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Optimal work-to-work conversion of a nonlinear quantum Brownian duet
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Performances of work-to-work conversion are studied for a dissipative nonlinear quantum system with two
isochromatic phase-shifted drives. It is shown that for weak Ohmic damping simultaneous maximization of
efficiency with finite power yield and low power fluctuations can be achieved. Optimal performances of these
three quantities are accompanied by a shortfall of the tradeoff bound recently introduced for classical thermal
machines. This bound can be undercut down to zero for sufficiently low temperature and weak dissipation,
where the non-Markovian quantum nature dominates. Analytic results are given for linear thermodynamics.
These general features can persist in the nonlinear driving regime near a maximum of the power yield and a
minimum of the power fluctuations. This broadens the scope to an operation field beyond linear response.

DOI: 10.1103/PhysRevA.99.062111

I. INTRODUCTION

Major efforts in classical and quantum thermodynamics are
directed at strategies to efficiently manipulate and transform
varied forms of energy into useful ones [1–11]. Optimal
heat-to-work conversion is a founding principle for a wide
range of applications, from industrial processes to biological
functionalities, thermoelectricity, and photovoltaics [3]. The
seminal work of Carnot established an upper bound, η � ηC,
for the efficiency η of all heat engines. It is argued that this
bound is saturated for reversible operation with vanishing
power yield [3,12–16]. This poses a severe restriction, as
finite power output is essential for usable thermal machines.
However, both efficiency and yield have to be sufficiently
large for a well working engine: if η is small, a major part
of energy is wasted, while low output power would not
supply sizable work in finite time. Various studies focused
on the maximum attainable efficiency at a given finite power
yield [17–21]. General relations linking maximum power,
maximum efficiency, and minimum dissipation have been
derived within linear thermodynamics [22–26]. It has been
proposed that constraints on efficiency at finite power could
be overcome in specific settings, e.g., by breaking time-
reversal symmetry [22]. Various attempts to get close to
Carnot efficiency upon retaining finite power have been made
[27–30], e.g., by suggesting working points near critical phase
transitions [28,29]. However, these settings are impaired by
large power fluctuations, which undermine effective working
of the machine [29,31].

A universal tradeoff criterion, a bound constraining these
quantities and holding for a wide class of classical Marko-
vian systems operating in the steady state, has been derived
[32–37]. The bound implies that high power yield, efficiency
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close to the Carnot value, and small power fluctuations are
not compatible. Generalizations of the tradeoff bound hold-
ing for time-periodic systems have been discussed [38,39].
Recently, weakening of the tradeoff bound has been found in
ballistic multiterminal transport [40] and in coherent electron
transport through resonant single- and double-dot junctions
without [41] and with electron interactions [42].

It is therefore interesting to study systematically the impact
of quantum effects on the tradeoff criterion in a key model of
quantum transport: a quantum Brownian particle (QBP) mov-
ing in a tight-binding (TB) lattice and coupled to a thermal
reservoir creating Ohmic friction. With two time-dependent
external drives, the system forms a quantum Brownian duet
and acts as an isothermal work-to-work converter. The QBP
model has widely varied applications [43]. It describes, e.g.,
the current-voltage characteristics of a Josephson junction
[44–46], transport of charge through impurities in quan-
tum wires [47,48], and tunneling of edge currents through
constrictions in one-dimensional interacting fermion systems
[49–53]. The Ohmic spectral coupling entails power laws for
the temperature and bias dependence of tunneling rates. This
leads for weak damping, e.g., to increasing tunneling with
decreasing temperature [54,55].

In this paper we first show within linear thermodynamics
and weak tunneling, that the specific Ohmic features make it
possible to optimize performance upon simultaneous adjust-
ment of large power yield, high efficiency, and low power
fluctuations. We find that for weak damping the tradeoff quan-
tity can fall below the classical bound and can even approach
zero, as temperature is decreased and the non-Markovian
quantum regime is reached. We also focus on a hitherto mostly
disregarded regime beyond linear thermodynamics, in which
nonlinear external driving and response prevails. We there
discover a parameter regime with sizable power yield, low
power fluctuations, and efficiency still close to unity.
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II. MODEL

Consider a quantum Brownian particle (QBP) in a
tight-binding (TB) lattice bilinearly coupled to a thermal
bath of harmonic oscillators at inverse temperature β. The
TB Hamiltonian is HTB = − 1

2 h̄�
∑

n(a†
nan+1 + H.c.) and

the bath-plus-coupling term is HRI = ∑
α [ p2

α

2mα
+ mαω2

α

2 (xα −
cα

mαωα
q)2], where q = q0

∑
n a†

nan, and q0 is the lattice con-

stant. The spectral bath coupling is J (ω) = π
2

∑
α

c2
α

mαωα
δ(ω −

ωα ) [43,56]. In the Ohmic scaling limit we have J (ω) =
2πKω, where K is the dimensionless damping strength.
The bare transfer amplitude � is adiabatically renormal-
ized by the modes ω > ωc to the dressed amplitude �r =
�(�/ωc)K/(1−K ). The QBP model maps inter alia on quasi-
particles tunneling through a quantum point contact (QPC) in
the fractional quantum Hall (FQH) regime [49,50], whereby
K corresponds to the fractional filling factor ν. The weak-
damping regime K � 1 matches up with strong repulsive
short-range electron interactions.

