appropriate Dirac-like equation that can be
derived using the Euler-Lagrange equations. Since this in turn
translates into a commutation relation of the Hamiltonian
with PT , in a form of reverse engineering, we only need
to identify possible PT -symmetric forms of the interaction
Hamiltonians. Thus, we consider the five interaction Hamil-
tonians below and show that these combinations are all PT
symmetric:

Hint,1 = gγ 0, Hint,2 = Bμγ 0γ μ,

Hint,3 = iTμνγ
0σμν, Hint,4 = iB̃μγ 0γ 5γ μ,

Hint,5 = igAγ 0γ 5,

where g, Bμ, Tμν, B̃μ, and gA are taken to be real.
Using the procedure in (35) in which Hint,i is applied to

PT ψ , we evaluate the commutator of Hint,i and PT using
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(6), and where necessary, make use of the relation γ μiγ 1γ 3 = iγ 1γ 3γ ∗
μ . Then

Hint,1(PT ψ ) = gγ 0γ 0iγ 1γ 3ψ∗ = γ 0iγ 1γ 3gγ 0ψ∗ = PT Hint,1ψ
∗ = PT (Hint,1ψ ), (40)

Hint,2(PT ψ ) = Bμγ 0γ μγ 0iγ 1γ 3ψ∗ = γ 0iγ 1γ 3Bμγ 0γ μ∗ψ∗ = PT H∗
int,2ψ

∗ = PT (Hint,2ψ ), (41)

Hint,3(PT ψ ) = iTμνγ
0σμνγ 0iγ 1γ 3ψ∗ = −γ 0iγ 1γ 3iTμνγ

0σμν∗ψ∗ = −PTiγ 0σμν∗Tμνψ
∗ = PT (Hint,3ψ ), (42)

Hint,4(PT ψ ) = iB̃μγ 0γ 5γ μγ 0iγ 1γ 3ψ∗ = γ 0iγ 1γ 3(−i)B̃μγ 0γ 5γ μ∗ψ∗ = PT H∗
int,4ψ

∗ = PT (Hint,4ψ ), (43)

Hint,5(PT ψ ) = igAγ 0γ 5γ 0iγ 1γ 3ψ∗ = γ 0iγ 1γ 3(−i)gAγ 0γ 5ψ∗ = PT H∗
int,5ψ

∗ = PT (Hint,5ψ ). (44)

We conclude that

[PT , Hint,i] = 0 (i = 1, . . . , 5).

Thus, the general form of a relativistic quantum-
mechanical Dirac equation, which is form invariant under PT
transformations, reads

(i/∂ − g − Bμγ μ − iTμνσ
μν − iB̃μγ 5γ μ − igAγ 5)ψ (t, x) = 0.

A brief analysis shows that Hint,3 and Hint,4 are anti-Hermitian,
while Hint,1, Hint,2, and Hint,5 are Hermitian. So we have
identified two types of terms that give rise to non-Hermitian
but PT -symmetric Hamiltonians. We consider each of these
in turn.

1. Hint,3 = iTμνγ
0σμν

To understand the structure of Hint,3 we write it in matrix
form:

Hint,3 =

⎛
⎜⎝

iq4 −q5 + iq6 −q3 −q1 + iq2

q5 + iq6 −iq4 −q1 − iq2 q3

q3 q1 − iq2 −iq4 q5 − iq6

q1 + iq2 −q3 −q5 − iq6 iq4

⎞
⎟⎠,

(45)

where the coefficients qi, i = 1, . . . , 6, are abbreviations for
combinations of the Tμν ,

q1 = T01 − T10, q2 = T02 − T20, q3 = T03 − T30,

q4 = T12 − T21, q5 = T13 − T31, q6 = T23 − T32.

The eigenvalues of (45) are

±{−Q2 ± 2
[(

q2
1 + q2

2

)
q2

4 + (
q2

1 + q2
3

)
q2

5 + (
q2

2 + q2
3

)
q2

6

+ 2q2q3q4q5 + 2q1q2q5q6 − 2q1q3q4q6
]1/2}1/2

,

where Q2 = ∑6
i=1 q2

i . Thus, the eigenvalues are complex and
the PT symmetry is broken. Including a finite mass term
mγ 0 in general does not change this result. The eigenvalues
of Hint,3 + mγ 0 are modified to read

±{
m2 − Q2 ± 2

[(
q2

1 + q2
2 − m2

)
q2

4 + (
q2

1 + q2
3 − m2

)
q2

5

+ (
q2

2 + q2
3 − m2)q2

6 + 2q2q3q4q5 + 2q1q2q5q6

− 2q1q3q4q6
]1/2}1/2

.

As we have already argued, only if the spectrum is twofold
degenerate, can the eigenvalues be real [32].

If we compare (45) with (37), we see that both have a
quaternionic structure. However, in addition to being PT
symmetric, (37) fulfills the additional condition that this
Hamiltonian is self-adjoint with regard to the PT inner
product according to [13]. This means that, in addition, Hint,3

should fulfill the condition HPT
int,3 = PH†

int,3P = Hint,3. If we
construct HPT

int,3, we find that

q4 = q5 = q6 = 0,

for this condition to hold. The eigenvalues are twofold degen-
erate and if a mass term is included, they are

E± = ±
√

m2 − q2
1 − q2

2 − q2
3,

which is real provided that m2 � q2
1 + q2

2 + q2
3. Thus, PT

symmetry is broken in the chiral limit. The regions of unbro-
ken PT symmetry for the Hamiltonian Hint,3 + mγ 0 for some
specific parameters are shown in Fig. 17.

