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Optimal estimation of matter-field coupling strength in the dipole approximation
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This paper is devoted to the study of the Bayesian-inference approach in the context of estimating the dipole
coupling strength in matter-field interactions. In particular, we consider the simplest model of a two-level system
interacting with a single mode of the radiation field. Our estimation strategy is based on the emerging state of
the two-level system, whereas we determine both the minimum mean-square error and maximum likelihood
estimators for uniform and Gaussian prior probability density functions. In the case of the maximum likelihood
estimator, we develop a mathematical method which extends the already existing approaches to the variational
problem of the average cost function. We demonstrate that long interaction times, large initial mean photon
numbers, and nonzero detuning between two-level system transition and the frequency of the electromagnetic
field mode have a deleterious effect on the optimality of the estimation scenario. We also present several cases
where the estimation process is inconclusive, despite many ideal conditions being met.
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I. INTRODUCTION

Measurements of physical systems with complete descrip-
tion can be anticipated and the problem of prediction is the
forward problem. The inverse problem consists of the estima-
tion of physical parameters using the available measurement
data [1]. In quantum mechanics, we seek to estimate the phys-
ical parameters governing the evolution of a density matrix
from measurements made on part of the system. Against this
background, the problem of optimal measurements in quan-
tum systems has been a major focus since the beginning of
quantum estimation theory [2,3]. The criterion of optimality
is defined through the cost experienced upon making errors
in the estimates. This measure is formulated by means of the
so-called cost function of the estimates and the true values
of the parameters. The optimum strategy attempts to find that
positive-operator valued measure (POVM) which minimizes
the average cost functional calculated with the help of the cost
function, the density matrix, and the POVM. The rigorous
mathematical meaning of the average cost functional and
conditions under which solutions of the optimization problem
exist were thoroughly investigated by Holevo [4]. In this
context, a particularly convenient approach is the Bayesian-
inference method, where one assumes that the true values of
the physical parameters are random variables with a given
prior probability density function (PDF) [5].

In this paper, we continue our investigations of the
Bayesian-inference approach with a focus on one-parameter
estimation scenarios in order to gain a better insight into
the properties of the estimators [6]. We shall consider the
problem of estimating the dipole coupling of matter-field
interactions [7]. Because of the widespread applications of
these interactions in, e.g., quantum communication [8], a
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precise determination of the dipole coupling has increas-
ing technological, as well as fundamental, relevance. While
quantum electrodynamics gives a straightforward recipe for
calculating this matter-field coupling [9], experimental limi-
tations on precision inherently introduce probabilistic varia-
tions in this parameter. Typically, the dipole coupling varies
along the trajectory of the moving atom due to the mode
structure in the cavity [10,11] or in case of trapped atoms due
to the temperature-induced position probability distribution
[12]. The experiments usually determine an effective dipole
coupling by integrating over the variations of the coupling
strength. Another way to gain some knowledge is to perform
measurements on the physical system and obtain data, from
which the value of the effective dipole coupling can be in-
ferred. In the context of the Bayesian-inference approach, one
may even obtain the optimum estimators. Here in this paper,
we determine not only the minimum mean-square error esti-
mator for a Gaussian PDF [6], but we consider also a uniform
prior PDF. These type of a priori PDF are going to be applied
also in the determination of optimum maximum likelihood
estimator. The method presented in Ref. [6] and elaborated
upon here should be distinguished from the quantum Fisher
information approach [13], which has also been successfully
applied to systems with matter-field interactions [14,15].

In our model, two-level systems (TLSs) transit through a
cavity supporting a single mode of the radiation field and are
then measured. We trace out the single-mode radiation field
and concentrate on the resulting density matrix, subject to
the quantum estimation procedure. Spontaneous decay of the
TLS is also taken into account. In the case of the minimum
mean-square error estimator, we invoke the method applied
in our previous work [6], demonstrating that the resulting
optimal detection strategy can be related to implementable
measurement setups in experimentally relevant situations. The
problem of determining the maximum likelihood estimator
is centered around the resolution of identity and integration
with respect to an operator valued measure; see Dobrakov’s
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FIG. 1. Schematic representation of a quantum estimation sce-
nario based on cavity QED. The atoms (gray dots) implementing
the two-level systems are captured from a background gas by a
magneto-optical trap and loaded into an optical conveyor belt [19].
The atoms move with the help of the conveyor belt into and out of the
cavity and toward a detector. The transition frequency of the atom is
ωe↔g. Further details about the scheme are in the text.

integral in Ref. [16]. Because of our motivations being rooted
in physics, we choose to avoid generalized theories of the
Lebesgue integral [17], instead making a simple ansatz for
the POVM with the help of square-integrable functions. This
construction allows us to determine the maximum likelihood
estimators for both the uniform and Gaussian prior PDF
and offers a mathematical tool for the maximum likelihood
estimation strategy. Whereas estimating the phases of states,
displacement parameters, wave vectors, and coherent signal
amplitudes involves solving the equations for the optimum
strategy involving the risk operator [4], here we focus directly
on the extrema of the average cost function, which determine
the optimum POVMs. We will present numerical calculations
of the average cost functions, the average estimates, and lower
bounds of the mean-squared error of the obtained biased
estimators.

This paper is organized as follows. In Sec. II, we discuss
the model and determine the state of the TLS following
its interaction with the single-mode radiation field. Spon-
taneous decay of the TLS is also considered. In Sec. III,
we recapitulate some basic facts about quantum estimation
theory and introduce the formalism used throughout the paper.
We then address the problem of determining the minimum
mean-square error estimator in Sec. IV. In Sec. V, maximum
likelihood estimators are discussed. Finally, we discuss our
work and draw our conclusions in Sec. VI.