Here we study energy input and output of the single-band
QBP model under time-periodic drive Hext (t ) = −h̄ε(t ) q/q0,
where ε(t ) = ε(t + T). When the QBP is subjected to two
independent drives, ε(t ) = ε1(t ) + ε2(t ), as discussed for a
classical setting in Refs. [23,25], it can operate as a work-
to-work converter. But it will require that the respective work
rates or powers, Ẇi ≡ Pi(t ) = εi(t )q̇(t ), i = 1, 2, can be dis-
tinguished. We now choose h̄ = kB = q0 = 1.

At long times, the power Pi(t ) reaches the periodic
state Pi(t ) = Pi(t + T), and the mean power is 〈Pi〉 =∫ T

0 dt Pi(t )/T. With the deviation δPi(t ) = Pi(t ) − Pi(t ), the
power fluctuations are Di(t ) = ∫ t

0 dt ′ ∫ t
0 dt ′′ δPi(t ′)δPi(t ′′)/t ,

and the mean power spread is 〈Di〉 = ∫ T

0 dt Di(t )/T.
Consider now mean power and power fluctuations of the

driven QBP. First, we deal with order �2, which is the lead-
ing contribution in the weak-tunneling regime. It describes
transport via nearest-neighbor transitions, and single-electron
transport in the related fermionic model. We have (see
Appendix)

〈Pi〉 =
∫ ∞

0
dτ kP(τ )

∫ T

0

dt

T
εi(t ) sin[G(t, t − τ )], (1)

〈Di〉 =
∫ ∞

0
dτ kD(τ )

∫ T

0

dt

T
εi(t )εi(t − τ ) cos[G(t, t − τ )],

(2)

with G(t2, t1) = ∫ t2
t1

dt ′ [ε1(t ′) + ε2(t ′)]. The functions
kP/D(τ ) carry the amplitude factor �2−2K

r and the Ohmic
bath correlations. They read kD(τ ) = cot(πK )kP(τ ) and
[43,56,57]

kP(τ ) = �2
r

(
π

β�r

)2K sin(πK )

sinh(πτ/β )2K
. (3)

When the mean powers have opposite sign, 〈P1〉〈P2〉 < 0,
the QBP entity is acting as work-to-work converter with the
positive power being the input and the negative power being
the output or yield [1,25]. If 〈P2〉 is the input and 〈P1〉 is the
yield, the efficiency of the converter is η ≡ |〈P1〉|/〈P2〉 � 1.
Optimal performance is characterized by maximal efficiency

at given input. However, optimization of the converter should
also conform to power fluctuations as low as possible. The
latter may be rated with the estimate of relative uncertainty

�1 =
√

〈D1〉/〈P1〉2. (4)

It has been argued and proved for a huge class of steady-
state heat engines with internal classical states that there is a
tradeoff between large power, high efficiency, and low relative
uncertainty, being expressed by the joint bound [32–35,37]

Q1 ≡ β|〈P1〉|(1/η − 1)�2
1 � 2. (5)

If efficiency is close to unity with considerable yield, the
bound implies that the power fluctuations are quite large.
Conversely, if the bound is broken, simultaneous attainment of
maximal efficiency, sizable yield, and low power fluctuations
is within reach. This can happen indeed, as shown below.

III. WORK-TO-WORK CONVERSION
WITH TWO MONOCHROMATIC DRIVES

If the frequencies of the two drives would be different, the
work rates could clearly be distinguished. But here we choose
the same frequency. Otherwise, the single-band model could
not operate as a converter in the linear regime, as different
frequencies would not couple [24]. We put

ε1(t ) = F1 sin(ωt ),

ε2(t ) = F2 cos(ωt − ϕ). (6)

Here, the tunable phase shift ϕ = arctan α determines the
(time-reversal) asymmetry between the two drives.

The drives (6) can be combined into

ε(t ) =F sin(ω t + �),

F = sgn (F1 + F2 sin ϕ)
[
F 2

1 + F 2
2 + 2F1F2 sin ϕ

]1/2
, (7)

� = arctan[F2 cos ϕ/(F1 + F2 sin ϕ)].

With (6) and (7) the time-averaged powers are found as (see
Appendix)

〈P1〉 =
∫ ∞

0
dτ kP(τ ) F1 J1[A(τ )] cos(� − ωτ/2),

〈P2〉 =
∫ ∞

0
dτ kP(τ ) F2 J1[A(τ )] sin(� + ϕ − ωτ/2) (8)

with A(τ ) = 2F sin(ωτ/2)/ω, and Jn(z) is a Bessel function.
The mean power fluctuations are found from Eq. (2) as

〈Di〉 = 1

2

∫ ∞

0
dτ kD(τ ) di(τ ), i = 1, 2,

d1(τ ) = F 2
1 {J0[A(τ )] cos(ωτ ) − J2[A(τ )] cos(2�)}, (9)

d2(τ ) = F 2
2 {J0[A(τ )] cos(ωτ ) + J2[A(τ )] cos(2� + 2ϕ)}.

