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Optimal stochastic modeling with unitary quantum dynamics
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Isolating past information relevant for future prediction is central to quantitative science. Quantum models
offer a promising approach, enabling statistically faithful modeling while using less past information than any
classical counterpart. Here we introduce a class of phase-enhanced quantum models, representing the most
general means of simulating a stochastic process unitarily in causal order. The resulting constructions surpass
previous state-of-art methods—both in reducing the information they need to store about the past and in the
minimal memory dimension they require to store this information. Moreover, these two features are generally
competing factors in optimization—leading to an ambiguity in optimal modeling that is unique to the quantum
regime. Our results simultaneously offer quantum advantages for stochastic simulation and illustrate further
qualitative differences between classical and quantum notions of complexity.
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I. INTRODUCTION

Models of stochastic processes are essential to quantita-
tive science, providing a systematic means for simulating
future behavior based on past observations. Given different
models exhibiting statistically identical behavior, there is a
general preference for the simplest models—those which
require minimal information about the past. The motivation
is twofold: fundamentally, they represent a way of identifying
potential causes of future events and, operationally, simulating
a process using such models requires less memory—as they
track less information about the past—leading to reduced
resource costs.

The field of computational mechanics [1–3] provides a
systematic approach to constructing the provably simplest
classical causal model for any given stochastic process. These
models, called ε machines, can produce statistically correct
predictions using less memory than any classical alternative.
The amount of past information they store has been employed
as a measure of structure in diverse contexts [4–11], motivated
by its interpretation as a fundamental limit on how much
information from the past must be tracked in order to predict
the future.

Quantum mechanics, however, enables even simpler mod-
els that bear statistically identical predictions [12–20]. This
advantage, which has been observed experimentally [21,22],
can scale without bound [17,23–25] and induces significant
qualitative classical-quantum divergences in quantifiers of
structure [26,27]. However, while presently known quantum
constructions are provably optimal for specific cases [25,26],
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they are known not to be so in general. This motivates the
search for even simpler quantum models that obtain further
memory advantages in stochastic simulation, and better char-
acterize quantum notions of structure and complexity.

In this article, we introduce phase-enhanced quantum
models—a sophistication of previous quantum models—that
capture all possible methods of causal simulation using uni-
tary quantum circuits. We show that the resulting models can
improve upon current state-of-the-art constructions in further
reducing the amount of memory they require, according to
both entropic and dimensional measures [25]. Moreover, our
models reveal the origin and highlight the widespread nature
of a recently discovered phenomenon [28]—which we term
the ambiguity of optimality—wherein optimizing for quantum
models that track minimal information about the past may
sacrifice achieving minimal dimensionality of their memory
(and vice versa).

II. FRAMEWORK

A. Classical models

A bi-infinite discrete-time, discrete-event stochastic pro-
cess [29] is characterized by a sequence of random variables
Xt that take values xt drawn from a finite alphabet A at
each time step t ∈ Z. The process is defined by a joint

probability distribution P(
←
X , �X ), where

←
X = · · · X−2X−1 and

�X = X0X1 · · · represent the past and future sequences of the
process, respectively (we use upper case to denote random
variables and lower case for their variates). A consecutive se-
quence of length L is denoted by X0:L = X0 · · · XL−1. Here, we
consider stationary stochastic processes, such that P(X0:L ) =
P(Xm:m+L )∀L, m ∈ Z.

An instance of a given stochastic process has a specific past
←
x , and possesses a corresponding conditional future P( �X |←x ).
A causal model of a stochastic process defines an encoding
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function that maps each possible
←
x to some suitable memory

state such that the same systematic action on the memory at
each time step gives rise to future sequences according to this
conditional future distribution. Notably, all information about
the future that is stored in the memory states may be obtained
from observations of the past [1,2,25].

