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Angular momentum of open quantum systems in external magnetic field
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I. INTRODUCTION

In atomic physics, much attention is focused on the hydro-
gen atom in magnetic field for which the experimental and
theoretical studies yield excellent insights into the semiclas-
sical and quantum aspects of nonintegrable systems (see, for
example, Refs. [1,2]). In nuclear physics, the study of nuclear
properties in the strong field of magnetic trap seems to be
interesting. The observation of simultaneous violation of par-
ity and time-reversal invariance is based on the measurement
of the linear polarization of gamma transitions produced by
the deexcitation of isomeric states of nuclei in the magnetic
field at low temperature [3]. The intensive investigations deal
with the impact of external magnetic field on such systems as
quantum dots, quantum wires, and two-dimensional electronic
systems [1–7]. The characteristics of plasma in the homoge-
neous external field has also to be studied in the physics of gas
discharge [8].

The influence of magnetic field on the properties of quan-
tum system was investigated with different approaches. Using
the phenomenological Markovian Fokker-Planck equation for
the Wigner function, the problem of quantum description
of the damped isotropic two-dimensional harmonic oscillator
in a uniform magnetic field has been studied in Ref. [9]
in the case of arbitrary relations between the proper oscil-
lator frequency, damping coefficients, and temperature. The
equations of motion can be obtained by using the quantum
Langevin approach or density-matrix formalism which is
widely applied to find the effects of fluctuations and dissipa-
tion in macroscopic systems [9–34]. Early derivation of the
one-dimensional quantum Langevin equation with external
force was performed in Ref. [23]. As shown, the particle,
coupled to the heat bath and influenced by an arbitrary force
to the fixed center, exhibits the Brownian motion. As an
application of the quantum Markovian Langevin equation the
dynamics of one-dimensional harmonic oscillator coupled to
the heat bath was considered. By including the magnetic
field in the quantum non-Markovian Langevin equation, the
effects of dissipation and magnetic field on localization of
a charged particle moving in the confined potential have

been investigated in Refs. [23,24,28,30,31]. As found, the
weak dissipation delocalizes the oscillation of charged particle
when the magnetic field is stronger than a certain critical value
[24]. In all cases [20,23–25,28,30], the magnetic field affects
neither the memory function nor the random force appearing
in the quantum Langevin equation.

The aim of the present work is to derive the analytical
expression for the asymptotic angular momentum of a con-
fined charged particle in uniform magnetic field and dissi-
pative environment, and to study the influence of magnetic
field on the orbital magnetic moment (orbital diamagnetism).
The paper is organized as follows. In Sec. II, we define
the Hamiltonian of the system and solve the quantum non-
Markovian two-dimensional Langevin equations for a charged
particle moving in the plane normal to the field applied. The
asymptotic angular momentum is obtained by considering
the second moment of the stochastic dissipative equations.
The discussions and illustrative numerical results are pre-
sented in Sec. III. A summary is given in Sec. IV.

II. NON-MARKOVIAN LANGEVIN EQUATIONS
WITH EXTERNAL MAGNETIC FIELD

In order to investigate the influence of external fields on the
dynamics of an open quantum system, we consider the motion
of a charged particle with effective mass μ and charge e =
|e| in the two-dimensional parabolic potential (in xy plane)
surrounded by the neutral bosonic heat bath in the presence
of perpendicular axisymmetric magnetic field (along z axis).
In the case of linear coupling in coordinates between this
particle and heat bath the total Hamiltonian of the collective
subsystem+heat bath is as follows:

H = 1

2μ
[p − eA(x, y)]2 + μ

2

(
ω2

x x2 + ω2
y y2

) +
∑

ν

h̄ωνb+
ν bν

+
∑

ν

(xαν + ygν )(b+
ν + bν ), (1)

where A = (− 1
2 yB, 1

2 xB, 0) is the vector potential of the
magnetic field with the strength B = |B|, p is the canonically
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conjugated momentum, ωx and ωy are the collective frequen-
cies, b+