The expressions (8) and (9) are exact in the weak-tunneling
limit for arbitrary strength of the driving amplitudes F1

and F2.
As the drives (6) have common frequency, one may ques-

tion whether the powers (8) and fluctuations (9) can be ex-
perimentally distinguished. This is possible, in fact, when the
forces (6) are independent, e.g., when they operate spatially
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separated. A system which can be mapped on the driven QBP
is a quantum point contact (QPC) in a fractional quantum
Hall (FQH) bar [49,50,58–61] with two spatially separated
terminals at which the gate voltage drives are applied. The
filling factor ν corresponds to the Ohmic coupling parameter
K . In such a physical implementation, the powers (8), and
power fluctuations (9) can be measured individually. The QPC
model with mapping on the QBP is discussed in the Appendix.

A. Linear response

In the linear response (LR) regime, the dependence of the
mean powers on the driving amplitudes F1 and F2 is expressed
in terms of the Onsager matrix L as 〈Pi〉 = Fi

∑
j=1,2 Li, j Fj .

We get from Eqs. (8)

L = L s(ω)

(
1 α+κ√

1+α2
α−κ√
1+α2 1

)
, (10)

where κ = L c(ω)/L s(ω), and where

L s(ω) = 1

2ω

∫ ∞

0
dτ kP(τ ) sin(ωτ ),

L c(ω) = 1

2ω

∫ ∞

0
dτ kP(τ ) [1 − cos(ωτ )]. (11)

The functions L s(ω) and κ bear Ohmic bath correlations.
Dependence on β, ω, and K can be given in analytic form
(see Appendix). The parameter α controls the phase shift of
the drive (6). In addition, in the LR regime the power variance
becomes 〈Di〉 = F 2

i ω coth(βω/2)Ls(ω) (see Appendix).
The Onsager matrix conveys the interplay of phase tuning

of the driving forces and exchange of energy ω between bath
and QBP. In the limit α → ∞ (ϕ → π/2), the Onsager matrix
is symmetric, and the work-to-work converter operates time-
reversal symmetrically. As α is lowered, the Onsager matrix
gets antisymmetric admixtures, and time-reversal symmetry is
broken. In our setting, this scenario sets in without switching
on external magnetic fields [22]. In the limit α → 0 (ϕ → 0),
the Onsager matrix is antisymmetric. Upon tuning α, one
moves forth or back between these limiting cases.

For the linear model (10), the maximum output power is at
F1 = F1,MP ≡ −(α + κ )F2/(2

√
1 + α2):

〈P1,MP〉 ≡ 〈P1(F1,MP, F2)〉 = −L s(ω) F 2
1,MP. (12)

The condition 〈P1(F1, F2)〉/〈P1,MP〉 = P� has two roots, which
are F1,± = (1 ± √

1 − P�) F1,MP. Correspondingly, efficiency
and power fluctuations as functions of P� have two branches,

η± = P∗

2

X

1 + 2/Y ∓ √
1 − P∗ , (13)

�1,± = 2

F2

√
1 + α2

α + κ

√
ω coth(βω/2)

L s(ω)

1 ± √
1 − P∗

P∗ , (14)

where X = (α + κ )/(α − κ ) and Y = (α2 − κ2)/(1 + κ2).
The respective two branches collide at P� = 1.

The two branches are plotted versus P� in Fig. 1 for
efficiency (left) and power fluctuations (right). The behaviors
are qualitatively different for α > κ and α < κ . The left panel
shows that high efficiency can be reached on the (+) branch
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FIG. 1. Efficiency (a) and power fluctuations (b) in the LR
regime as function of P∗ (see text). Blue (red) color refers to the +
(−) branch. The solid curve is α = 4κ and the dashed curve α =
0.2κ . Other parameters are βω = 6, ω = 5 �r, �r = 1, K = 0.1,
and F2 = 0.1ω.

when α > κ , and on the (−) branch when α < κ . In contrast,
low power fluctuations arise only in branch (−) when α < κ .
Hence high efficiency is compatible with low power fluctua-
tions when α < κ , i.e., when the antisymmetric off-diagonal
parts of the Onsager matrix outweigh the symmetric ones.

To find optimum working conditions, we now focus on
the maximum efficiency (ME) at notable power yield. The
efficiency η(F1) for fixed F2 is maximal at F1 = F1,ME, where
F1,ME = −F2(

√
1 + κ2 − √

1 + α2)/(κ − α), and is given by

ηME =
√

1 + α2 − √
1 + κ2

√
1 + α2 + √

1 + κ2

α + κ

α − κ
. (15)

Figure 2(a) shows ηME versus βω for different interaction
strengths K . As K is decreased, ηME is strictly increasing.
In the asymptotic non-Markovian low temperature regime
βω � 1, in which [62]

κ (βω) → tan(πK )[(βω/(2π ))1−2K�(K )2/π − 1], (16)

the function κ (βω) diverges as (βω)1−2K for 0 < K < 1/2
and is a positive constant for 1/2 < K < 1. Hence, as βω →
∞, ηME reaches unity in the former case and a value less
than unity in the latter case. For K � 1/2, the prefactor of
the term (βω/(2π ))1−2K in Eq. (16) is π/K . Thus, for weak
Ohmic damping, or large repulsive Coulomb interaction in
the associated fermionic transport model, the ME efficiency
dwells close to unity in a considerably wide temperature
range.
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FIG. 2. Maximum efficiency ηME (a) and tradeoff criterion Q1,ME