The field of computational mechanics [1,2] offers a sys-
tematic means to construct the simplest classical causal
models—ε machines. These models are defined by encoding
past information into causal states s ∈ S , defined by an equiv-
alence relation on the past-future conditional distribution:

←
x ,

←
x

′ ∈ s ⇔ P( �X |←x ) = P( �X |←x ′
). (1)

A key property of ε machines is unifilarity [2]: given an initial
causal state s and output symbol x, the memory transitions
into a unique subsequent causal state. We may thus define an
update rule λ(s, x) to describe the new state [16].

The memory of an ε machine is often parametrized accord-
ing to two metrics [1]: the statistical complexity

Cμ := H (S) = −
∑
s∈S

πs log2 (πs), (2)

which measures the amount of information stored in the
memory, and the topological complexity

Dμ := log2 (dim(S )), (3)

which measures the dimension of the memory. Here, πs =∑
←
x ∈s

P(
←
x ) denotes the steady-state distribution of the causal

states. The ε machine minimizes both these metrics over
analogous measures for the memory of all other classical
causal models. Nevertheless, it still stores information that is
not directly relevant for simulating future statistics; Cμ can
be strictly greater than the mutual information between past
and future [2]. Operationally, Cμ and Dμ correspond to the
size of the simulator memory (per simulator), when run in an
ensemble or single-shot setting, respectively.

B. Quantum models

Quantum models can bypass these classical limits [12–18].
The present state-of-the-art systematic constructions can be
expressed as a stepwise unitary circuit [15,16], where each
causal state j ∈ S is assigned to a corresponding quantum
memory state |σ j〉. Future sequences are manifest by sequen-
tial application of a unitary operator U satisfying

U |σ j〉|0〉 =
∑

x

√
P(x| j)|σλ( j,x)〉|x〉, (4)

where P(x| j) := P(Xt+1 = x|St = j). At each time step t ,
the memory state (first subspace) interacts with a fresh an-
cilla (second subspace) initialized in |0〉 (Fig. 1). Subsequent
measurement of the resulting ancilla then yields the correct
conditional future statistics at each time step. Such a unitary
operation exists for any stationary stochastic process [16].

We can extend the definitions of Eqs. (2) and (3) to the
quantum domain:

Cq := −Tr(ρ log2(ρ)), Dq := log2(rank(ρ)), (5)

FIG. 1. Unitary quantum model produces a statistical sequence
of outputs �x = x0x1x2 . . . by interacting a blank ancilla with the
memory through U at each time step, and then measuring the state of
the output branch in the computational basis.

where ρ = ∑
j π j |σ j〉〈σ j |. These quantities inherit the same

operational significance as their corresponding classical coun-
terparts. We refer to them as the quantum statistical memory
and quantum topological memory, respectively. These quanti-
ties are model dependent [30].

As the memory states are generally not mutually orthogo-
nal they enable memory savings in terms of both metrics [31].
In fact, the above constructions saturate bounds on pairwise
memory state overlap [16,26]. That is, for any quantum model
the overlap between quantum memory states c jk := 〈σ j |σk〉
cannot exceed the fidelities of their respective conditional
future distributions f jk = ∑

�x
√

P(�x| j)P(�x|k) due to informa-
tion processing inequalities. For the above construction, c jk =
f jk [13,16].

Despite this, the optimality of these models is only proven
for specific processes [25,26]. Cq and Dq are thus not the true
quantum analogs of statistical and topological complexity,
but rather bound them from above. There is hence strong
motivation to find quantum models whose memories further
reduce these measures, in order to both provide a more effi-
cient means of stochastic modeling and to capture the ultimate
limits of quantum models.

III. RESULTS

A. Phase-enhanced quantum models

We construct our phase-enhanced unitary models by pos-
tulating a new set of quantum memory states {|σϕ

j 〉} with a
corresponding unitary interaction U ϕ that generalizes Eq. (4):

U ϕ
∣∣σϕ

j

〉|0〉 :=
∑

x

√
P(x| j)eiϕx j

∣∣σϕ

λ( j,x)

〉|x〉, (6)

where {eiϕx j } are the additional phase factors that depend
both on the initial causal state j and the output symbol x.
Given a set of memory states and unitary operator satisfying
this relation, measurements of the second subspace in the
computational basis {|x〉} are guaranteed to produce sequences
that obey the same statistics as the corresponding non-phase-
enhanced model.