ν and bν are the phonon creation and annihilation
operators of the heat bath, and αν and gν are the coupling pa-
rameters [30]. The first term in Eq. (1) includes the magnetic-
field energy and the last term describes the interaction be-
tween the collective subsystem and heat bath. The bosonic
heat bath is modeled by an ensemble of noninteracting har-
monic oscillators with frequencies ων . The coupling between
the heat bath and collective subsystem is linear in coordinates.
The coupling term and external magnetic field do not affect
each other.

For convenience, we introduce the following definitions for
momenta:

πx = px + 1
2μωcy, πy = py − 1

2μωcx, (2)

where ωc = eB/μ is the cyclotron frequency and [πx, πy] =
−[πy, πx] = ı h̄μωc. Therefore, the total Hamiltonian (1) is
transformed into the form

H = 1

2μ

(
π2

x + π2
y

) + μ

2

(
ω2

x x2 + ω2
y y2

) +
∑

ν

h̄ωνb+
ν bν

+
∑

ν

(xαν + ygν )(b+
ν + bν ). (3)

The system of the Heisenberg equations for the operators
x, y, πx, πy, and the bath phonon operators bν , b+

ν is obtained
by commuting them with H :

ẋ(t ) = i

h̄
[H, x] = πx(t )

μ
, ẏ(t ) = i

h̄
[H, y] = πy(t )

μ
,

π̇x(t ) = i

h̄
[H, πx] = πy(t )ωc − μω2

x x(t ) −
∑

ν

αν (b+
ν + bν ),

π̇y(t ) = i

h̄
[H, πy] = −πx(t )ωc − μω2

y y(t ) −
∑

ν

gν (b+
ν + bν )

(4)

and

ḃ+
ν (t ) = i

h̄
[H, b+

ν ] = iωνb+
ν (t ) + i

h̄
[ανx(t ) + gνy(t )],

ḃν (t ) = i

h̄
[H, bν] = −iωνbν (t ) − i

h̄
[ανx(t ) + gνy(t )]. (5)

The solution of Eqs. (5) is

b+
ν (t ) = f +

ν (t ) − ανx(t ) + gνy(t )

h̄ων

+ αν

h̄ων

∫ t

0
dτ ẋ(τ )eiων (t−τ )

+ gν

h̄ων

∫ t

0
dτ ẏ(τ )eiων (t−τ ),

bν (t ) = fν (t ) − ανx(t ) + gνy(t )

h̄ων

+ αν

h̄ων

∫ t

0
dτ ẋ(τ )e−iων (t−τ )

+ gν

h̄ων

∫ t

0
dτ ẏ(τ )e−iων (t−τ ), (6)

where

fν (t ) =
[

bν (0) + i

h̄ων

Bν (0)

]
e−iων t ,

Bν (t ) = ανx(t ) + gνy(t ).

Therefore,

b+
ν (t ) + bν (t ) = f +

ν (t ) + fν (t ) − 2
ανx(t ) + gνy(t )

h̄ων

+ 2αν

h̄ων

∫ t

0
dτ ẋ(τ ) cos[ων (t − τ )]

+ 2gν

h̄ων

∫ t

0
dτ ẏ(τ ) cos[ων (t − τ )]. (7)

Substituting (7) into (4), we eliminate the bath variables
from the equations of motion of the collective subsystem and
obtain the nonlinear integrodifferential stochastic dissipative
equations

ẋ(t ) = πx(t )

μ
, ẏ(t ) = πy(t )

μ
,

π̇x(t ) = πy(t )ωc − x(t )μω2
x

(
1 − 1

ω2
x

∑
ν

2α2
ν

μh̄ων

)