(b) versus βω in the LR regime for α = 5 and different K [in both
(a) and (b)]. See text. Shortfall of the bound 2 occurs for K � 0.4.
The gradual increase of Q1,ME in the range 1/4 < K � 0.4 takes
place at higher βω than shown in (b).
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Eventually, with the function c(x) = 2x coth(x/2), the
tradeoff criterion (5) at F1 = F1,ME takes the concise form (see
Appendix)

Q1,ME = c(βω)

√
1 + α2

(α + κ )2

(
1 − ακ√

1 + κ2
+

√
1 + α2

)
. (17)

In Fig. 2(b) the quantity Q1,ME is plotted versus βω for dif-
ferent values of K . Since κ (βω → 0, K ) → 0, the curves start
out for all K at the value 4

√
1 + α2(1 + √

1 + α2)/α2. In the
regime 1/2 < K < 1, we have κ (βω → ∞) = − tan(πK ),
and hence Q1,ME grows linearly with inverse temperature
at low temperatures, whereas |〈P1,ME〉| and �1,ME become
constant in this limit. In contrast, in the range 0 < K < 1/2,
κ (βω → ∞) diverges asymptotically as (βω)1−2K . Thus, the
power |〈P1,ME〉| grows as (βω)1−2K , the relative uncertainty
�1,ME drops to zero as (βω)2K−1, and the quantity Q1,ME

varies as (βω)4K−1 in this limit. As a result, Q1,ME diverges in
the range 1/4 < K < 1/2, stays flat below 2 for K = 1/4, and
drops to zero when K is in the range 0 < K < 1/4, as βω →
∞. Hence the QBP work converter has optimal performance
for weak damping 0 < K < 1/4. With decreasing temperature
the quantity Q1,ME falls well below the classical bound 2,
and eventually drops to zero, as the non-Markovian quantum
regime is reached. Hence large power, high efficiency, and
small power fluctuations are in fact compatible.

We have investigated the impact of an additional n-fold fre-
quency drive in the output, ε1(t ) = F1[sin(ωt + γn sin(nωt )].
We found that the behaviors shown in Figs. 1 and 2 change
only marginally for 0 < γn < 1. Details are given in the
Appendix.

B. Nonlinear response

The above results of the LR regime hold when the driving
amplitude F2 is sufficiently small, F2 � αω. For larger F2, the
interplay of nonlinear driving with bath correlations becomes
significant, and the ME analysis must start with the original
expressions (8) and (9). The ME point F1 = F1,ME is found as
the numerical root of dη/dF1 = 0. With this, numerical non-
linear response (NLR) computation of P1,ME, η1,ME, �1,ME,
and Q1,ME is straightforward.

The characteristic behaviors of 〈P1,ME〉, η1,ME, and �1,ME

versus F2/ω in the NLR are shown in Figs. 3(a)–3(c) for βω =
6 (blue) and βω = 2 (red) for K = 0.1. Clear deviations from
the LR behaviors occur in (a), (b), and (c), as F2/ω is in-
creased. The yield |〈P1,ME〉| reaches a maximum near F2/ω =
7.5 for both temperatures. By contrast, the NLR power fluctu-
ations run through a flat minimum located near F2/ω = 2 for
βω = 6 and near F2/ω = 4 for βω = 2 and spanning a broad
amplitude range. In this area, the work-to-work converter has
sizable power yield with simultaneous low power fluctuations
and efficiency still close to unity, only slightly smaller than in
LR. This indicates that the NLR regime is a promising field
for finding the best compromise between large power yield,
low power fluctuations and high efficiency. Panel (d) displays
the tradeoff criterion Q1,ME versus βω for different values of
F2/ω. Most interestingly, the quantity Q1,ME falls below 2 for
F2/ω below 5.5 and sufficiently low temperature. In contrast,
it consistently stays above 2 for larger F2/ω and arbitrarily low
temperatures. In the former case, the power fluctuations are in

FIG. 3. Nonlinear regime. (a) and (b) Mean power and power
fluctuations at maximum efficiency versus F2/ω. (c) Efficiency ηME

versus F2/ω. (d) Tradeoff criterion Q1,ME versus βω for different
F2/ω. See text. The solid curves are those of nonlinear response
(NLR), and the dashed curves pertain to linear response (LR). The
parameters are K = 0.1, α = 5, ω = 5�r , and �r = 1. The param-
eter range covered by the plots is experimentally accessible in QPC
transport experiments in the FQH regime [58,59].

the flat minimum of panel (b), thereby facilitating shortfall of
the tradeoff bound in the NLR.

So far, we have studied mean powers and power dispersion
of the QBP converter in order �2. Contributions of higher
order in �2 may become significant at sufficiently low T ,
depending on the parameters of the model. Starting out from
the real-time version [43] of the Coulomb gas representation
[63] of the perturbative series in �2, we have calculated the
�4 terms of powers and variance numerically. These terms
result from direct next-to-nearest-neighbor transitions in the
TB lattice and coherent transport of two charges in the asso-
ciated fermionic transport model. In addition to this, we have
approximately taken into account all tunneling contributions
of higher order in �2 by summation of partial contributions in
each order. The quality of this approximate treatment of the
strong tunneling regime has been checked for the point K =
1
2 , for which all orders in �2 can be summed exactly [43,57].
Formidable agreement down to very low temperatures has
been found. The conclusions of the numerical analysis are that
the higher-order tunneling terms yield marginal contributions
up to inverse temperature βω = 6 for �r = 1, and the above
weak-tunneling results are qualitatively correct down to much
lower temperatures. Until now, reliable results in the asymp-
totic low temperature regime are missing. Nevertheless, it is
rather unlikely that coherent tunneling transitions across many
TB states will spoil the characteristics shown above.