Theorem 1. All phase-enhanced models are valid; a corre-
sponding unitary U ϕ satisfying Eq. (6) exists for any choice
of phase factors {eiϕx j }.

The proof is given in Appendix A.
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Theorem 2. The set of phase-enhanced models of a given
stochastic process as described above contains the unitary
quantum models of the process that minimize each of the
quantum statistical and topological memories.

The only possible valid modifications that can be made
to Eq. (6) are refinements [2] of the memory states beyond
the causal states. Modifying the transition structure between
memory states in any other manner or modifying the magni-
tude of the terms in the action of the unitary will change the
output statistics, and hence the process being modeled, ruling
out such modifications. It has previously been shown that such
refinements can only increase the statistical memory [26]; thus
the minimal unitary quantum models must be described by
Eq. (6).

As the quantum memory state overlaps cϕ

jk := 〈σϕ
j |σϕ

k 〉
generally differ between different phase choices, the corre-
sponding memory measures will also differ. In Appendix A,
we show that these overlaps are given by

cϕ

jk =
∑

�x

√
P(�x| j)P(�x|k)ei(ϕ�xk−ϕ�x j ), (7)

where ϕxm:n j := ∑n
t=m ϕxt λ(xm:t , j) is shorthand for the multistep

combination of phases. For any phase-enhanced model we
can then compute the corresponding quantum statistical and
topological memories:

Cϕ
q := −Tr(ρϕ log2(ρϕ )), Dϕ

q := log2(rank(ρϕ )), (8)

where ρϕ = ∑
j π j |σϕ

j 〉〈σϕ
j |. Since these quantities depend on

the choice of {ϕx j}, we define

Cϕ
q min

:= min{ϕx j}C
ϕ
q (9)

(and similarly Dϕ
q min

) as the minimal quantum statistical
(topological) memory over all possible phase enhancements.
Should these quantities be smaller than those without phase
enhancement, i.e.,

Cϕ
q min

< Cq, Dϕ
q min

< Dq, (10)

the resulting phase-enhanced models would be more memory
efficient. In the following we will demonstrate that this advan-
tage can indeed manifest for both memory metrics.

B. Examples: Three-state Markov processes

We illustrate the power of phase enhancement by system-
atic study of three-state Markovian processes. The general
Markov chain for such processes is given in Fig. 2, where Tyx

is used to denote the transition probability of going from state
x to state y (while emitting y). The Markov property allows us
to simplify Eq. (6) to

U ϕ
∣∣σϕ

x

〉|0〉 =
∑

y

√
Tyxeiϕyx

∣∣σϕ
y

〉|y〉. (11)

Theorem 3. Phase enhancements can reduce the dimension
of the memory (i.e., quantum topological memory), providing
advantages for single-shot stochastic modeling.

To achieve a dimensional reduction, it must be possible for
the phase factors to induce a linear dependency between the

FIG. 2. General three-state Markov model: the notation y|Tyx

indicates that the transition from state x to y occurs with probability
Tyx and the output symbol is y.

quantum memory states, i.e.,

∃{α j ∈ C} :
∣∣σϕ

k

〉 =
∑
j �=k

α j

∣∣σϕ
j

〉
. (12)

For three-state Markov models this can be expressed as

α
∣∣σϕ

x

〉 + β
∣∣σϕ

y

〉 = ∣∣σϕ
z

〉
(13)

for some α, β ∈ R+, where we are able to restrict to positive
reals through freedom to add phase to the memory states
{|σϕ

j 〉}. Moreover, due to global phase invariance, we can set
ϕwx = 0 for all w ∈ {x, y, z} without loss of generality.

Equation (13) can be expressed in terms of the transition
probabilities:

α
√

Twx + β
√

Twyeiϕwy = √
Twze

iϕwz ∀ w. (14)

From this we obtain the following set of inequalities:

|α√
Twx − β

√
Twy| �

√
Twz � α

√
Twx + β

√
Twy (15)

that must be satisfied for all w. The existence of real and
positive (α, β ) satisfying these inequalities is a necessary and
sufficient condition for a dimensional advantage.

