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Detection of Bell correlations at finite temperature from matter-wave interference fringes
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We show that matter-wave interference fringes formed by two overlapping atomic clouds can yield information
about the nonlocal Bell correlations. To this end, we consider a simple atomic interferometer, where the clouds
are released from the double-well potential and the relative phase is estimated from the density fit to this
interference pattern. The Bell correlations can be deduced from the sensitivity of the phase obtained in this
way. We examine the relation between these two quantities for a wide range of ground states of the double-well,
scanning through the attractive and the repulsive interactions. The presented analysis includes the effects of finite
temperature, when excited states are thermally occupied. We also consider the impact of the spatial resolution
of the single-atom detectors, the fluctuations of the energy mismatch between the wells, and the atom-number
fluctuations. These results establish a link between the fundamental (nonlocality) and the application-oriented
(quantum metrology) aspects of entanglement.
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I. INTRODUCTION

The interference pattern obtained after time-of-flight imag-
ing [1] is a direct probe of phase coherence in ultracold
gases [2,3]. Interference effects have been used to probe the
superfluid to Mott-insulator quantum phase transition in an
optical lattice [4], detect the Berezinskii-Kosterlitz-Thouless
transition in two-dimensional quantum gases [5], demonstrate
collapse and revivals of phase coherence [6], reveal the quan-
tum statistics of bosonic [7] and fermionic [8] atoms via
Hanbury-Brown and Twiss correlations, measure the effective
spin length of a condensate in a double-well system [9,10],
and study the evolution of the relative phase in Josephson
experiments [11–13]. Moreover, interference of condensates
released from an optical lattice has been used to demonstrate
mode entanglement [14] and is a tool to extract the Renyi
entropy in optical lattices [15]. Multipartite entanglement
between atoms in a double-well potential [16–19] can be
detected by the phase uncertainty obtained in repeated inter-
ference experiments with Bose-Einstein condensates [20].

In this manuscript, we show that interference fringes
formed by two weakly linked Bose-Einstein condensates—
initially trapped in a double-well potential and overlapping
after free expansion—can reveal Bell correlations between
atoms through the sole analysis of the one-body density
distribution. We relate the quantum phase sensitivity obtained
from the analysis of the density pattern after the matter-wave
expansion to the criteria for witnessing Bell correlations based
on the first- and second-order correlation functions of bosons
derived in Ref. [21] (see also Refs. [22–26] for recent studies).
Bell’s correlations—recently observed in atomic ensembles
[27–30]—are a strong form of entanglement necessary to
violate Bell’s inequalities [31,32] and eventually demonstrate
the nonlocality of quantum mechanics [33–35]. Differently
from existing experimental studies [27–29], where Bell cor-
relations between neutral atoms have been observed using

internal degrees of freedom (atomic hyperfine states) and
the measurement of the composite spin vector required a
number of manipulations of the system, in our case Bell
correlations are witnessed using external degrees of freedom
and by the observation of the interference pattern. To run a
complete Bell test in such a configuration, qubits should be
spatially separated to ensure that the local transformations
are independent. This could be achieved for instance by
immersing the quantum gas in a superlattice, consisting of
an array of double-well potentials [36]. We demonstrate that
Bell correlations in the Bose gas are naturally present in the
ground state of the system without requiring, in the case of
attractive interaction, further manipulation. Our study takes
into account relevant experimental imperfections such as finite
temperature, finite spatial resolution of single-atom detectors,
and the fluctuations of the energy mismatch between the two
wells of the trapping potential as well as of the total number
of atoms.