2. Hint,4 = iB̃μγ0γ5γμ

We now consider the equation of motion resulting from the
non-Hermitian PT -symmetric Hamiltonian Hint,4 (as well as
its corresponding Lagrangian Lint,4),

(i/∂ − iγ 5 /̃B)ψ = 0.

The spectrum associated with this equation can be obtained
by calculating the poles of the associated Green function in
momentum space, which satisfies

(/p − iγ 5 /̃B)S(p) = 1.

Rationalizing this expression for S(p), we identify the disper-
sion relation as

(p2 − B̃2)2 + 4(p · B̃)2 = 0.

This has no real solutions for all p0. Thus, again we find
that the PT symmetry of the Hamiltonian is broken. We also
notice that an anti-PT -symmetric but Hermitian Hamiltonian
would give a real spectrum with dispersion relation (p2 −
B̃2)2 − 4(pB̃)2 = 0.
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FIG. 17. Parametric regions of unbroken PT symmetry (shaded regions) for the Hamiltonian Hint,3 + mγ 0, where q4 = q5 = q6 = 0. Left
panel: In the (m, q1) plane, q2 = 1 and q3 = 2. Right panel: q3 = 2.

Note that the matrix form of the Hamiltonian Hint,4, with
components B̃μ = (B̃0, B̃1, B̃2, B̃3) is

Hint,4

=

⎛
⎜⎜⎜⎝

−iB̃3 −iB̃1 − B̃2 −iB̃0 0
B̃2 − iB̃1 iB̃3 0 −iB̃0

−iB̃0 0 −iB̃3 −iB̃1 − B̃2

0 −iB̃0 B̃2 − iB̃1 iB̃3

⎞
⎟⎟⎟⎠,

which has complex eigenvalues for all B̃μ real,

E1,2 = iB̃0 ± i
√

B̃2
1 + B̃2

2 + B̃2
3,

E3,4 = −iB̃0 ± i
√

B̃2
1 + B̃2

2 + B̃2
3.

If, as in Sec. III B 1, we demand that the Hamiltonian
Hint,4 satisfies the self-adjointness condition according to
[13,14,24], that is, HPT

int,4 = PH†
int,4P = Hint,4, we calculate

that B̃0 �= 0 and B̃1 = B̃2 = B̃3 = 0. The resulting twofold
degenerate energies are

E± = ±
√

m2 − B̃2
0, (46)

where we have included a mass term. This implies a real
spectrum for m2 � B̃2

0. Once again, in the chiral limit the PT
symmetry is broken.

IV. MAIN CONCLUSIONS AND OUTLOOK

Our focus in this paper has been on investigating non-
Hermitian PT -symmetric extensions to fermionic systems
in 1 + 1 and 3 + 1 dimensions. The main findings are the
following:

(a) Usually we explore the symmetries of a field theory by
examining the Lagrangian density. However, the properties as-
sociated with PT symmetry are more easily found by forming
the Euler-Lagrange equations and demanding form invariance
of the relativistic equation of motion with respect to PT .
This is equivalent to constructing the quantum-mechanical

relativistic Hamiltonian and investigating its commutation
relation with PT .

(b) For a pure axial interaction the symmetry properties
in 1 + 1 dimensions differ from those in 3 + 1 dimensions
even though the formal structure of the energy relation is
unchanged. This can be traced back to the different trans-
formation properties of time reversal in 1 + 1 and 3 + 1
dimensions and is ultimately due to the fact that T 2 = −1

in 3 + 1 dimensions.
(c) In 1 + 1 dimensions including a complex PT -

symmetric position-dependent potential in both scalar- and
vector-coupling schemes and combinations thereof can result
in real and discrete eigenvalues, when searching for plane
wave solutions. For appropriately chosen combinations of
scalar and vector couplings, a Schrödinger-like equation can
be found and the spectrum can be determined numerically.
The analogous classical systems give information about the
nature of the spectrum. They display closed contours when
the eigenvalues are real and discrete and they are periodic and
open if there is a real band structure. If the eigenvalues are
complex, the paths are open and nonperiodic.

(d) In 3 + 1 dimensions only two possible Lorentz-
invariant two-body combinations are PT symmetric and not
Hermitian. These, however, give rise to a complex spectrum
in the chiral limit. Including a mass term can result in a real
spectrum. In addition, further constraints are placed on the
parameters if the condition of self-adjointness with respect to
the PT inner product is placed on the Hamiltonian. This does
not change the conclusion.

It remains an open question as to whether including non-
Hermitian PT -symmetric terms can play a role in physical
fermionic systems, for example, affecting chiral symmetry
restoration in the Nambu-Jona-Lasinio model. Here, in the
simplest case, the internal SU(2) symmetry initially coexists
with the global PT symmetry of the Lagrangian. In the
standard formulation, when the internal SU(2) symmetry is
broken, the global PT symmetry is broken concurrently; the
two appear to go hand in hand. However, it is not clear
what the effect of including further PT -symmetric interac-
tion terms may do. Additional interesting fermionic models
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that can be considered are the Thirring models or fermionic
models of the weak interactions.

We conclude by observing that the occurrence of features
associated with complex spectra, such as the nonconservation
of a probability current and associated nonvanishing cross
sections occurs in many other formalisms, for example (and
in particular) in quantum many-body theories in which the
Hilbert space is partially eliminated by projection onto a
limited subspace. Such effects can occur and may not be

physical if the procedures involved are not a priori symmetry
preserving. Methods of deriving PT -symmetry-respecting
projection techniques could alleviate this problem.
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