Furthermore, given (α, β ) that satisfy these conditions for
a set of transition probabilities, we can determine the phases
that collapse the memory to two dimensions:

cos(ϕwy) = Twz − α2Twx − β2Twy

2αβ
√

TwxTwy
,

cos(ϕwz ) = α
√

Twx + β
√

Twy cos(ϕwy)√
Twz

. (16)

Thus, for processes satisfying these inequalities, the phase-
enhanced quantum model has Dϕ

q min
= 1, in contrast to the

non-phase-enhanced model with Dq = log2(3).
We performed a systematic numerical sweep with a range

of α and β over the space of three-state Markov processes, and
found that the inequalities Eq. (15) are satisfied by at least
17% of such processes (see Appendix B for more details).
This lower bound indicates that dimensional advantages,
wherein Dϕ

q min
< Dq � Dμ, are relatively commonplace.
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FIG. 3. (a) Symmetric three-state quasicycle with slippage δ.
(b) Cq and Cϕ

q min
as a function of p for δ = 0. (c) The dependence

of Cϕ
q on the phase factors when p = 0.3 with δ = 0.

Theorem 4. Phase enhancements can reduce the quantum
statistical memory.

Consider the symmetric three-state quasicycle [32], as
illustrated in Fig. 3(a) with δ = 0. The transition matrix T of
this process is given by

T =
⎛
⎝

1 − p 0 p
p 1 − p 0
0 p 1 − p

⎞
⎠. (17)

Due to certain phase symmetries such as global phase, the
quantum memory states |σϕ

j 〉 and corresponding unitary U ϕ

can be given in their most general form as

U ϕ
∣∣σϕ

x

〉|0〉 =
√

1 − p
∣∣σϕ

x

〉|x〉 + √
p
∣∣σϕ

y

〉|y〉,
U ϕ

∣∣σϕ
y

〉|0〉 =
√

1 − p
∣∣σϕ

y

〉|y〉 + √
peiϕzy

∣∣σϕ
z

〉|z〉,
U ϕ

∣∣σϕ
z

〉|0〉 = √
p
∣∣σϕ

x

〉|x〉 +
√

1 − peiϕzz
∣∣σϕ

z

〉|z〉. (18)

This allows us to calculate the statistical memory Cϕ
q for

this model across the full range of possible phase factors. In
Fig. 3(b) we compare Cϕ

q min
with Cq, observing a clear advan-

tage with our phase-enhanced models. We also show the full
dependence of Cϕ

q on the two phase parameters in Fig. 3(c). It
can be seen that Cϕ

q min
is found when |ϕzy − ϕzz| = π .

Performing a numerical search over the space of general
three-state Markov processes, however, we find that entropic
advantages appear to be quite rare, occurring in less than 0.5%
of cases (see Appendix B for details).

Our numerical results thus indicate that for three-state
Markov processes, models that admit Dϕ

q min
< Dq are much

more common than those with Cϕ
q min

< Cq. This begets the
question, what happens to Cϕ

q for models with dimensional
advantages? We find that in many cases for which Dϕ

q min
< Dq,

the corresponding Cϕ
q is strictly greater than Cq. However,

since multiple choices of phases can provide a dimensional
advantage, one may be tempted to think that another set of
phases will show advantages in both metrics. We now study a
family of processes that conclusively show that the dichotomy
cannot always be resolved in this manner: unlike classical
causal models, the optimal quantum model can depend on the
choice of memory metric.

Theorem 5. The model that minimizes quantum topological
memory and the model that minimizes quantum statistical
memory do not generally coincide: there is no unique optimal
quantum model, leading to an ambiguity of optimality.

A process displaying this phenomenon for models with real
phases was recently highlighted [28]. Our results illustrate that
this phenomenon is in fact widespread when general complex
phase enhancements are introduced.