II. MODEL AND METHODS

We consider an ultracold Bose gas trapped in a double-well
potential and with tunable interparticle interaction [13,37,38].
For a sufficiently high tunneling barrier and relatively weak
interaction, the system can be described in a two-mode
approximation (see Ref. [38] for a review). In this case,
the bosonic field operator is �̂(r, t ) = ψa(r, t )â + ψb(r, t )b̂,
where â and b̂ annihilate a particle in the left or right well
of the potential, respectively, and ψa,b(r, t ) are the corre-
sponding (real) spatial wave functions centered around the
minima of the double-well trap satisfying

∫
dr ψ2

a,b(r, t ) = 1
and

∫
dr ψa(r, t )ψb(r, t ) = 0. The normalization condition

sets
∫

dr〈�̂†(r, t )�̂(r, t )〉 = 〈â†â + b̂†b̂〉 = N , where N is the
conserved total number of particles. Within this two-mode
approximation, the system can be described by the bosonic
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Josephson junction Hamiltonian

Ĥ = −Ĵx + �

N
Ĵ2

z + δĴz, (1)

where

Ĵx = â†b̂ + b̂†â

2
, Ĵy = â†b̂ − b̂†â

2i
, Ĵz = â†â − b̂†b̂

2
(2)

is the triad of the angular momentum operators. In Eq. (1) the
parameters are rescaled to the Josephson tunneling energy EJ .
And so, � = U/EJ rules the competition between interaction
and tunneling—it can be positive or negative, depending on
whether the interaction strength is repulsive or attractive, re-
spectively. The parameter δ depends on the energy mismatch
between the two wells. It should be noticed that, for δ = 0,
the ground state of Eq. (1) undergoes a second-order quantum
phase transition at � = −1 between a paramagnetic (at � >

−1) and a ferromagnetic (� < −1) phase [38–42]. For a fixed
value of � < −1 and by tuning the energy mismatch δ, we see
that the system has a first-order quantum phase transition with
a discontinuous jump of the population imbalance. First- and
second-order quantum phase transitions in this system have
been experimentally observed in Ref. [37].

After the preparation of the condensate in the double-well
system (we consider the zero-temperature cases as well as the
finite-temperature cases), we give a phase shift ϕ between the
two modes. This is obtained by applying an energy imbalance
δϕ between the two modes for a time tϕ such that ϕ = δϕtϕ
(we set h̄ ≡ 1), assuming that the effect of tunneling and
interaction is negligible during the phase acquisition time,
EJtϕ,Utϕ � ϕ. We also assume that ϕ is reproducible in re-
peated independent experiments. After phase acquisition, the
trap is switched off and the wave packets, initially localized in
the two wells, expand and overlap, giving the field operator

�̂(r, t f ) = φ(r, t f )
(
âe

i
2 (kr+ϕ) + b̂e− i

2 (kr+ϕ)
)
, (3)

where φ(r, t f ) is the common envelope, k = 2r0m/t f , 2r0 is
the vector pointing from the center of one well to the other, t f

is the time of flight, and m is the mass of a single atom. This
gives the normalized one-body density:

�(r, t f ; ϕ) = 〈�̂†(r, t f )�̂(r, t f )〉
N

= 1

N
|φ(r, t f )|2

×〈â†â + b̂†b̂ + â†b̂e−i(kr+ϕ) + b̂†âei(kr+ϕ)〉.
(4)

Using the definitions from Eq. (2) we obtain

�(r, t f ; ϕ) = |φ(r, t f )|2

×
[

1 + 2

N
(〈Ĵx〉 cos(kr + ϕ)

+〈Ĵy〉 sin(kr + ϕ))

]
. (5)

We take 〈Ĵy〉 = 0 throughout the text—this is satisfied for
all the ground states of the double-well potential, as well as
for all eigenstates of the Hamiltonian (1), which have real
coefficients of the expansion into the occupation basis (i.e.,
the basis of eigenstates of the Ĵz operator). This condition is

altered neither by the thermal fluctuations nor by other sources
of noise considered below. In such a case, the visibility of the
fringes is

ν = �max − �min

�max + �min
= 2

N
|〈Ĵx〉|, where (6a)

�max/min = |φ(r, t f )|2(N ± 2|〈Ĵx〉|). (6b)

This gives

�(r, t f ; ϕ) = 〈�̂†(r, t f )�̂(r, t f )〉
N

= 1 + ν cos(k · r + ϕ).