− 1

μ

∫ t

0
dτ Kα (t, τ )πx(τ ) − Fα (t ),

π̇y(t ) = −πx(t )ωc − y(t )μω2
y

(
1 − 1

ω2
y

∑
ν

2g2
ν

μh̄ων

)

− 1

μ

∫ t

0
dτ Kg(t, τ )πy(τ ) − Fg(t ). (8)

The presence of the integral parts in these equations in-
dicates the non-Markovian dynamics. In comparison with
Refs. [12,16] we do not introduce the counterterm in the
Hamiltonian. So, the stiffnesses of the potentials are renor-
malized in the equations above. The operators

Fα (t ) =
∑

ν

F ν
α (t ) =

∑
ν

αν ( f +
ν + fν ),

Fg(t ) =
∑

ν

F ν
g (t ) =

∑
ν

gν ( f +
ν + fν )

play a role of random forces in the coordinates, and Eqs. (8)
are the generalized nonlinear quantum Langevin equations.
Following the usual procedure of statistical mechanics, we
identify these operators as fluctuations because of the uncer-
tainty in the initial conditions for the bath operators. To spec-
ify the statistical properties of the fluctuations, we consider an
ensemble of initial states in which the fluctuations have the
Gaussian distribution with zero average value〈〈

F ν
α (t )

〉〉 = 〈〈
F ν

g (t )
〉〉 = 0. (9)

Here, the symbol 〈〈. . .〉〉 denotes the average over the bath.
We assume that there are no correlations between F ν

α (t ) and
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F ν
g (t ), so that

∑
ν

ανgν

h̄ων

≡ 0. (10)

The dissipative kernels in Eqs. (8) are

Kα (t − τ ) = 2
∑

ν

α2
ν

h̄ων

cos(ων[t − τ ]),

Kg(t − τ ) = 2
∑

ν

g2
ν

h̄ων

cos(ων[t − τ ]). (11)

Because these kernels do not contain the phonon occupation
numbers, they are independent of temperature T (in the energy
units) of the heat bath. The temperature enters in the analysis
through the distribution of initial conditions. We use the Bose-
Einstein statistics for the heat bath:

〈〈 f +
ν (t ) f +

ν ′ (t ′)〉〉 = 〈〈 fν (t ) fν ′ (t ′)〉〉 = 0,

〈〈 f +
ν (t ) fν ′ (t ′)〉〉 = δν,ν ′nνeiων (t−t ′ ),

〈〈 fν (t ) f +
ν ′ (t ′)〉〉 = δν,ν ′ (nν + 1)e−iων (t−t ′ ), (12)

with occupation numbers for phonons nν = [exp(h̄ων/T ) −
1]−1 depending on T . Using the properties of random forces,
we obtain the quantum fluctuation-dissipation relations

∑
ν

ϕν
αα (t, t ′)

tanh
[ h̄ων

2T

]
h̄ων

= Kα (t − t ′),

∑
ν

ϕν
gg(t, t ′)

tanh
[ h̄ων

2T

]
h̄ων

= Kg(t − t ′),

where

ϕν
αα (t, t ′) = 2α2

ν [2nν + 1] cos(ων[t − t ′]),

ϕν
gg(t, t ′) = 2g2

ν[2nν + 1] cos(ων[t − t ′])

are the symmetrized correlation functions ϕν
kk (t, t ′) =

〈〈F ν
k (t )F ν

k (t ′) + F ν
k (t ′)F ν

k (t )〉〉, k = α, g. The quantum
fluctuation-dissipation relations differ from the classical
ones and are reduced to them in the limit of high
temperature T (or h̄ → 0):

∑
ν ϕν

αα (t, t ′) = 2T Kα (t − t ′),∑
ν ϕν

gg(t, t ′) = 2T Kg(t − t ′).
It is convenient to introduce the spectral density Dω of

the heat bath excitations which allows us to replace the sum
over different oscillators, ν, by the integral over frequency:∑