Consider a modified three-state quasicycle with slippage,
as illustrated in Fig. 3(a). Our phase-enhanced models of-
fer dimensional advantages along one line of the parameter
space, while there is a large area of the space that permits
models that exhibit an entropic advantage [Fig. 4(a)]. Specif-
ically, a dimensional advantage exists iff p and δ satisfy
(1 − p)

√
1 − p − δ − p

√
p = ±√

pδ(1 − p), in which case
the inequalities Eq. (15) are satisfied only for a single pair
of values of α and β given by

α =
√

p√
1 − p − δ

,

β = −p√
(1 − p)(1 − p − δ)

. (19)

Since a unique set of phases offer linear dependence between
the memory states at each point on the aforementioned line,
we can be satisfied that this gives the unique optimal model
in terms of topological memory. In Fig. 4(b) we plot Cϕ

q of
this model for the parameters indicated by the red segment of
the dashed line in Fig. 4(a), and compare it to Cq and Cϕ

q min
.
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FIG. 4. In (a) we show the regions with entropic (color plot) and
dimensional (dashed line) advantages. The yellow region delineates
the nonphysical parameter regime. In (b) we plot Cϕ

q in the parameter
region denoted by the red segment of the dashed line in (a) and
show that the choice of phases that lead to Cϕ

q min
does not always

correspond to Dϕ
q min

, giving rise to an ambiguity of optimality.

For certain parameter values Cϕ
q > Cq > Cϕ

q min
, confirming

the ambiguity of optimality.
Geometrically, we can understand how such an ambiguity

can manifest; reductions in topological memory require linear
dependence between the memory states, irrespective of the
distance between them, while reductions in statistical memory
arise from reductions in the distance between the states. When
these two factors are in competition, the ambiguity occurs.

IV. DISCUSSION

A key task in stochastic modeling is to find methods of
making statistically faithful future predictions with minimal
memory of the past. Here, we have introduced phase enhance-
ment as a general means of constructing quantum models
that use less memory resources than previous state-of-the-
art constructions. Our analysis holds true in both ensemble
and single-shot scenarios. We established that phase enhance-
ment leads to provably optimal models in both scenarios,
among all alternatives that operate through unitary quantum
circuits. Through examples, we also highlighted an ambiguity
in optimality—a uniquely quantum phenomenon where the

optimal model for simulating a stochastic process in a single-
shot scenario differs from that for simulating many such
processes in parallel. We expect that such enhancements will
become more typical in stochastic processes with larger num-
bers of causal states—the number of phase parameters that can
be tweaked grows with both the number of states and alphabet
size, allowing more freedom for optimization.

From Eq. (7), it is clear that the overlap between memory
states is always maximized when all phase factors are zero.
Moreover, for most other choices, |cϕ

jk| is strictly less than
c jk ; phase factors cannot increase pairwise overlaps between
memory states. The potential for memory reductions through
phase enhancement might thus at first blush appear counter-
intuitive. Nevertheless, as our examples show, such reduc-
tions are possible. Reductions in topological memory can be
understood as the phase factors creating linear dependencies
between the memory states. Meanwhile, its potential to reduce
statistical memory nicely illustrates that increasing pairwise
distinguishability between an ensemble of quantum states can
still reduce higher-order distances that are captured by the von
Neumann entropy [33].
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APPENDIX A: EXISTENCE OF Uϕ AND OVERLAP
OF QUANTUM MEMORY STATES

Here we show that the unitary operator U ϕ for our phase-
encoded quantum models exists for any choice of the phases
ϕx j , provides an expression for the overlaps of pairs of quan-
tum memory states, and shows that the solution to this overlap
converges.