II. MODEL

In this section, we discuss a cavity QED model consisting
of a TLS interacting with a single-mode electromagnetic
cavity. The TLS, generally implemented as a flying atom,
is injected into the cavity and emerges from the cavity and
is detected after interacting with the electromagnetic field.
The setup, illustrated in Fig. 1, is one of the best suited
for our estimation procedure, because it is under exquisite

experimental control [7,18,19] and because it allows repeated
measurements to be made using several TLSs interacting se-
quentially with the field. In fact, this is a very important point
in estimation scenarios because the use of N independent and
identical systems reduces the lower bound of the estimation
accuracy by a factor of N−1 [2]. Therefore, it is assumed
that before each TLS enters the cavity, the single-mode field
is always reset to the same initial state. The state of each
TLS entering the cavity is also assumed to be the same. In
practice, the controlled motion of an atom into and out of
the cavity may be realized using an optical conveyor belt
[19], i.e., a moving dipole trap, into which atoms are loaded
from a magneto-optical trap. In our discussion, we present
the solution to this elementary model and determine the state
of the atom by tracing out the state of the electromagnetic
field. The optimal estimator for the matter-field coupling will
be subsequently determined for each presented estimation
scenario.

Let us consider a TLS with ground state |g〉 and excited
state |e〉. Cavity leakage and spontaneous decay of the TLS
are present; nonetheless, it is assumed in most parts of the
presented work that the coupling strength of the matter-field
interaction is much larger than the damping rate of the two de-
coherence sources. Therefore, the joint TLS-field state during
the matter-field interaction time can effectively be described
by a purely unitary evolution. In the dipole and rotating-wave
approximations, the Hamiltonian in the time-independent in-
teraction picture reads [20,21] (h̄ = 1)

Ĥ = �

2
σ̂z + g(âσ̂+ + â†σ̂−), (1)

where σ̂z = |e〉〈e| − |g〉〈g|, σ̂+ = |e〉〈g| is the raising operator,
and σ̂− = |g〉〈e| is the lowering operator. â and â† are the
annihilation and creation operators of the field mode. � =
ωe↔g − ωc is the detuning between the cavity field mode res-
onance frequency ωc and the TLS transition frequency ωe↔g.
Finally, g is the dipole coupling strength, which involves the
normalized mode function of the single-mode radiation field
and the transition dipole moment between |g〉 and |e〉.

We suppose that at t = 0 there are no correlations between
the field and the TLS. Furthermore, we set the TLS to be
initially in the excited state. Thus, our general initial quantum
state reads

|ψ (t = 0)〉 = |e〉 ⊗
∞∑

n=0

an|n〉, (2)

where |n〉 (n ∈ N0) are the normalized photon number states
and

∑∞
n=0 |an|2 = 1. The time evolution is governed by the

Schrödinger equation acting on the initial state (2) yields

|ψ (t )〉 =
∞∑

n=1

ce,n−1(t )|e, n − 1〉 + cg,n(t )|g, n〉, (3)

where [9]

ce,n−1(t ) = e−i �t
2

[
cos(λnt ) + i

�

2λn
sin(λnt )

]
an−1,

cg,n(t ) = −iei �t
2

g
√

n

λn
sin(λnt )an−1,
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and where λn =
√

�2/4 + g2n is the effective Rabi frequency.
The state of the TLS upon emerging from the cavity is
obtained by tracing out the state of the field,

ρ̂(g, t ) = TrF{|ψ (t )〉〈ψ (t )|}

=
[

aee(t ) aeg(t )
a∗

eg(t ) 1 − aee(t )

]
, (4)

where

aee(t ) =
∞∑

n=1

|an−1|2
[

cos2(λnt ) + �2

4λ2
n

sin2(λnt )

]
, (5)

aeg(t ) =
∞∑

n=1

ana∗
n−1

[
cos(λn+1t ) + i

�

2λn+1
sin(λn+1t )

]

× ig
√

n

λn
sin(λnt )e−i�t . (6)

In the next stage of the experiment, the TLS flies from the
cavity to the detector. During this time, spontaneous emission
may occur. We include this effect in our calculations by using
a simple Markovian description

d ρ̂

dt
= γ

2
(2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂ − ρ̂σ̂+σ̂−), (7)

where γ is the spontaneous emission rate of the TLS. Equation
(7) is written in the frame rotating at the resonance frequency
of the TLS. Two characteristic times enter our discussion: τc,
the duration of the matter-field interaction in the cavity, and
τ f , the flying time from the cavity to the detector. The solution
in Eq. (4) at t = τc can be considered as the initial condition
for Eq. (7). Thus, the state of the TLS reaching the detector is

ρ̂(g) =
[

aee(g, τc)e−γ τ f aeg(g, τc)e−γ τ f /2

a∗
eg(g, τc)e−γ τ f /2 1 − aee(g, τc)e−γ τ f

]
. (8)

Equation (8) yields a complete description of our setup and
it applies to all the possible initial conditions of the field. A
major theme of our subsequent discussion will be the analysis
of Eq. (8) in the context of quantum estimation theory, where
we shall seek optimal estimators for the coupling strength g.

III. QUANTUM ESTIMATION THEORY

In this section, we summarize basic facts about parameter
estimation in quantum theory which are relevant for our
subsequent discussion and which have been reviewed in detail
by Helstrom [2]. In particular, we summarize the methods
and the concept behind them in order to provide an optimal
estimation for the dipole coupling strength g from the density
matrix (8).

The observational strategy for estimating g, a real number,
can be expressed as a search for a POVM defined on the
set 
 ⊆ R of all possible values of g. The elements of the
POVM represent the measurements to be performed on the
TLS, which result in estimates g̃ of g, where g̃ is a random
variable. The probability that it lies in a particular region � of
the set 
, provided that the true value of the estimated dipole
coupling is g, reads

P(g̃ ∈ �|g) = Tr{ρ̂(g)�̂(�)}. (9)

�̂(�) is an element of the POVM which is a mapping of
regions � ⊂ 
 into positive semidefinite operators on the
Hilbert space C2 of the TLS with the following properties:

0 � �̂(�) � Î, �̂(∅) = 0̂, and �̂(
) = Î, (10)

where ∅ stands for the empty set and 0̂ and Î are the null and
identity operators. Furthermore, we suppose that POVM ele-
ments on compact intervals � can be written as integrals with
the help of the infinitesimal operators d�̂(g), thus yielding

�̂(�) =
∫

�

d�̂(g) and
∫




d�̂(g) = Î. (11)

The conditional PDF of the estimate g̃ is given by

p(g̃|g)dg̃ = Tr{ρ̂(g)d�̂(g̃)}, (12)

where dg̃ represents an infinitesimal compact interval in the
set 
.