IV. CONCLUSIONS

We have studied work-to-work conversion of a quantum
Brownian particle in a TB lattice subjected to two isochro-
matic drives and coupled to a thermal bath with Ohmic
spectral density. We have argued that this scenario can be
experimentally realized and tested by a two-terminal setup of
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a fractional quantum Hall bar with a quantum point contact.
Analytic results in the linear response regime have been
presented for mean power, efficiency, power fluctuations,
and the tradeoff criterion. It has been shown that optimal
performance at weak damping and low temperatures comes
along with a clear undercut of the classical tradeoff bound.
We have also focused on the performance in the regime of
nonlinear response to driving with large amplitudes. It has
been found that large power yield with low power fluctuations
and with efficiency close to unity can be realized in a wide
parameter range of the external drive. This reveals the hitherto
mostly disregarded nonlinear response regime as a promising
operation field for isothermal machines.
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APPENDIX: POWER AND POWER FLUCTUATIONS

The Hamiltonian of the quantum Brownian particle (QBP)
in a TB lattice with lattice spacing q0, bilinearly coupled to a
bath of harmonic oscillators and driven by two time-periodic
forces of period T, h̄ε1(t )/q0, and h̄ε2(t )/q0, is [43,57]

H (t ) = HTB + HRI + Hext (t ), (A1)

where

HTB = − h̄�

2

∑
n

(a†
nan+1 + H.c.),

HRI =
∑

α

[
p2

α

2mα

+ mαω2
α

2

(
xα − cα

mαωα

q

)2
]
, (A2)

Hext (t ) = −h̄[ε1(t ) + ε2(t )]q/q0.

Here q = q0
∑

n a†
nan, and h̄� is the tunneling coupling en-

ergy of neighboring TB states. The spectral density of the bath

coupling is J (ω) = π
2

∑
α

c2
α

mαωα
δ(ω − ωα ). From now on we

put q0 = h̄ = kB = 1.
The power Pi(t ) (i = 1, 2) for the drive εi(t ) is related to

the Brownian particle’s velocity q̇(t ) as

Pi(t ) = εi(t )q̇(t ). (A3)

The TB representation of the average position of the Brow-
nian particle is a perturbative series in �2. It can be written
as a grand-canonical sum of a one-dimensional gas of charges
e j = ±1 with complex interactions eeie j [W ′(τi j )±i W ′′(τi j ) ], where
τi j is the distance of the charge pair [7,43,57]. The complex
pair interaction W (τ ) = W ′(τ ) + i W ′′(τ ) includes all effects
of the spectral bath coupling, and is defined as

W (τ ) = 1

π

∫ ∞

0
dω

J (ω)

ω2

cosh
[
ω

β

2

] − cosh
[
ω

(
β

2 − iτ
)]

sinh
[
ω

β

2

] .

(A4)
For complex time z = t − i τ , the equilibrium correlation
function W (z) is analytic in the strip 0 � Im z > −β and
satisfies

W (−z − i β ) = W (z). (A5)

In the weak tunneling limit, the position of the quantum
Brownian particle at time t is

q(t ) =
∫ t

0
dt2

∫ t2

0
dt1 kP(t2 − t1) sin[G(t2, t1)], (A6)

where

kP(τ ) = �2 sin[W ′′(τ )]e−W ′(τ ) (A7)

includes the bath correlations, and G(t2, t1) is the total bias
phase accumulated in the time interval extending from t1 to t2:

G(t2, t1) =
∑
i=1,2

∫ t2

t1

dt ′ εi(t
′). (A8)

At times much larger than the decay time of kP(τ ) (indicated
by the overbar), the power Pi(t ) = εi(t )q̇(t ), i = 1, 2, is

Pi(t ) = εi(t )
∫ ∞

0
dτ kP(τ ) sin[G(t, t − τ )]. (A9)

The function Pi(t ) is a periodic function of t with period T.
The steady-state component 〈Pi〉 of Pi(t ) is obtained upon
taking the average over the period T:

〈Pi〉 =
∫ ∞

0
dτ kP(τ )

∫ T

0

dt

T
εi(t ) sin[G(t, t − τ )]. (A10)

Consider next the power variance, which is defined as

Di(t ) = 1

t

∫ t

0
dt2

∫ t

0
dt1 δPi(t2)δPi(t1) , (A11)

where δPi(τ ) = Pi(τ ) − Pi(τ ). At long times, we then have

Di(t ) =
∫ ∞

0
dτ [ δPi(t )δPi(t − τ ) + δPi(t − τ )δPi(t ) ],

(A12)
and, with the relation Pi(t ) = εi(t )q̇(t ),

Di(t ) =
∫ ∞

0
dτ εi(t )εi(t − τ )[ q̇(t )q̇(t − τ ) + q̇(t − τ )q̇(t )

− 2q̇(t )q̇(t − τ )]. (A13)

From this, the steady-state component is found in order �2 as

〈Di〉 =
∫ ∞

0
dτ kD(τ )

∫ T

0

dt

T
εi(t )εi(t − τ ) cos[G(t, t − τ )],

(A14)
where

kD(τ ) = �2 cos[W ′′(τ )] e−W ′(τ ). (A15)

The property (A5) leads to the detailed balance relation [43]∫ ∞

0
dτ sin(ωτ )kP(τ ) = coth

(
ωβ

2

) ∫ ∞

0
dτ cos(ωτ )kD(τ ).