Existence of U ϕ . We introduce the notation |1ϕ
j 〉 to indicate

the combined system-ancilla state after applying the unitary
circuit:

∣∣1ϕ
j

〉
:= U ϕ

∣∣σϕ
j

〉|0〉 =
∑

x

√
P(x| j)eiϕx j

∣∣σϕ

λ( j,x)

〉|x〉. (A1)

Previous work [16] established the existence of a unitary
operation U in the non-phase-encoded case if and only if

〈σ j |σk〉 = 〈1 j |1k〉 ∀ j, k. (A2)
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Similarly, for the existence of U ϕ in our phase-encoded models we require
〈
σ

ϕ
j

∣∣σϕ

k

〉 = 〈
1ϕ

j |1ϕ

k

〉 =
∑

x

√
P(x| j)e−iϕx j

〈
σ

ϕ

λ( j,x)

∣∣〈x|
∑

x′

√
P(x′|k)eiϕx′k

∣∣σϕ

λ(k,x′ )

〉|x′〉

=
∑

x

√
P(x| j)P(x|k)ei(ϕxk−ϕx j )

〈
σ

ϕ

λ( j,x)

∣∣σϕ

λ(k,x)

〉
. (A3)

A solution for the inner product of the quantum memory states is as follows:

cϕ

jk := 〈
σ

ϕ
j

∣∣σϕ

k

〉 =
∑

�x

√
P(�x| j)P(�x|k)ei(ϕ�xk−ϕ�x j ), (A4)

which can be verified by insertion into Eq. (A3), thus proving the existence of U ϕ .
Convergence of cϕ

jk . We must now verify that our solution to the memory state overlaps is convergent; that is, limL→∞ cϕ

jk
[L] =

cϕ

jk , where

cϕ

jk
[L] :=

∑
x0:L

√
P(X0:L = x0:L|S0 = j)P(X0:L = x0:L|S0 = k)ei(ϕx0:L k−ϕx0:L j )cϕ

λ( j,x0:L )λ(k,x0:L ). (A5)

Note that to avoid confusion between variables at different time steps, in this section we do not employ the shorthand P(x| j)
introduced in the main text.

We assume that we are dealing with synchronizable processes, such that the memory of the model can be initialized properly
given the entire past. Recalling that H (A|B) := ∑

b P(B = b)H (A|B = b), this condition can be expressed as

lim
L→∞

H (S0|X−L:0 ) = 0, (A6)

and thus for large L we can express
∑
x−L:0

P(X−L:0 = x−L:0 )H (S0|X−L:0 = x−L:0 ) < ε(L) (A7)

for some small ε(L) that vanishes as L → ∞. This allows us to divide the possible trajectories x−L:0 into two classes: those where
the memory state is (asymptotically) synchronized [H (S0|←x ) = 0] and those where it is not. However, since this uncertainty is
finite, the probability of such nonsynchronizing trajectories occurring must be vanishingly small for consistency with Eq. (A7)
and, moreover, the total probability of such trajectories must also be vanishingly small. We can therefore devote our attention
only to the former class.

For this former class, we can express

H (S0|X−L:0 = x−L:0 ) = −
∑

j

P(S0 = j|X−L:0 = x−L:0 ) log2(P(S0 = j|X−L:0 = x−L:0 )) < ε′(L) (A8)

for some ε′(L) that again vanishes as L → ∞. Since each
term in the summation is non-negative, we can also constrain
each term to satisfy the inequality individually. To satisfy
this, we must have that each P(S0 = j|X−L:0 = x0:L ) is either
close to zero or 1. These probabilities must sum to 1, which
ensures that for one value of s0, which we shall label as m,
the probability is 1 − ε(L) for some small ε(L), while the
others occur with probability ε j that are each also small, with∑

j �=m ε j (L) = ε(L). In other words, after having produced
a sufficiently long sequence of outputs x−L:0 the past of the
process almost certainly belongs to causal state m, and

lim
L→∞

P(S0 = j|X−L:0 = x−L:0 ) = δ jm. (A9)

Now consider the expansion

P(S0 = k|X−L:0 = x−L:0 )

=
∑

j

P(S0 = k, S−L = j|X−L:0 = x−L:0 )

=
∑

j

P(S−L = j|X−L:0 = x−L:0 )

× P(S0 = k|S−L = j, X−L:0 = x−L:0 )

=
∑

j

P(S−L = j|X−L:0 = x−L:0 )δkλ( j,x−L:0 ). (A10)

For L → ∞, the left-hand side becomes arbitrarily close to 1
when k = m, and zero otherwise.