The Bayesian formulation of the estimation problem seeks
for the best estimator which minimizes the average cost of
its application. In order to solve this estimation problem we
have to provide an a priori PDF z(g) of g to be estimated and
a cost function C(g̃, g), which asses the cost of error in the
estimate. Now, combining the Bayesian estimation procedure
with the strategy represented by the POVM in Eq. (10) and
including integral representation in Eq. (11), we obtain for the
average cost

C̄ = Tr

{∫



dg
∫




d�̂(g̃)z(g)C(g̃, g)ρ̂(g)

}
. (13)

We are looking for the d�̂(g̃) which minimizes C̄. Our
problem has thus been rephrased as a variational problem
formulated on the space of all POVMs. In order to solve this
problem, one ought to first define C(g̃, g). In this article, we
will employ the frequently used quadratic cost function

C(g̃, g) = (g̃ − g)2, (14)

which leads to the minimum mean-square error (MMSE)
estimator, and the δ-valued cost function

C(g̃, g) = −δ(g̃ − g), (15)

which leads to the maximum likelihood (ML) estimator [2].
In the following sections, we will investigate both the

MMSE and the ML estimation scenarios for different prior
PDF.

IV. MINIMUM MEAN-SQUARE ERROR ESTIMATOR

In the case of the quadratic cost function, there is a more
direct way to formulate the variational problem of Eq. (13)
[22]. Let us assume that the elements of the POVM are
projectors, with the infinitesimal operator

d�̂(g̃) = |g̃〉〈g̃|dg̃,

where |g̃〉 are the eigenstates of the estimator

M̂ =
∫




g̃d�̂(g̃) =
∫




g̃|g̃〉〈g̃|dg̃, (16)

and here g̃ stands for the all possible values of the estimate. In
fact, the most convenient way to think about M̂ is to consider
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it as an operator to be measured, with its eigenvalues the
estimates of g [6]. Furthermore, the Hilbert space is C2 in our
setup, which means that the POVM has only two projectors
as elements, which project onto the eigenstates of M̂. The
average cost in Eq. (13), together with Eq. (16), yields

C̄[M̂] = Tr

{∫



z(g)(M̂ − gÎ )2ρ̂(g)dg

}
. (17)

The unique Hermitian operator M̂min, the MMSE estima-
tor, which minimizes C̄[M̂] is the solution of the operator
equation [22]

̂0M̂min + M̂min̂0 = 2̂1, (18)

where we have introduced the family of operators (k =
0, 1, 2):

̂k =
∫




gkz(g)ρ̂(g)dg. (19)

The solution to Eq. (18) reads

M̂min = 2
∫ ∞

0
exp(−̂0x)̂1 exp(−̂0x)dx, (20)

and the associated average minimum cost of error for the
MMSE estimator is

C̄min = Tr{̂2 − M̂min̂0M̂min}. (21)

In order to gain insight into the structure of M̂min, let us
concentrate on resonant interactions � = ωe↔g − ωc = 0. We
also consider the initial state of the single-mode field in (2) to
be the ground state, a0 = 1. In this case, Eq. (8) reads

ρ̂(g) =
[

cos2(gτc)e−γ τ f 0
0 1 − cos2(gτc)e−γ τ f

]
. (22)

We assume that the random variable g to be estimated is
characterized by its mean value g0 and variance σ 2. In order to
connect these parameters to experimental setups, we start with
the position-dependent dipole coupling of the matter-field
interaction [9],

g(rq) = −
√

h̄ωc

2ε0
〈g| ̂d|e〉 · u(rq)/h̄,

where ̂d is the dipole operator, ε0 is the permittivity of
vacuum, and rq is the position vector. The normalized mode
function of the single-mode radiation field, u(r), is a solution
to the Helmholtz equation and fulfills the Coulomb gauge and
the cavity boundary conditions. However, every passing TLS
also experiences changes in the dipole coupling due to the
waist of the field mode. Experimental studies usually integrate
the collected data over the flying time through the cavity and
thus obtain an average coupling strength g0; cf., for example,
Ref. [11]. This method results also in a variance σ 2 of the
measured coupling strength. In the following, we are going
to discuss two prior PDFs whose mean values and variances
coincide with the values defined here.

A. Gaussian probability density function

In this subsection, we consider 
 = R and the prior PDF

z(g) = 1√
2πσ 2

e− (g−g0 )2

2σ2 , g ∈ 
. (23)

As z(g) and the density matrix in Eq. (22) are given, the
operators defined in Eq. (19) can be evaluated explicitly,
yielding

̂0 =
[

ae−γ τ f 0
0 1 − ae−γ τ f

]
,

a = 1 + e−2σ 2τ 2
c cos(2g0τc)

2
,

̂1 =
[

be−γ τ f 0
0 g0 − be−γ τ f

]
,

b = g0 + e−2σ 2τ 2
c [g0 cos(2g0τc) − 2σ 2τc sin(2g0τc)]

2
,

̂2 =
[

ce−γ τ f 0
0 g2

0 + σ 2 − ce−γ τ f

]
,

and

c =
(
g2

0 + σ 2
)[

1 + e−2σ 2τ 2
c cos(2g0τc)

]
2

− 2g0σ
2τce−2σ 2τ 2

c sin(2g0τc)

− 2σ 4τ 2
c e−2σ 2τ 2

c cos(2g0τc).

Now, Eq. (20) can be directly calculated and the MMSE
estimator reads

M̂min =
[ b

a 0

0 g0−be−γ τ f

1−ae−γ τ f

]
. (24)

The average minimum cost of error is

C̄min = g2
0 + σ 2 −

(
g0 − be−γ τ f

1 − ae−γ τ f

)2

− ae−γ τ f

[
b2

a2
−

(
g0 − be−γ τ f

1 − ae−γ τ f

)2
]
.