ν . . . → ∫ ∞
0 dω Dω . . .. This is accompanied by the follow-

ing replacements: αν → αω, gν → gω, ων → ω, and nν →
nω. Let us consider the following spectral functions [12,21]:

Dω

α2
ω

ω
= λ2

x

π

γ 2

γ 2 + ω2
, Dω

g2
ω

ω
= λ2

y

π

γ 2

γ 2 + ω2
, (13)

where the memory time γ −1 of dissipation is inverse to the
phonon bandwidth of the heat bath excitations which are
coupled with the collective oscillator and the coefficients

λx = 1

μ

∫ ∞

0
dτ Kα (t − τ )

and

λy = 1

μ

∫ ∞

0
dτ Kg(t − τ )

are the friction coefficients in the Markovian limit. This ohmic
dissipation with the Lorenzian cutoff (Drude dissipation) re-
sults in the dissipative kernels

Kα (t ) = μλxγ e−γ |t |, Kg(t ) = μλyγ e−γ |t |.

The relaxation time of heat bath should be much less than the
period of the collective oscillator, i.e., γ � ωx,y.

As in Ref. [30], the system of Eqs. (8) is solved by applying
the Laplace transformations. After the tedious algebra we
obtain the solution of this system of equations:

x(t ) = A1(t )x(0) + A2(t )y(0) + A3(t )πx(0)

+ A4(t )πy(0) − Ix(t ) − I ′
x(t ),

y(t ) = B1(t )x(0) + B2(t )y(0) + B3(t )πx(0)

+ B4(t )πy(0) − Iy(t ) − I ′
y(t ),

πx(t ) = C1(t )x(0) + C2(t )y(0) + C3(t )πx(0)

+C4(t )πy(0) − Iπx (t ) − I ′
πx

(t ),

πy(t ) = D1(t )x(0) + D2(t )y(0) + D3(t )πx(0)

+ D4(t )πy(0) − Iπy (t ) − I ′
πy

(t ), (14)

where Ix(t ) = ∫ t
0 A3(τ )Fα (t − τ )dτ , I ′

x(t ) = ∫ t
0 A4(τ )Fg

(t − τ )dτ , Iy(t ) = ∫ t
0 B3(τ )Fα (t − τ )dτ , I ′

y(t ) = ∫ t
0 B4(τ )

Fg(t − τ )dτ , Iπx (t ) = ∫ t
0 C3(τ )Fα (t − τ )dτ , I ′

πx
(t ) = ∫ t

0 C4(τ )

Fg(t − τ )dτ , Iπy (t ) = ∫ t
0 D3(τ )Fα (t − τ )dτ , I ′

πy
(t ) =∫ t

0 D4(τ )Fg(t − τ )dτ , and the time-dependent coefficients

A1(t ) =
6∑

i=1

βi
{[(

ω2
y + s2

i

)
(si + γ ) − λyγ

2
]

× [si
(
si + γ

) + λxγ ] + ω2
c si(si + γ )2

}
esit ,

A2(t ) = −ωc(ω2
y − λyγ )

6∑
i=1

βi(si + γ )2esit ,

A3(t ) = 1

μ

6∑
i=1

βi(si + γ )
[(

ω2
y + s2

i

)
(si + γ ) − λyγ

2
]
esit ,

A4(t ) = ωc

μ

6∑
i=1

βisi(si + γ )2esit ,

B1(t ) = −A2(t )|x↔y, B2(t ) = A1(t )|x↔y,

B3(t ) = −A4(t )|x↔y, B4(t ) = A3(t )|x↔y,

C1(t ) = −μ2
(
ω2

x − λxγ
)
A3(t ), C2(t ) = μȦ2(t ),

C3(t ) = μȦ3(t ), C4(t ) = μȦ4(t ),

D1(t ) = μḂ1(t ), D2(t ) = −μ2(ω2
y − λyγ

)
B4(t ),

D3(t ) = μḂ3(t ), D4(t ) = μḂ4(t ). (15)
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Here, si are the roots of the following equation:[(
ω2

x + s2
i

)
(si + γ ) − λxγ

2
][(

ω2
y + s2

i

)
(si + γ ) − λyγ

2
]