(7)

Note that we typically neglect the envelope |φ(r, t f )|2 in
the experiment; when the central interference fringes are
inspected, the envelope can be safely taken as constant.

The phase ϕ can be estimated by measuring the position
of atoms and then fitting the one-body density �(r, t f ; ϕest ),
Eq. (7), using the least-squares method, with ϕest as a free
parameter. This gives an estimator ϕest of ϕ which is unbiased
[20]; ϕest = ϕ as the number of experiments tends to infinity,
where the overline denotes statistical averaging. The variance
of this estimator, taken as a measure of the sensitivity of the
double-well interferometer, is equal to [20]


2ϕest = 1

N

[
ξ 2
φ +

√
1 − ν2

ν2

]
, (8)

where ξ 2
φ = N〈Ĵ2

y 〉/〈Ĵx〉2 is the spin-squeezing parameter [38].
The condition ξ 2

φ < 1 implies squeezing of the Ĵy spin compo-
nent, which is generally indicated as phase-squeezing [43,44].
We introduce the parameter

A ≡ N
2ϕest − 1 = ξ 2
φ +

√
1 − ν2 − ν2

ν2
. (9)

Sub-shot-noise sensitivity, i.e., 
2ϕest < 1
N , in the estimation

of ϕ is equivalent to A < 0.
In this manuscript we relate Eq. (8) to the witness of

Bell’s correlations introduced in Refs. [21,27], namely B(θ ) ≡
〈B̂(θ )〉, where the operator

B̂(θ ) = 2N cos2

(
θ

2

)
− 4Ĵ1

+ 8 sin2

(
θ

2

)[
−Ĵ1 sin

(
θ

2

)
+ Ĵ2 cos

(
θ

2

)]2

(10)

contains only one- and two-body operators. Here the sub-
scripts “1” and “2” denote a pair of orthogonal directions. The
system contains Bell correlations if B(θ ) < 0.

To relate 
2ϕest—or equivalently the parameter A—to the
witness of Bell correlations, it is convenient to apply the trans-
formations Ĵ1 = Ĵx cos ( θ

2 ) − Ĵy sin ( θ
2 ) and Ĵ2 = Ĵx sin ( θ

2 ) +
Ĵy cos ( θ

2 ) to Eq. (10), giving [27]

B(θ ) = 2N cos2

(
θ

2

)
− 4〈Ĵx〉 cos

(
θ

2

)
+ 8 sin2

(
θ

2

)〈
Ĵ2

y

〉
.

(11)
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FIG. 1. The numerical (solid lines) and analytical (dashed lines) results for coefficients A (gray lines) and B (black lines) as a function of
the interaction strength � for both attractive (left panel) and repulsive (right panel) interactions (T = 0, δ = 0, and N = 1000). The shaded
areas indicate the regimes A � 0 (lighter area) and B � 0 (darker area). Vertical lines for � = −3

2
√

2
, − 3

4 , and 3 indicate the analytical solution
for B = 0.

This equation can be minimized analytically with respect to θ

and the minimum is reached for

cos

(
θ0

2

)
= ν

2
(
1 − ξ 2

φν2
) . (12)

Replacing Eq. (12) into Eq. (11) we obtain that Bell’s correla-
tions are witnessed when

B ≡ ξ 2
φ +

√
1 − ν2 − 1

2ν2
< 0, (13)

the result first obtained in Ref. [27]. Finally, the parameter A
from Eq. (9) and B from (13) are related by a simple function
of the fringe visibility:

B = A + f (ν), (14)

where f (ν) = 1 −
√

1−ν2+1
2ν2 and A is given by Eq. (9). Thus

the fit of the one-body function to the interference pattern
brings not only the knowledge about the phase and its sensi-
tivity [20] but also the knowledge about the Bell correlations
in the system.