To illustrate the meaning of the MMSE estimator M̂min

and the average minimum cost of error C̄min, we consider
a situation where the experimentalist, based on their prior
expectations of the coupling strength g, sets the duration of
the matter-field interaction τc = π/(2g0). This reflects the
fact that the experimentalist expects the TLS to emit a photon
into the field mode and fly toward the detectors in its ground
state. This setup yields

M̂min =
[

g0 0
0 g0

]
, C̄min = σ 2,

which means that the estimates g̃ are always g0 regardless of
the applied projective measurement. Furthermore, the average
minimum cost of error is σ 2. Thus, this scenario simply
reinforces prior expectations on the true value of g. Another
inconclusive setup would be when τc = π/g0, i.e., the experi-
mentalist expects that the TLS will not emit a photon into the
field mode.
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A much more interesting scenario is when τc = π/(4g0) or
in other words the experimentalist expects the TLS to emit a
photon with 50% probability. Now, we have

M̂min =

⎡
⎢⎣g0 − σ 2π

2g0
e
− π2

8
σ2

g2
0 0

0 g0 + σ 2π
2g0

1
2eγ τ f −1 e

− π2

8
σ2

g2
0

⎤
⎥⎦

and

C̄min = σ 2 − σ 4π2

4g2
0

1

2eγ τ f − 1
e
− π2

4
σ2

g2
0 .

Measuring the TLS in the excited state results in the estimate

g̃ = g0 − σ 2π

2g0
e
− π2

8
σ2

g2
0 ,

with probability

p = cos2

(
π

4

g

g0

)
e−γ τ f .

The destructive effects of the spontaneous decay are revealed
here, because when γ τ f � 1 this probability reduces to zero
and therefore the measurement cannot obtain the estimate
belonging to the excited state of the TLS. When the measure-
ment yields the other outcome, the state is projected onto the
ground state of the TLS, and the resulting estimate is

g̃ = g0 + σ 2π

2g0

1

2eγ τ f − 1
e
− π2

8
σ2

g2
0

with probability

p = 1 − cos2

(
π

4

g

g0

)
e−γ τ f .

When γ τ f � 1, this result is obtained with certainty, and the
resulting estimate is simply g0 and C̄min = σ 2. Again our prior
expectations of the true value of g are reinforced. In general,
the average estimate is

E [g̃ |g] = Tr{M̂minρ̂(g)}

= g0 − cos

(
π

2

g

g0

)
σ 2π

2g0

1

2eγ τ f − 1
e
− π2

8
σ2

g2
0 ,

which is conditioned on the true value of g. Performing several
measurements with identical TLSs yields an average estimate
from which one may deduce the value of g. When the standard
deviation σ of the prior PDF is set very large compared to the
prior mean g0 � σ , we allow the true value of g to be far
from the prior mean. In this context, the estimates turn out
to be again g0 and accordingly the average minimum cost of
error is σ 2. In the case when the true value of g is g0, we find
E [g̃ |g0] = g0.

In the next step, the accuracy with which g can be estimated
is characterized by the mean-squared error E [(g̃ − g)2|g] [23].
The lower bound of the mean-squared error is given by a

quantum Cramér-Rao-type inequality [2]

E [(g̃ − g)2|g] = Tr{(M̂min − gÎ )2ρ̂(g)} � |x′(g)|
Tr{ρ̂(g)L̂2} , (25)

where

x′(g) = Tr

{
M̂min

∂

∂g
ρ̂(g)

}
,

and the symmetrized logarithmic derivative L̂ of the density
matrix ρ̂(g) is defined as

∂ρ̂(g)

∂g
= 1

2
[L̂ρ̂(g) + ρ̂(g)L̂].

If we consider the spectral decomposition

ρ̂(g) = cos2(gτc)e−γ τ f |e〉〈e| + (1 − cos2(gτc)e−γ τ f )|g〉〈g|,
then

L̂ = −2τc tan(gτc)|e〉〈e| + τc
sin(2gτc)e−γ τ f

1 − cos2(gτc)e−γ τ f
|g〉〈g|.

Hence, we have

E [(g̃ − g)2|g] � 1 − cos2(gτc)e−γ τ f

4τc sin2(gτc)

× | sin(2gτc)| |g0 − b/a|
1 − ae−γ τ f

. (26)

In the inconclusive cases when the experimentalist sets the
interaction times either to π/(2g0) or π/g0, the inequality in
Eq. (26) yields

E [(g̃ − g)2|g] � 0,

which also means that when we bolster our prior knowledge
then the lower bound of the accuracy is the smallest. Now, for
the interesting case of τc = π/(4g0), we find

E [(g̃ − g)2|g] �
1 − cos2

(
π
4

g
g0

)
e−γ τ f

sin2
(

π
4

g
g0

)

×
∣∣∣∣sin

(
π

2

g

g0

)∣∣∣∣σ 2e
− π2

8
σ2

g2
0

2 − e−γ τ f
.

It is worth noting that in the inconclusive situation γ τ f � 1,
when the estimate of the coupling strength is g0, the lower
bound of the mean-squared error increases. This fact is in con-
trast with the inconclusive scenarios where τc = π/(2g0) and
τc = π/g0, where the left-hand side of the quantum Cramér-
Rao inequality is zero, the minimum allowed value. It seems
in the context of our system that the extremal behaviors of
lower bounds on the accuracy are related only to inconclusive
estimation scenarios.

B. Uniform probability density function

In this subsection, we consider a uniform prior PDF. As the
only prior knowledge about the coupling g is its mean value
g0 and variance σ 2, we set the parameter space 
 = [g0 −√

3σ, g0 + √
3σ ] and PDF

z(g) = 1

2
√

3σ
, g ∈ 
. (27)
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Like in the previous subsection, we determine the operators defined in Eq. (19)

̂0 =
[

a′e−γ τ f 0
0 1 − a′e−γ τ f

]
,

a′ = 1

2
+ sin(2

√
3στc) cos(2g0τc)

4
√

3στc

,

̂1 =
[

b′e−γ τ f 0
0 g0 − b′e−γ τ f

]
,

b′ = g0

2
− sin(2g0τc) sin(2

√
3στc)

8
√

3στ 2
c

+
√

3σ sin(2g0τc) cos(2
√

3στc) + g0 cos(2g0τc) sin(2
√

3στc)

4
√

3στc

, (28)

and

̂2 =
[

c′e−γ τ f 0

0 g2
0 + σ 2 − c′e−γ τ f

]
,

c′ = g2
0 + σ 2

2
+

(
g2

0 + 3σ 2
)

sin(2
√

3στc) cos(2g0τc)

4
√

3στc

+
√

3σ cos(2
√

3στc) cos(2g0τc) − g0 sin(2
√

3στc) sin(2g0τc)

4
√

3στ 2
c

− sin(2
√

3στc) cos(2g0τc)

8
√

3στ 3
c

+ g0 sin(2g0τc) cos(2
√

3στc)

2τc
.