+ω2
c s2

i (si + γ )2 = 0 (16)

and βi = [
∏

j 
=i(si − s j )]−1 with i, j = 1–6. These roots
arise when we apply the residue theorem to perform
the integration in the inverse Laplace transformation. As
seen in Eqs. (14), A1(0) = B2(0) = C3(0) = D4(0) = 1 and
A2,3,4(0) = B1,3,4(0) = C1,2,4(0) = D1,2,3(0) = 0.

Using Eqs. (14), (15), and the correlations of the ran-
dom forces at different times, the expressions for the second

moments (variances)

�qiq j (t ) = 1
2 〈qi(t )q j (t ) + q j (t )qi(t )〉 − 〈qi(t )〉〈qj (t )〉,

where qi = x, y, πx, or πy (i = 1–4), are derived.

III. ANGULAR MOMENTUM

Using Eqs. (14) and (15), one can find the z component of
angular momentum Lz(t ) = 〈x(t )πy(t ) − y(t )πx(t )〉 [or mag-
netic moment per unit volume M(t ) = neLz (t )

2μ
, where n is the

concentration of charged particles]:

Lz(t ) = L0
z (t ) + μh̄γ 2

π

∫ ∞

0

∫ t

0

∫ t

0

dω dτ d τ̃ ω coth
[

h̄ω
2T

]
ω2 + γ 2

cos(ω[τ − τ̃ ])

×{λx[A3(τ )D3(τ̃ ) − B3(τ )C3(τ̃ )] + λy[A4(τ )D4(τ̃ ) − B4(τ )C4(τ̃ )]}, (17)

where

L0
z (t ) = [A1(t )D1(t ) − B1(t )C1(t )]〈x2(0)〉 + [A2(t )D2(t ) − B2(t )C2(t )]〈y2(0)〉 + [A3(t )D3(t ) − B3(t )C3(t )]

〈
π2

x (0)
〉

+ [A4(t )D4(t ) − B4(t )C4(t )]
〈
π2

y (0)
〉 + [A1(t )D3(t ) − B1(t )C3(t )]〈x(0)πx(0)〉 + [A3(t )D1(t ) − B3(t )C1(t )]〈πx(0)x(0)〉

+ [A2(t )D4(t ) − B2(t )C4(t )]〈y(0)πx(0)〉 + [A4(t )D2(t ) − B4(t )C2(t )]〈πy(0)y(0)〉 + [A3(t )D4(t ) − B3(t )C4(t )]

×〈πx(0)πy(0)〉 + [A4(t )D3(t ) − B4(t )C3(t )]〈πy(0)πx(0)〉 + [A1(t )D2(t ) + A2(t )D1(t ) − B1(t )C2(t )

− B2(t )C1(t )]〈x(0)y(0)〉 + [A1(t )D4(t ) + A4(t )D1(t ) − B1(t )C4(t ) − B4(t )C1(t )]〈x(0)πy(0)〉
+ [A2(t )D3(t ) + A3(t )D2(t ) − B2(t )C3(t ) − B3(t )C2(t )]〈y(0)πx(0)〉. (18)

The angular momentum is equal to Lz(0) = L0
z (0) = 〈x(0)πy(0) − y(0)πx(0)〉 at initial time t = 0. It changes with time and

reaches the asymptotic value at t → ∞. The coupling to the heat bath cause some initial orbital angular momentum L0
z (0) to

dissipate such that the only asymptotic angular momentum remains as time tends to infinity.
Employing L0

z (∞) = 0 [Ai(∞) = Bi(∞) = Ci(∞) = Di(∞) = 0] and the expression for the asymptotic variance �xπy (∞),
we find the asymptotic z component of angular momentum