III. NOISELESS CASE

First we take the noiseless case—the system is prepared
in the ground state of Eq. (1) with δ = 0—and provide
the analytical expressions for A and B in the semiclassical
approximation [45,46], valid for N � 1. In the regime of
attractive interactions, the system remains phase-squeezed for
−(1 + √

5)/2 < � < 0 [47]. In the semiclassical approach
this range must be split into −1 � � < 0, when the visibility
is almost constant (ν ≈ 1), and −(1 + √

5)/2 < � � −1,
when the visibility quickly drops. In the former case, we have
ξ 2
φ ≈ √

1 + � and

A ≈ √
1 + � − 1, B ≈ √

1 + � − 1/2. (15)

The condition B < 0 reduces to ξ 2
φ < 1/2, which is achieved

for � < −3/4. In the latter case, when −(1 + √
5)/2 < � �

−1, we have ξ 2
φ ≈ |�|√�2 − 1 and ν ≈ 1/|�|, giving

A ≈ 2|�|
√

�2 − 1 − 1, B ≈ 3

2
|�|

√
�2 − 1 − �2

2
. (16)

The condition B < 0 gives � > −3/(2
√

2). The analytical
expressions (15) and (16) are quite accurate for sufficiently
large N , except around � = −1 where the approximations
used to derive these expressions break down [47].

Finally, the repulsive interactions (0 � � � N2) must be
considered separately. This is because the ground state of
Eq. (1) is number-squeezed in this regime, namely ξ 2

N =
N (
Ĵz )2/〈Ĵx〉2 < 1 [9,10,38]. A further rotation through π/2
around the x axis is necessary to transform the number-
squeezing into the phase-squeezing. This rotation is achieved,
for instance, by a quench of the tunneling for a time tπ/2EJ =
π/2 such that tπ/2U � 1 is negligible. This transformation
preserves ν ≈ 1 and yields

A ≈ 1√
1 + �

− 1, B ≈ 1√
1 + �

− 1

2
. (17)

The condition to observe Bell correlations, B < 0, is ξ 2
φ <

1/2, which is fulfilled for � > 3. In Fig. 1 we plot A and
B as a function of � and for N = 1000: analytical results
(solid lines) are well reproduced by the numerical calculation
(dashed lines, obtained via exact diagonalization). The slight
discrepancy between the numerical results and the analytical
prediction for � > 0 is due to the finite atom number and the
assumption ν ≈ 1 used in Eq. (17).

IV. NOISY CASE

In a more realistic scenario, we include the noise coming
from four different sources.

A. Energy imbalance fluctuations

First, we take into account nonvanishing energy imbalance
between the wells, i.e., δ 	= 0, which is one of the leading
sources of noise in current double-well experiments [13,37].
We model the shot-to-shot fluctuations of δ with a Gaussian
distribution of width σδ , such that the quantum state of the
system is given by a density matrix,

�̂σδ,� = N
∫

dδ e
− δ2

2σ2
δ |�δ,�〉〈�δ,�|, (18)
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FIG. 2. Parameter regions where the condition B < 0 (shaded
area) is fulfilled. Panels (a) and (b) show the effect of energy
imbalance (modeled as a normal distribution with width σδ) at T = 0.
Panels (c) and (d) show the finite temperatures T case, for σδ = 0.
Panels (e) and (f) show the effect of the finite resolution σ of
spatial detection of the atoms, at T = 0 and σδ = 0. The dashed lines
in panels (c)–(f) are analytic predictions for B = 0 obtained from
Eq. (22). In all panels N = 1000.

where N is the normalization constant and |�δ,�〉 is the
ground state of Eq. (1) for fixed values of � and δ. We
calculate A and B for Eq. (18) and plot the results in Figs. 2(a)
and 2(b). There, we show the regions of B < 0: the darker
the shade of gray is, the more negative the value of B is.
With growing σδ the range of values of � for which the Bell
correlations are witnessed by B shrinks, and the effect is much
more pronounced for attractive interactions. The regions of
SSN sensitivity, A < 0 shrinks proportionally, according to
Eq. (14).