As the structure of the operators ̂k (k = 0, 1, 2) is the same
as in the previous subsection, where we have considered the
Gaussian PDF, we obtain for the MMSE estimator

M̂min =
[

b′
a′ 0

0 g0−b′e−γ τ f

1−a′e−γ τ f

]
.

The average minimum cost of error is

C̄min = g2
0 + σ 2 −

(
g0 − b′e−γ τ f

1 − a′e−γ τ f

)2

− a′e−γ τ f

[
b′2

a′2 −
(

g0 − b′e−γ τ f

1 − a′e−γ τ f

)2
]
.

The two cases discussed τc = π/(2g0) and τc = π/g0 were
found to be inconclusive in the previous subsection. It is
immediate to see from the structure of ̂k that for a uniform
prior PDF these cases are not indecisive any more. Thus,
supposing that nothing is known in advance about the true
value of g in the interval [g0 − √

3σ, g0 + √
3σ ] actually

reduces the number of inconclusive scenarios. Let us also
reconsider τc = π/(4g0), i.e., the experimentalist expects the
TLS to emit a photon with 50% probability, which was seen to
be an interesting case of the previous subsection. The MMSE
estimator is, in this case,

M̂min =
[

g0(1 + x) 0
0 g0

(
1 − x

2eγ τ f −1

)],

with

x = 2

π
cos

(√
3π

2

σ

g0

)
− 4√

3π2

g0

σ
sin

(√
3π

2

σ

g0

)
.

The average minimum cost of error is

C̄min = σ 2 − g2
0

x2

2eγ τ f − 1
.

Measuring the TLS in the excited state results in the estimate

g̃ = g0(1 + x),

with probability

p = cos2

(
π

4

g

g0

)
e−γ τ f .

Once again we find that when γ τ f � 1 this probability re-
duces to zero and therefore a measurement cannot yield this
estimate. Finding the TLS in the ground state results in the
estimate

g̃ = g0

(
1 − x

2eγ τ f − 1

)
,

with probability

p = 1 − cos2

(
π

4

g

g0

)
e−γ τ f .

The situation is the same as that for the Gaussian prior PDF;
i.e., when γ τ f � 1 one measures the TLS to be in the ground
state with certainty, the estimate is simply g0, and C̄min = σ 2.
In any case, the average estimator is

E[g̃ |g] = g0 + g0x
2 cos2

(
π
4

g
g0

) − 1

2eγ τ f − 1
.

We note again the case when the true value of g is g0, then
E[g̃ |g0] = g0. If γ τ f � 1, then the average estimator is also
g0 no matter what the true value of g is; this is again an
inconclusive scenario.

With the uniform prior PDF, the quantum Cramér-Rao
inequality is

E [(g̃ − g)2|g] � 1 − cos2(gτc)e−γ τ f

4τc sin2(gτc)
| sin(2gτc)|

∣∣g0 − b′/a′∣∣
1 − a′e−γ τ f

,

(29)

062106-6



OPTIMAL ESTIMATION OF MATTER-FIELD COUPLING … PHYSICAL REVIEW A 99, 062106 (2019)

which yields, when τc = π/(4g0),

E [(g̃ − g)2|g] �
1 − cos2

(
π
4

g
g0

)
e−γ τ f

π sin2
(

π
4

g
g0

)
×

∣∣∣∣sin

(
π

2

g

g0

)∣∣∣∣ 2g2
0|x|

2 − e−γ τ f
.

The next subsection focuses on numerical simulations in order
to understand the role of the detuning � and an initial field
state with mean photon number larger than zero. We will
investigate the deviations from the analytical results of this
section and understand the changes inflicted on the estimates,
the minimum average cost of error, and the left-hand side of
the quantum Cramér-Rao inequality.

C. Numerical results

In the previous subsections, we have calculated analyti-
cally the MMSE estimators for both the Gaussian (23) and the
uniform (27) PDF. We have presented the simplest scenario,
where the cavity field mode is initially in the ground state,
a0 = 1, which led to a diagonal form of the density matrix
(22). Furthermore, we have considered the single-mode field
to be in resonance with the TLS transition, � = ωe↔g −
ωc = 0, which has allowed us to perform the integrations in
Eq. (19). Here, we show the numerical results obtained in
more general cases, where the initial state of the field mode
is a more general coherent state |α〉, and where we may
have nonzero detuning � �= 0. The coherent state is defined
through the parameter α [24],

|α〉 =
∞∑

n=0

e− |α|2
2

αn

√
n!

|n〉, α = |α|eiφ, (30)

where |n〉 (n ∈ N0) are the photon number states and φ is the
complex phase of α; the mean photon number of this coherent
state is |α|2. Here, we set φ = 0.

Gaussian PDF and resonant interaction � = 0. The two
parameters of the Gaussian PDF are its mean g0 and variance
σ 2. To simplify the analysis, we set γ τ f = 0, so that no spon-
taneous emission may occur. We start our analysis with the
simplest case α = 0. First of all, we discuss the eigenvalues,
i.e, the estimates, of the operator M̂min. One of the eigenvalues
of M̂min has a discontinuity at τc = 0. This can be shown by
explicitly taking the limit

lim
τc→0+

g0 − b

1 − a
= g0

(
3σ 2 + g2

0

)
σ 2 + g2

0

, (31)

with a and b defined in Eq. (24). For τc = 0, the function
g0−b
1−a is not defined and the eigenvalue can be obtained only

by starting again the whole calculation from Eq. (22). The
other eigenvalue is continuous and its value tends to g0. At
τc = 0, the eigenvalues of M̂min are g0 and 0. This is simply
due to the fact that no interaction occurred. Thus, estimates
give either the prior expected coupling value or no coupling at
all. When τc tends to infinity, both curves approach the prior
expected value g0, and the measurement is again inconclusive.
In Fig. 3(a), the average minimum cost of error C̄min is plotted.
At τc = 0, we find C̄min = σ 2, equal to the prior variance.
The plot shows that there is global minimum of C̄min, which