Lz(∞) = 〈x(∞)πy(∞) − y(∞)πx(∞)〉 = 2�xπy (∞)

= −2h̄ωcγ
2

π

∫ ∞

0
dω ω3 coth

[
h̄ω

2T

]
λx

[
(ω2 + γ 2)

(
ω2 − ω2

y

) + λyγ
3
] + λy

[
(ω2 + γ 2)

(
ω2 − ω2

x

) + λxγ
3
]

(
s2

1 + ω2
)(

s2
2 + ω2

)(
s2

3 + ω2
)(

s2
4 + ω2

)(
s2

5 + ω2
)(

s2
6 + ω2

) . (19)

For positive charge e, the angular momentum is opposite to B. As seen, Lz(∞) = 0 at ωc = 0 or λx = λy = 0. So, without
external magnetic field and thermostat the angular momentum is zero. So, the combined actions of constant magnetic field (the
Lorentz force) and random forces Fα,g lead to the emergence of angular momentum. The source of rotational energy is the
fluctuations of random forces.

Assuming λx = λy = λ and ωx = ωy = ω0 and employing the roots

s1 = − 1
2

[
λ − iωc +

√
(λ − iωc)2 − 4ω2

0

]
, s2 = − 1

2

[
λ − iωc −

√
(λ − iωc)2 − 4ω2

0

]
, s3 = s∗

1, s4 = s∗
2, (20)

of the Markovian secular equation

(
s[s + λ] + ω2

0

)2 + s2ω2
c = 0, (21)

we obtain the asymptotic angular momentum in the following simple form:

Lz(∞) = −4h̄ωcγ
2λ

π

∫ ∞

0

dω ω3
(
ω2 − ω2

0

)
coth

[
h̄ω
2T

]
(ω2 + γ 2)

(
s2

1 + ω2
)(

s2
2 + ω2

)(
s2

3 + ω2
)(

s2
4 + ω2

)
= −4h̄ωcγ

2λ

π

∫ ∞

0

dω ω3
(
ω2 − ω2

0

)
coth

[
h̄ω
2T

]
(ω2 + γ 2)

{[(
ω2 − ω2

0

)2 + ω2λ2
]2 − 2ω2ω2

c

[(
ω2 − ω2

0

)2 − ω2λ2
] + ω4ω4

c

} . (22)
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In the absence of magnetic field (ωc = 0) we have Lz = 0. Setting the frequency of the damped quantum oscillator zero (ω0 → 0)
in Eq. (22), we find the asymptotic angular momentum for free damped particle:

Lz(∞) = −4h̄ωcγ
2λ

π

∫ ∞

0
dω

ω coth
[

h̄ω
2T

]
ω2 + γ 2

1

ω4 + 2ω2
(
λ2 − ω2

c

) + (
λ2 + ω2

c

)2 . (23)

At high temperatures and γ → ∞, we obtain from Eq. (23)

Lz(∞) = − 2ωcT

λ2 + ω2
c

. (24)

The similar expression was derived in Ref. [20]. As seen,
Lz(∞) approaches zero with increasing friction coefficient.
This approach is slower the larger the cyclotron frequency
is. Note that the Bohr–Van Leeuwen theorem (there is no
diamagnetism in the classical system) is restored in the limit
of infinite cyclotron frequency. At low temperature (T → 0)
and γ → ∞,

Lz(∞) = −h̄

⎛
⎝1

2
− arctan

[ λ2−ω2
c

λωc

]
π

⎞
⎠ (25)

is also nonzero in the presence of dissipation and magnetic
field. So, the orbital diamagnetism survives in the dissipative
environment. At ωc � λ (strong magnetic field), we obtain

Lz(∞) = −h̄, M(∞) = −neh̄

2μ
. (26)