B. Thermal fluctuations

Next, we consider the effects of nonzero temperature. First,
we construct the density matrix at thermal equilibrium for the
Hamiltonian (1), namely

�̂th = 1

Z

N∑
n=0

|�n〉〈�n|e−βEn , (19)

where Z is the partition function, Ĥ |�n〉 = En|�n〉, and
β = EJ/(kBT ) (where kB is the Boltzmann constant). The

coefficients A and B are obtained from a calculation of
the relevant spin moments using �̂th, for instance, 〈Ĵ2

y 〉
th

=
Tr[�̂thĴ2

y ] = ∑N
n=0

e−βEn

Z 〈�n|Ĵ2
y |�n〉. Numerical results are

shown in Figs. 2(c) and 2(d). The dashed lines in these panels
give B = 0 and are obtained from an analytical expression for
the spin-squeezing parameter [47], valid for sufficiently large
N ,

ξ 2
φ (T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|�|√�2 − 1 coth
(

β
√

�2−1
2

)
, � < −1,

√
1 + � coth

(
β
√

1+�

2

)
, −1 < � < 0,

1√
1+�

coth
(

β
√

1+�

2

)
, � > 0,

(20)

and assuming ν ≈ 1 the numerical results are reproduced
quite accurately.

C. Finite resolution

The third source of noise we consider comes from the finite
resolution in the detection of the atoms. To model this effect
we convolute the density Eq. (7) with a Gaussian probability
of detecting an atom at position r given its true position r′,
namely

�̃(r, t f ; ϕ) = 1

(
√

2πσ )3

∫
dr e− (r−r′ )2

2σ2 �(r, t f ; ϕ)

= 1 + ν̃ cos(k · r + ϕ), (21)

where ν̃ = νe− 1
2 k2σ 2

is a blurred visibility. Using �̃, we calcu-
late the sensitivity 
2ϕest and, from Eq. (14), we obtain the
expression for the Bell witness, i.e.,

B(T, σ ) = ξ 2
φ (T ) +

√
1 − ν̃2 − 1

2ν̃2
. (22)

In Figs. 2(e) and 2(f), we show the region of parameters for
which B(0, σ ) � 0, while the dashed line is the analytical
prediction for B = 0.

In Fig. 3 we display the combined effect of these three
sources of noise, both on A and B. In the top row (a), we
show that the growth of σδ from 0.01 to 0.05 (i.e., from dashed
to dash-dotted lines, with fixed T = 0.1 and σ = 0.1) has
significant impact, particularly on B in the negative-� regime.
This is also visible in the middle row (b) when the temperature
rises from T = 0.1 to T = 0.2 (with fixed σ = 0.1 and σδ =
0.01). On the other hand, when the population imbalance
fluctuations are fixed at σδ = 0.01 and the temperature is at
T = 0.2, a loss of resolution from 0.05 to 0.2 does not have a
pronounced effect in either the repulsive-interactions case or
the attractive-interactions case, as can be seen in the bottom
row (c). Such observations could be helpful for designing
future experiments with entangled quantum gases.