FIG. 2. The eigenvalues of M̂min/g0 as a function of g0τc in
the case of the Gaussian prior PDF, with mean g0 and variance
σ 2/g2

0 = 1. In the case α = 0, the two initial eigenvalues are 0 and
g0. When |α| > 0, the eigenvalues are plotted from τc = 0+, at which
time they are equal to g0. For large values of τc, the eigenvalues tend
to the same value g0. We set γ τ f = 0, such that no spontaneous decay
occurs.

defines the recommended value of g0τc for the experimental
detection. For a fixed value of g0, we denote the recommended
interaction time as τ ∗

c .
Finally, let us discuss the scenarios with finite field am-

plitude |α|, i.e., the initial average photon number becomes
nonzero. Now, we have to focus completely on numerical
solutions, because analytical calculations are not possible.
The numerical results in Fig. 2 show the eigenvalues of M̂min.
Contrary to the behavior encountered for α = 0, here all
eigenvalues seem to start from g0. However, this is true only
for τc = 0+. When τc = 0, the eigenvalues are 0 and g0, but
we cannot obtain them because of the finite numerical sum
of the field amplitude. Starting from τc = 0+, the eigenvalues
are robust against the increase of the terms in the summation
provided that the numerical normalization of the coherent
state is larger than 0.99. As in the case α = 0, the eigenvalues
are approaching g0 as τc → ∞. The average minimum cost
error C̄min starts for all the values of |α| at C̄min = σ 2 and
reaches a global minimum for τc = τ ∗

c . This value depends
on |α| and decreases with increasing |α|. As more photons
are involved in the interaction, i.e., as the TLS and the field
mode undergo many exchanges of photons, more information
gets lost in the different photon number states |n〉. Therefore,
the lowest average minimum cost of error is obtained when
the field is in the vacuum state, |α〉 = |0〉. However, more
photons in the interaction result in the appearance of higher
Rabi frequencies g

√
n, which in turn means that the minimum

value is reached more quickly. We note that different α with
the same absolute value show the same behavior both for
the eigenvalues of M̂min and C̄min, and thus the mean photon
number is the only significant variable for the estimation of
the dipole coupling strength.

Next, we calculate the average estimator E [g̃|g], which is
determined from the measurement data and from which the
value of g can be deduced. Repeated measurements of M̂min

at τc = τ ∗
c give different outcomes whose average is related

with the true value g. Figure 3(b) shows some curves for
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(a)

(b)

(c)

FIG. 3. Figures obtained for a Gaussian prior PDF, with mean g0

and variance σ 2/g2
0 = 1. We set γ τ f = 0, such that no spontaneous

decay occurs. In panel (a), each curve has a global minimum that
decreases and shifts to larger values of g0τc with increasing |α|. At
the time, when C̄ attains its minimum, panel (b) displays biased
average estimators, where the mean value g0 of the prior PDF is
depicted by a vertical line. The curves in panel (c) characterizing the
accuracy of the estimation scenario have to be considered together
with the appropriate curves in panel (b) in order to obtain a more
complete information abut the optimal MMSE estimator. (a) The
average minimum cost of error C̄min/g2

0 as a function of g0τc. (b)
The average estimator E [g̃|g]/g0 as a function of g/g0. (c) The lower
bound of the mean–squared error as a function of g/g0.

FIG. 4. The eigenvalues of M̂min/g0 as a function of g0τc in the
case of the uniform prior PDF with mean g0 and variance σ 2/g2

0 =
1. In the case α = 0, the two initial eigenvalues are 0 and g0. The
eigenvalues are plotted from τc = 0+ for all |α| > 0 and their starting
values are g0. For large values of g0τc, the eigenvalues tend to the
same value g0, but slower than in Fig. 2. We set γ τ f = 0.

different values of α which clearly demonstrate that the
obtained MMSE estimator is biased. Furthermore, using
Eq. (25), we plot in Fig. 3(c) the lower bounds of the mean-
squared error. In the case g = g0, the lower bound of the
mean-squared error decreases whenever |α| �= 0. By taking
into account the behavior of the average estimate E [g̃|g],
which at g = g0 approaches the value of g0 with increasing
|α| [see Fig. 3(b)], we can conclude that increasing values of
|α| lead to measurement strategies, which reinforce our prior
expectations.

Uniform prior PDF and resonant interaction � = 0. The
two parameters of the uniform PDF are again the mean g0

and the variance σ 2. We assume again that no spontaneous
emission occurs, i.e., γ τ f = 0. In Fig. 4, the measurement
estimates, or the eigenvalues of the MMSE operator M̂min, are
shown. If α = 0, the eigenvalues show a discontinuity around
at τc = 0, as in the case of Gaussian PDF, which can be seen
from the analytical calculation of M̂min. The corresponding
limit reads

lim
τc→0+

g0 − b′

1 − a′ = g0
(
3σ 2 + g2

0

)
σ 2 + g2

0

, (32)

with a′ and b′ defined in (28). The average cost function
C̄min plotted in Fig. 5(a) starts from the prior variance σ 2 and
after reaching a global minimum approaches again the prior
variance as τc → ∞. Figure 5(b) shows the average estimator
E [g̃|g] at the time τ ∗

c when C̄min attains its minimum. The
lower bound of the mean-squared error is shown in Fig. 5(c).
The behavior of all these curves resembles the Gaussian PDF
case, which has already been discussed.

If we set a finite amplitude |α| > 0 for the optical field, the
eigenvalues of M̂min are continuous. They both start from the
prior mean value g0 at τc = 0+ and show large oscillations in
time. In Fig. 5(a), it is seen that C̄min always starts from the
prior variance σ 2 and reaches a minimum that depends on |α|.
As in the Gaussian prior PDF case, the absolute value of α is
sufficient to characterize completely these minima.
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FIG. 5. Figures obtained for a uniform prior PDF. The parame-
ters are set to the same value as in Fig. 3. The curves display very
similar properties to those corresponding in Fig. 3. (a) The average
minimum cost of error C̄min/g2

0 as a function of g0τc. (b) The average
estimator E [g̃|g]/g0 as a function of g/g0. (c) The lower bound of the
mean–squared error as a function of g/g0.