Examining the case k = m, since
∑

j P(S−L = j|X−L:0 =
x−L:0 ) = 1, for any j where k �= λ( j, x−L:0 ) we must have
P(S−L = j|X−L:0 = x−L:0 ) ≈ 0. Using Bayes’ rule, and as-
suming that P(S = j) �≈ 0, we have

P(X−L:0 = x−L:0|S−L = j)

P(X−L:0 = x−L:0 )
≈ 0, (A11)

implying that, for any j such that k �= λ( j, x−L:0 ), the proba-
bility of such an output trajectory occurring given we started
in a past belonging to causal state j must be vanishingly small,
even relative to the probability of the trajectory occurring
at all.
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FIG. 5. Transition probabilities out of each state in a three-state
Markov process can be represented as a point on the positive octant
of a unit sphere. Three such points define the process. We sweep
over a discretized set of such points in our numerical treatment to
systematically study these processes.

Taken together, these lead us to the conclusion that

lim
L→∞

λ( j, x−L:0 ) = lim
L→∞

λ(x−L:0 ) (A12)

for all but a set of output trajectories of vanishingly small
probability; that is, for sufficiently large L the current causal
state is almost certainly determined by the output sequence
alone independent of the initial state prior to this sequence.
Note that for processes with finite Markov order this statement
is tautologically true for any trajectory once L is at least as
large as the Markov order.

Returning then to Eq. (A5), we see for sufficiently large
L that for all but a set of trajectories of vanishingly small
probability we may replace cϕ

λ( j,x0:L )λ(k,x0:L ) → cϕ

λ(x0:L )λ(x0:L ) = 1.
Thus, for sufficiently large L, the recursive factor in the ex-
pression tends towards unity and as such limL→∞ cϕ

jk
[L] = cϕ

jk
as required.

TABLE I. Numerical sweep search for phase enhancement.

Advantage % of three-state processes
admitting advantage

Entropic <0.5
Dimensional (α = β = 1) ∼9
Dimensional [multiple (α, β)] >17

APPENDIX B: NUMERICAL SWEEP SEARCH
FOR PHASE ENHANCEMENTS

For a general three-state Markov process as depicted in
Fig. 2, each state is described by the three output probabilities
to each state, defined by two free parameters due to normaliza-
tion of probability. These free parameters can be mapped to a
point on the positive octant of a unit sphere (Fig. 5), where the
square of the distance along a given axis corresponds to the
probability of transitioning into the corresponding state. Each
process is defined by three such points, one for each state.

In the case of searching for dimensional advantages, we
systematically sweep over these surfaces, coarse grained into
grids such that there are 20 evenly spaced steps along each
edge of the sweep areas. For each process we then check
whether the inequalities Eq. (15) are satisfied for any of the
combinations of α and β given in the main text. We found
that the inequalities are satisfied for approximately 9% of such
processes when α = β = 1. Expanding the range of α and β

values to {1, 2, 3, 1/2, 1/4} we find that the inequalities can be
satisfied by at least 17% of cases. Accounting for additional
values for the parameters can only increase this number.

For entropic advantages, we are unaware of any straight-
forwardly verifiable conditions as with Eq. (15) for the di-
mensional case that can be used to ascertain whether the ad-
vantage exists. Thus we must consider all possible choices of
phases within a given process—four independent parameters
after accounting for various symmetries—when checking for
advantage. With the six additional parameters used to define
the process, we found it numerically intractable to systemat-
ically sweep over all processes and phases to any reasonable
resolution when searching for entropic advantages. We instead
opted to randomly sample processes from the distribution
used in the dimensional sweep, and then systematically sweep
over all phase parameters to determine whether an advantage
Cϕ

q < Cq may be found for that particular process. We found
such advantages in fewer than 0.5% of processes sampled.

Our findings are summarized in Table I.
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