As seen, for large values of the cyclotron frequency, the
asymptotic magnetization equals one (negative) Bohr mag-
neton. So, in the dissipative system we find the quantization
conditions (T → 0, γ → ∞, ωc � λ) for the orbital angular
momentum and magnetic moment. The localization of the
charged particles with increasing magnetic field was observed
in the bosonic system [30]. Because the magnetic field local-
izes the oscillation of charged particle, the variance |�xπy (∞)|
reaches its minimum value h̄

2 at high magnetic fields.
We calculate the z component Lz of angular momentum

for the system settled in the increasing external magnetic field

at different temperatures (Fig. 1). The results indicate the
diamagnetism of the system even in the presence of physical
heat bath. At large B, the value of Lz (M) approaches −h̄
(− neh̄

2μ
), which means it tends to the usual quantization of Lz

(M) in the dissipative system. It is more pronounced at low
temperatures. As seen in Fig. 1, the average value of angular
momentum of a free particle (ω0 = 0) coupled with the heat
bath exceeds the average angular momentum of a particle
in the harmonic oscillator. For example, in the case of low
temperature [T/(h̄λ) = 0.1] and ωc/λ = 2, their ratios are
about of 2 and 1.1 at ωc/λ = 2 and 8, respectively. In the case
of high temperature [T/(h̄λ) = 2] and ωc/λ = 2, their ratios
are about of 14 and 2 at ωc/λ = 2 and 8, respectively. At high
(low) temperature and ωc ≈ λ, this ratio is maximal—about
27 (2.5). At low temperature, the absolute value of the magne-
tization of electric charges confined in the harmonic oscillator
decreases with increasing ω0 (Fig. 1). At high temperature, the
dependence of Lz on ω0 is rather weak.

IV. SUMMARY

The influence of an external magnetic field on the open
quantum system was studied beyond the Markov approxi-
mation. The explicit expression for the asymptotic angular
momentum was obtained for the two-dimensional charged
quantum harmonic oscillator in the uniform magnetic field.
The linear coupling in coordinates to the neutral bosonic heat
bath was treated. In order to average the influence of bosonic
heat bath on the charged particle, we applied the spectral
function of heat-bath excitations which describes the Drude
dissipation with Lorentzian cutoffs. Our formalism is valid at
arbitrary coupling strengths, and hence at arbitrary low tem-
perature. At initial time interval, the magnetic field acts on the

L
z

FIG. 1. Calculated magnetic-field dependence of the asymptotic z component Lz of angular momentum at temperature T/(h̄λ) = 0.1 (a) or
T/(h̄λ) = 2 (b) and fixed λx = λy = λ, γ /λ = 12. The solid, dashed, dotted, and dash-dotted lines correspond to the cases with ω0/λ = 0,
0.5, 1, and 2, respectively.
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quantum particle through its contribution to the Lorentz force.
The dissipation and external magnetic field do affect each
other due to the non-Markovian dynamics of the quantum sys-
tem. The combined action of the constant magnetic field and
random forces leads to the emergence of angular momentum.
For the two-dimensional charged quantum harmonic oscillator
in the uniform magnetic field, we demonstrated the survival
of diamagnetism of the system in the presence of realistic
heat bath at low and high temperatures. In the dissipative
environment and uniform magnetic field with ωc ≈ λ, the
average angular momentum of a free particle considerably
exceeds the average angular momentum of a particle in the
harmonic oscillator. In the damped harmonic oscillator, the
orbital magnetic moment or angular momentum approaches
the quantization limit at T → 0 and B → ∞.

For a rotating system confined by a harmonic-oscillator
potential, the cyclotron frequency ωc would have to replaced

with the rotating frequency ωrot in Eq. (1). A similar diamag-
netic effect as in the uniform magnetic field is expected for
the rotating system coupled to the bosonic heat bath. This
Hamiltonian with more complicated collective potential can
be used for the description of the Bose-Einstein condensation
in the rotating frame and in the environment.
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