Role of the detuning � and the flight time τ f . In or-
der to demonstrate the properties of nonzero detuning in a
simple way, we have considered set α = 0, γ τ f = 0, and
τc = τ ∗

c , where the average minimum cost of error reaches

FIG. 6. The average minimum cost of error C̄min/g2
0 reached

at τc = τ ∗
c as a function of the detuning �. The lowest average

minimum cost of error is at resonance � = 0. We set γ τ f = 0,
α = 0, and σ 2/g2

0 = 1.

its minimum. Figure 6 shows that the minimum of the av-
erage minimum cost of error occurs at � = 0, for both the
Gaussian and the uniform prior PDF. Nonzero detuning de-
creases the probability of the transition occurring in the TLS
and increases the average cost of error. Another interesting
feature of the off-resonant case is that for g0τc → ∞, C̄min

does not approach σ 2 as in Figs. 3(a) and 5(a), but has a value
depending on both � and the prior variance σ 2.

The influence of the flight time τ f on the estimation sce-
nario is clearly destructive, as we have shown in the previous
subsections. Therefore, it is interesting to compare these
deleterious effects on the two different prior PDF considered
in this work. As a result of our previous findings, we have
set � = 0, initial single-mode field in the ground state, i.e.,
α = 0, and τc = τ ∗

c . Figure 7 shows that the average minimum
cost of error at τ ∗

c reaches its minimum for γ τ f = 0 and
approaches its maximum σ 2 when γ τ f → ∞.

In summary, we have been able to identify the most
ideal scenario for the implementation of a MMSE estima-
tor. Nonzero detuning, the occurrence of the spontaneous

FIG. 7. The average minimum cost of error C̄min/g2
0 reached at

τc = τ ∗
c as a function of γ τ f . The minimum is reached when γ τ f = 0

and approaches its limit value σ 2/g2
0 = 1 with increasing γ τ f . We set

� = 0 and α = 0.

062106-9



BERNÁD, SANAVIO, AND XUEREB PHYSICAL REVIEW A 99, 062106 (2019)

emission and initial states of the field with nonzero mean
photon number, should be avoided. If this situation is ap-
proximately achievable in some experimental setup, then the
interaction time τc has to be fixed to values between 0.6/g0

and 0.7/g0, which is before the appearance of the so-called
collapse phenomena in the population inversion of the TLS
[9].

D. Comparison with experiments

In this section, we analyze the physical boundaries of our
model proposed in Sec. II. Here, we consider a more realistic
scenario, where inside the cavity the spontaneous decay γ

of the TLS and the damping rate κ of the single-mode field
are present. In order to see the boundaries of our model,
we take two experimental works: One in the strong coupling
regime [25] and the other one in the intermediate coupling
regime [26]. In these experimental works, the cavity mode
experiences no gains from the outer world, i.e., the mean
number of thermal photons is very low, and therefore the
evolution can be effectively described by a Markovian master
equation

˙̂ρ = −i[Ĥ , ρ̂] + κ
(
âρ̂â† − 1

2

{
â†â, ρ̂

})
+ γ

(
σ̂−ρ̂σ̂+ − 1

2 {σ̂+σ̂−, ρ̂}), (33)

where the Hamiltonian Ĥ is given in Sec. II and {., .} is the
anticommutator. For the sake of simplicity, we consider the
detuning � = 0 and a pure initial state |e〉|0〉, i.e., the TLS
is in the excited state and the cavity in the ground state. The
state of the TLS system upon leaving the cavity is obtained
from (33) and yields

ρ̂(t ) =
[

f (t ) 0
0 1 − f (t )

]
, (34)

where

f (t ) = e−(γ+κ )t/2

[
−8g2 1 + cosh (�t/2)

�2

+ (γ − κ )2 cosh(�t/2)

�2
+ (κ − γ ) sinh (�t/2)

�

]
,

with � =
√

(γ − κ )2 − 16g2.
Starting from the density matrix (34), we can apply the for-

malism of the MMSE estimator to find the average minimum
cost of error in (21). According to the Bayesian formulation of
the estimation problem with a quadratic cost function, those
strategies and situations are more advantageous where the
average cost of error is the smallest. Therefore, here we only
analyze the average minimum cost of error with values of
γ and κ taken from the experimental papers [25] and [26]
and compare them with our ideal model in Sec. II for both
a Gaussian and a uniform prior PDF, respectively.

Figure 8 shows that the average minimum cost of error is
very close to the ideal model in the strong coupling regime,
whereas in the intermediate coupling regime the decoherence
effects increase C̄min for almost all interaction times, which
means that the optimal estimation strategy is less informative
than the ideal one. Similarly to our previous findings, the
uniform prior PDF is more suitable than the Gaussian and this

FIG. 8. The average minimum cost of error C̄min/g2
0 as a function

of g0τc. The blue (solid) line represents the ideal case: γ = κ = 0.
The two experimental curves refer to the strong coupling regime
(γ /g0 = 0.014, κ/g0 = 0.246) of Colombe et al. [25] and to the
intermediate coupling regime (γ /g0 = 0.6, κ/g0 = 0.6) of Ritter
et al. [26]. Top: Gaussian prior PDF with mean g0 and variance
σ 2/g2

0 = 1. Bottom: Uniform prior PDFwith mean g0 and variance
σ 2/g2

0 = 1. We set γ τ f = 0, such that no spontaneous decay occurs
during the time when the TLS system reaches the detectors.

fact is not influenced by the addition of the decaying mecha-
nisms inside the cavity. In summary, we have considered one
of the simplest and demonstrative scenario, where realistic
effects in experimental situations can be compared with our
model. Destructive effects of decoherence sources make the
estimation strategies less effective, as it is expected, and show
that our conclusions apply only to strong coupling regimes.
In the context of the MMSE estimator, this connection with
the experimental parameters is more straightforward to realize
because of the more simple formalism than the one used for
the ML estimators in the subsequent section. Therefore, we
devote the next section only to the model of Sec. II.