(A16)

The Ohmic spectral density of the coupling is J (ω) = 2πK ω,
where K is the dimensionless coupling strength. Upon includ-
ing modes above a cutoff frequency ωc in adiabatic approxi-
mation, we obtain from Eq. (A4) the analytic form

W (τ ) = 2K ln [(βωc/π ) sinh (π |τ |/β )] + iπKsgn(τ ).

(A17)
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With the dressed tunneling amplitude �r = �(�/ωc)K/(1−K ),
the functions (A7) and (A15) take in the range τ > 0 the forms

kP(τ ) = �2
r

(
π

β�r

)2K sin(πK )

sinh[πτ/β]2K
,

kD(τ ) = �2
r

(
π

β�r

)2K cos(πK )

sinh[πτ/β]2K
. (A18)

1. Brownian duet

Consider mean power and power variance for isochromatic
driving with an added multiple frequency term in the output
channel, and a phase shift ϕ = arctan α in the input channel:

ε(t ) = ε1(t ) + ε2(t ),

ε1(t ) = F1 [sin(ωt ) + γn sin(nωt )], (A19)

ε2(t ) = F2 cos(ωt − ϕ).

With the drive (A19), the bias phase can be written as

G(t, t − τ ) = F

ω
{cos[ω(t − τ ) + �] − cos[ωt + �]}

+ F1

nω
γn{cos[nω(t − τ )] − cos(nωt )}, (A20)

where F = sgn (F1 + F2 sin ϕ)[F 2
1 + F 2

2 + 2F1F2 sin ϕ]1/2,
and � = arctan[F2 cos ϕ/(F1 + F2 sin ϕ)]. The bias phase
factor

B(t, t − τ ) = ei G(t, t−τ ) (A21)

is a periodic function of time t . It can be written as the double
Fourier series

B(t, t − τ ) =
+∞∑

k=−∞
Jk[A(τ )] e−i kωτ/2ei k�

×
+∞∑

�=−∞
J�[A1(τ )] e−i �nωτ/2 ei (k+�n)ω t , (A22)

where Jk (z) is a Bessel function, and where

A(τ ) = 2F sin(ωτ/2)/ω,

A1(τ ) = 2F1γn sin(nωτ/2)/(nω). (A23)

With the Fourier series (A22), the time averages in Eqs. (A10)
and (A14) are straightforward, yielding for j = 1, 2

〈Pj〉 =
∫ ∞

0
dτ kP(τ )p j (τ ),

〈Dj〉 =
∫ ∞

0
dτ kD(τ )d j (τ ). (A24)

The functions p j (τ ) and d j (τ ) are defined by single infinite
sums, in which the coefficients are products of two J-Bessel
functions times phase factors. For γn = 0, we have A1(τ ) = 0.
Then the sums reduce to individual contributions. These are

p1(τ ) = F1J1[A(τ )] cos(� − ωτ/2),

p2(τ ) = F2J1[A(τ )] sin(� + ϕ − ωτ/2) (A25)

and

d1(τ ) = F 2
1

2
[J0[A(τ )] cos(ωτ ) − J2[A(τ )] cos(2�)],

d2(τ ) = F 2
2

2
[J0[A(τ )] cos(ωτ ) + J2[A(τ )] cos(2� + 2ϕ)].

(A26)

The expressions (A24) with (A25) and (A26) yield the expres-
sions (8) and (9).

2. Linear response

In linear thermodynamics, the fluxes are linear in the
forces, and the powers are quadratic forms of the forces,
〈Pi〉 = Fi

∑
j=1,2 Li, j Fj , where L is the Onsager matrix. Ex-

panding the general expression (A9) up to terms quadratic in
the forces F1 and F2, and taking the time average, we get

〈Pi〉 =
∫ ∞

0
dτ kP(τ )

∫ T

0

dt

T
εi(t )G(t, t − τ ). (A27)

From this, the Onsager matrix can be extracted as

Li, j =
∫ ∞

0
dτ kP(τ )

∫ T

0

dt

T

εi(t )

Fi

∫ t

t−τ

dt ′ ε j (t ′)
Fj

. (A28)

For the drive (A19), we get

L = L s(ω)

(
1 + ρn

α+κ√
1+α2

α−κ√
1+α2 1

)
, (A29)

where κ = Lc(ω)/Ls(ω) and ρn = γ 2
n Ls(nω)/Ls(ω). The

functions L s(ω) and L c(ω) are

L s(ω) =
∫ ∞

0
dτ kP(τ )

sin(ωτ )

2ω
(A30)