D. Atom-number fluctuations

Finally, we take into account the impact of the shot-to-shot
atom-number fluctuations. To this end, we follow the method
outlined in the supplementary materials of Ref. [27]. We
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FIG. 3. The accumulated impact of all types of noise on A (gray lines) and B (black lines) as a function of the interaction strength � for both
attractive (left column) and repulsive (right column) interactions. (a) T = 0.1, σ = 0.1, σδ = 0.01 (dashed lines), and σδ = 0.05 (dash-dotted
lines). (b) σδ = 0.01, σ = 0.1, T = 0.1 (dashed lines), and T = 0.2 (dash-dotted lines). (c) σδ = 0.01, T = 0.1, σ = 0.05 (dashed lines), and
σ = 0.2 (dash-dotted lines) In all panels N = 500. The shaded areas show the regions of � where the SSN sensitivity (light gray) and Bell
correlations (dark gray) are present in the ideal noise-free case.

construct a mixture,

�̂σN ,� =
∞∑

N=0

PN |ψN,�〉〈ψN,�|, (23)

where the probability for having N atoms in the system is
modeled with a Gaussian function of width σN , i.e.,

PN ∝ exp

[
− (N − N̄ )2

2σ 2
N

]
. (24)

Here N̄ is the mean number of atoms in the system and the
proportionality stands for the normalization. Also, |ψN,�〉 is
the ground-state of the Hamiltonian (1) at δ = 0 with fixed N
and �.

Since the angular momentum operators act in a fixed-N
subspace of the total Hilbert space, the Bell operator from
Eq. (10) can be divided by the atom-number operator N̂ ,

giving the witness of Bell correlations analogous to Eq. (11),
namely

b(θ ) = 2 cos2

(
θ

2

)
− 4x cos

(
θ

2

)
+ 8y2 sin2

(
θ

2

)
, (25)

where we introduced

x =
〈

Ĵx

N̂

〉
, y2 =

〈
Ĵ2

y

N̂

〉
, (26)

and the average is calculated using the state (23). Next, we
optimize this expression with respect to θ and obtain that if

B ≡ y2

x2
+

√
1 − 4x2 − 1

8x2
< 0 (27)

the system is Bell correlated. In Fig. 4 we display B for
N̄ = 30 (top row) with the fluctuations at the shot-noise
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(a)

(b)

FIG. 4. The Bell witness B in the presence of atom-number fluctuations. (a) N̄ = 30 with σN =
√

N̄ (solid line lines) and σN = 20
(dot-dashed lines). (b) N̄ = 300 and σN =

√
N̄ (solid lines) and σN = 200 (dot-dashed lines). Gray areas show regions of � where the Bell

correlations are witnessed by B, i.e., in the absence of atom-number fluctuations.

level, which is typically encountered in the experiments, i.e.,
σN =

√
N̄  5.5 (solid line) and much-exceeding this value

(σN = 20, dot-dashed line). The bottom row is for N̄ = 300
and analogically σN =

√
N̄  17.3 (solid line) and σN = 200

(dot-dashed line). These numerical results are contrasted with
the ideal case when the atom-number fluctuations are absent
(i.e., σN → 0). When the fluctuations are at the shot-noise
level, the difference is hardly noticeable in both the low- and
the high-N̄ cases. This is because B is to a good approximation
intensive in N [see Eqs. (15), (16), and (17)]. Therefore both
x and y2 weakly depend on N in this regime. Only vast
atom-number fluctuations shrink the region of �, where the
Bell correlations are witnessed by Eq. (25).

V. CONCLUSIONS

We have shown that the observation of the one-body
density distribution of atoms released from a double-well
potential and forming an interference pattern can witness
the existence of nonlocal Bell correlations is this system.
This is achieved by a precise link between the precision of

phase estimation obtained from a fit of the density to this
pattern and the Bell coefficient B introduced in Refs. [21,27].
We have analyzed the relation between these two quantities
for the bosonic Josephson junction Hamiltonian, with both
attractive and repulsive interaction, including the effects of
finite temperature, energy imbalance between the two wells,
finite detection efficiency, and atom-number fluctuations. The
two former sources of imperfection have a leading impact on
the observation of Bell correlations considered here, while the
latter pair is less significant. Our results provide an experimen-
tally feasible method of detecting the Bell correlations and
establish a link between the fundamental and the application-
oriented aspects of entanglement.
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