L c(ω) =
∫ ∞

0
dτ kP(τ )

1 − cos(ωτ )

2ω
. (A31)

The power variance in steady-state 〈D1〉 to second order in
the force is given by

〈D1〉 =
∫ ∞

0
dτ kD(τ )

∫ T

0

dt

T
ε1(t )ε1(t − τ )

= F 2
1

2

∫ ∞

0
dτ kD(τ ) [cos(ωτ ) + γ 2

n cos(nωτ )]. (A32)

Observing the detailed balance relation (A16), we finally
obtain

〈D1〉 = F 2
1 ω coth(βω/2) σnL s(ω), (A33)

where

σn = 1 + γ 2
n n

coth(βnω/2)Ls(nω)

coth(βω/2)Ls(ω)
. (A34)

With the function (A17), the integrals (A30) and (A31) can
be calculated in analytic form. The resulting expressions are
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given in terms of Euler’s function �(z) as

L s(ω) = 1

2βω

(
β�r

2π

)2−2K

sin(2πK )�(1 − 2K )

× sinh

(
βω

2

)
�

(
K − i

βω

2π

)
�

(
K + i

βω

2π

)
,

(A35)

L c(ω) = 1

βω

(
β�r

2π

)2−2K

sin(πK )2�(1 − 2K )

×
[
�(K )2 − �

(
K − i

βω

2π

)

×�

(
K + i

βω

2π

)
cosh

(
βω

2

)]
. (A36)

The ratio of these functions, κ = L c(ω)/L s(ω), is

κ = tan(πK )

sinh( βω

2 )

[
�(K )2

�
(
K − i βω

2π

)
�

(
K + i βω

2π

) − cosh

(
βω

2

) ]
.

(A37)

a. Maximum output power

For the drive (A19), the maximum output power or yield
is at

F1 = F1,MP ≡ − α + κ

2
√

1 + α2

F2

1 + ρn
, (A38)

yielding

〈P1,MP〉 = −(1 + ρn)Ls(ω)F 2
1,MP. (A39)

The two branches for the efficiency η = |〈P1〉|/〈P2〉 and the
relative uncertainty � =

√
〈D1〉/〈P1〉2 as functions of P∗,

resulting from the condition 〈P1(F1, F2)〉/〈P1,MP〉 = P∗, are

η± = P∗

2

X

1 + 2/Y ∓ √
1 − P∗ ,

�1,± = 2

F2

√
1 + α2

α + κ

√
σnω coth(βω/2)

L s(ω)

1 ± √
1 − P∗

P∗ ,

(A40)

where

X = α + κ )/(α − κ ),

Y = (α2 − κ2)/(1 + rn + κ2), (A41)

rn = γ 2
n (1 + α2)Ls(nω)/Ls(ω).

In the absence of the multiple frequency drive, γn = 0, these
forms reduce to the expressions (13) and (14).

b. Maximum efficiency

The efficiency η is maximal at F1 = F1,ME, where

F1,ME = −
√

1 + α2

α − κ

⎛
⎝1 −

√
1 + rn + α2

1 + rn + κ2

⎞
⎠F2. (A42)

It is given by

ηME =
√

1 + rn + α2 −
√

1 + rn + κ2√
1 + rn + α2 +

√
1 + rn + κ2

α + κ

α − κ
. (A43)

The corresponding mean power and power fluctuations are

〈P1,ME〉 = −F 2
2 ηME L s(ω)

√
(1 + r + κ2)

(1 + α2)(1 + ρn)
,

�1,ME =
√

σnL s(ω) ω coth(βω/2) F1,ME/〈P1,ME〉. (A44)

With the expressions (A43) and (A44), the tradeoff quan-
tity

Q1,ME = β|〈P1,ME〉| (1/ηME − 1) �2
1,ME (A45)

is found in analytic form as

Q1,ME = c(βω)
σn√

1 + ρn

√
1 + α2

(α + κ )2

×
(

1 + rn − ακ√
1 + rn + κ2

+
√

1 + rn + α2

)
, (A46)

where c(x) = 2x coth(x/2). In the absence of the multiple
frequency term in the drive ε1(t ), γn = 0, we have rn = 0 and
σn = 1, and thus the expressions (A43) and (A46) reduce to
the expressions (15) and (17).

In the asymptotic low temperature regime βω � 1, we
obtain from (A35) and (A37)

L(as)
s (ω) = 1

4
sin(2πK )�(1 − 2K )

(
�r

ω

)2−2K

,

κ (as) = tan(πK )

[
�(K )2

π

(
βω

2π

)1−2K

− 1

]
, (A47)

and

ρ (as)
n = γ 2

n

/
n2−2K ,

σ (as)
n = 1 + γ 2

n

/
n1−2K , (A48)

r (as)
n = (1 + α2)γ 2

n

/
n2−2K .

Since κ (as) diverges for K < 1/2, as β → ∞, whereas ρ (as)
n ,

σ (as)
n , and r (as)

n are temperature-independent in this limit, the
qualitative behaviors of ηME and Q1,ME are independent of the
coupling parameter γn. Altogether, the behaviors of efficiency,
power fluctuations, and tradeoff Q1,ME displayed in Figs. 1
and 2 change only marginally, when a multiple frequency
contribution is added to the base-frequency term in the output
ε1(t ).

When the multiple frequency contribution is added in the
output channel, as in Eq. (A19), the element L1,1 of the On-
sager matrix is modified by a factor 1 + ρn. If instead we had
added a multiple frequency term in the input channel ε2(t ),
the element L2,2 of the Onsager matrix would be changed
by a factor 1 + ρn. With argumentation similar to that below
Eq. (A49), one would find again that efficiency, power fluctua-
tions, and tradeoff Q1,ME change only marginally when a mul-
tiple frequency contribution is added to the base-frequency
term in the input ε2(t ).
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3. Mapping with quasiparticle tunneling through a quantum
point contact (QPC) in a FQH system

Consider a fractional quantum Hall (FQH) bar (see Fig. 4)
with Laughlin filling factor ν = 1/(2n + 1) (n ∈ N) described
in hydrodynamical formulation [49] by the model Hamilto-
nian

H = H0 + Hg + HT, (A49)

H0 = υ

4π

∫ +∞

−∞
dx{[∂xφR(x)]2 + [∂x�L(x)]2} ,

Hg = − e
∫ ∞

−∞
dx[�(−x − d )V1(t )ρR(x)

+ �(x − d )V2(t )ρL(x)],

HT = �0 [�†
R(0)�L(0) + H.c.]. (A50)

Here, H0 describes the chiral edge states with propagation
direction R/L and velocity υ in terms of bosonic fields
φR/L. The term Hg represents capacitive coupling of the
densities ρR/L(x) = ∓ ν

2π
∂xφR/L(x) with two voltage gates

acting separately on the right- and left-moving excitations.
The step functions �(∓x − d ) describe the case of very
long contacts, which is in accordance with standard ex-
perimental setups [58,59]. The contacts are separated by
distance 2d . Weak backscattering transfer of quasiparti-
cles between the two edges at the QPC located at x = 0
is described by the tunneling term HT. Here, �R/L(x) =
( UR/L/

√
2πa ) e±i kFx e−i

√
νφR/L (x) is the quasiparticle annihi-

lation operator, a is a cutoff length, U a Klein factor, and kF is
the Fermi momentum.

In the absence of the QPC, the currents at the terminals
placed at x = ±d are the right-left-moving edge currents,

Jx=±d (t ) = J0,R/L(t ) = G0 V1/2(t − 2d/υ ), (A51)

where G0 = νe2

2π
is the universal quantum of conductance in

the FQH regime. In the presence of the QPC, these current are
modified by the backscattering current Jbs(t ) of the quasipar-
ticles as

Jx=−d (t ) = J0,L(t ) + Jbs(t ),

Jx=d (t ) = J0,R(t ) − Jbs(t ), (A52)

and the associated powers are

Px=−d (t ) =V1(t )[J0,L(t ) + Jbs(t )],

Px=d (t ) =V2(t )[J0,R(t ) − Jbs(t )]. (A53)

FIG. 4. Sketch of the two-terminal setup of a fractional quantum
Hall bar with a quantum point contact (QPC). The QPC is placed at
x = 0, and the two time-dependent voltages are applied at x = −d
and x = d .

The powers P1/2(t ) resulting from backscattering alone are

P1(t ) ≡ Px=−d (t ) − V1(t )J0,L(t ) = V1(t )Jbs(t ),

P2(t ) ≡ Px=d (t ) − V2(t )J0,R(t ) = −V2(t )Jbs(t ). (A54)

Following the analysis set out in Refs. [60,61], the
backscattering current for weak quasiparticle tunneling is
found as

Jbs(t ) = 2iνe

(
�0

2πa

)2 ∫ ∞

0
dτ sin

[
νe

∫ t

t−τ

dt ′ V−(t ′)
]

×(
e2ν G(τ ) − e2ν G(−τ )), (A55)

where V−(t ) = V1(t ) − V2(t ), and G(τ ) is the connected
Green’s function of the quasiparticle field φ(x, τ ) at
x = 0, G(τ ) = 〈φR/L(0, τ )φR/L(0, 0)〉c. Upon equating the
filling factor ν with the Ohmic damping parameter K , and the
length a with υ/ωc, there directly holds in the scaling limit
the correspondence

2νG(τ ) = −W (τ ), (A56)

where W (τ ) is the Ohmic bath correlation function (A17).
With the correspondences ε1(t )=νeV1(t ), ε2(t )=−νeV2(t ),
G(t2, t1) = νe

∫ t2
t1

dt ′ [V1(t ′) − V2(t ′)], and with � = �0
πa , the

mean backscattering current is found from Eq. (A55) as

Jbs(t ) = νe
∫ ∞

0
dτ kP(τ ) sin[G(t, t − τ )] . (A57)

Hence, time average of the powers P1/2(t ) given in Eq. (A54)
with the backscattering current (A57) directly yields the ex-
pression (A10) for i = 1, 2, which coincides with the expres-
sion (1). In accordance with this, the power fluctuation result-
ing from backscattering are found as given in Eq. (A14) with
(A15), and in Eq. (2). Thus we have demonstrated complete
correspondence in the scaling limit of the above QPC with the
QBP system. The virtue of the QPC geometry is that powers
running through the left and right terminals resulting from the
backscattering current, and the associated power fluctuations,
can be measured individually.
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