V. MAXIMUM-LIKELIHOOD ESTIMATOR

In this section, we are going to determine the ML estimator.
The variational problem for the average cost in Eq. (13) reads

C̄[�̂] = Tr

{∫



d�̂(g̃)z(g̃)ρ̂(g̃)

}
, (35)
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where we are looking for those infinitesimal operators d�̂(g̃)
for which C̄ is maximum [due to the negative sign involved in
the cost function Eq. (15)]. In order to gain insight, we employ
the density matrix in Eq. (22),

ρ̂(g) =
[

cos2(gτc)e−γ τ f 0

0 1 − cos2(gτc)e−γ τ f

]
,

where the detuning � = 0 and the initial state of the field is
in the ground state. Integrals of d�̂(g̃) on compact intervals
result in elements of the POVM, and thus the following
construction,

d�̂(g̃) =
[

fI (g̃) + fz(g̃) fx(g̃) − i fy(g̃)

fx(g̃) + i fy(g̃) fI g̃ − fz(g̃)

]
dg̃, (36)

with fI , fz, fy, and fz being real functions, ensures the self-
adjointness of the infinitesimal generator. We are going to em-
ploy this ansatz and solve the variational problem in Eq. (35).
Only after this step are we going to impose the constraints of
the POVM in Eq. (10). In the following, we reconsider the two
cases of the PDF z(g) used in Sec. IV.

A. Gaussian probability density function

We assume again that g is characterized by its mean value
g0 and variance σ 2. The prior PDF is set to be Eq. (23) with

 = R. Then the average cost function reads

C̄ = 1√
2πσ 2

∫
R

e− (g̃−g0 )2

2σ2 [ fI (g̃) − fz(g̃)(1 − e−γ τ f )

+ fz(g̃) cos(2g̃τc)e−γ τ f ]dg̃. (37)

We have recast the variational problem to an equivalent one
where we search for the real functions fI and fz such that C̄
in Eq. (37) is maximum. As C̄ does not depend on fx and fy,
we set them to zero. Upon applying the transformation g̃ →
σx + g0, Eq. (37) becomes

C̄ = 1√
2π

∫
R

dx e−x2/2[ fz(σx + g0)(e−γ τ f − 1) + fz(σx + g0)

× cos(2σxτc + 2g0bτc)e−γ τ f + fI (σx + g0)]. (38)

The above variational problem can be solved if we fo-
cus on square integrable functions which form the Hilbert
space L2(R) (see Ref. [27]). We consider now the following
functions,

�n(x) = e−x2/2 Hn(x)√√
π2nn!

, n = 0, 1, 2, . . . , (39)

where Hn(x) is the nth-order Hermite polynomial with the
property ∫

R
Hn(x)Hm(x)e−x2

dx = √
π2nn!δnm.

Thus, the functions in Eq. (39) form an orthonormal basis in
L2(R), in which the inner product is given by the integral

〈 f , g〉 =
∫
R

f (x)g(x)dx.

In the next step, we make use of the fact that every function
in the Hilbert space can expanded in the orthonormal basis.
Hence,

fI (σx + g0) =
∞∑

n=0

γ I
n �n(x), fz(σx + g0) =

∞∑
n=0

γ z
n �n(x), and cos(2σxτc + 2g0τc)e−x2/2 =

∞∑
n=0

γ c
n �n(x),

and, with the help of an integral formula involving Hermite polynomials [28,29], we have

γ c
n = 〈cos(2σxτc + 2g0τc)e−x2/2, �n(x)〉 = π1/4

√
2nn!

{
(−1)n/2(2στc)ne−σ 2τ 2

c cos(2g0τc) n is even,

(−1)(n+1)/2(2στc)ne−σ 2τ 2
c sin(2g0τc) n is odd.

(40)

Now, upon substituting these expansions into Eq. (38) and
taking into account the properties of the orthonormal basis,
we obtain

C̄ = 1√
2
√

π

[
γ I

0 − γ z
0 (1 − e−γ τ f ) + e−γ τ f

π1/4

∞∑
n=0

γ z
n γ c

n

]
,

(41)

where we have used the relation e−x2/2/π1/4 = �0(x). We
observe that C̄ depends only on γ I

0 , the first coefficient in
the expansion of fI (ax + b), and therefore we set γ I

n = 0 for
n �= 0. Thus,

fI (σx + g0) = γ I
0

π1/4
e−x2/2,

and replacing σx + g0 with x we have

fI (x) = γ I
0

π1/4
e− (x−g0 )2

2σ2 .

Furthermore, C̄ is maximum with respect to {γ z
n }∞n=0 when-

ever γ z
n = constant × γ c

n or in other words the functions
cos(2σxτc + 2g0τc)e−x2/2 and fz(σx + g0) are parallel with
respect to the inner product 〈. , .〉. In fact, this means that

fz(x) = c cos(2τcx)e− (x−g0 )2

2σ2 , c > 0.

We recall the following condition on the POVM,∫
R

d�̂(x) = Î,

which, due to Eq. (36), is equivalent to∫
R

fI (x)dx = 1 and∫
R

fz(x)dx = σ

∫
R

fz(σx + g0)dx = 0.
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Then γ I
0 = 1/

√
2
√

πσ 2 and γ z
n = 0 for even n, the latter being

due to the fact that integration of a symmetric function about
the origin over the whole real line is zero and every odd term
of the orthonormal basis is such a function. We hence have∫

R
�n(x) = 0, n is odd.

Thus,

fI (x) = 1√
2πσ 2

e− (x−g0 )2

2σ2 and

fz(σx + g0) = c ×
∑
n odd

γ c
n �n(x). (42)

There is one more requirement, namely that∫
�

d�̂(x) = �̂(�)

is a positive semidefinite operator with a spectrum confined
to the interval [0,1] for every compact interval � in R. This
equivalent to

0 �
∫

�

[
fI (x) ± fz(x)

]
dx � 1, ∀� ∈ R. (43)

We consider the compact interval � = [a, b] with arbitrary
a, b ∈ R and b > a. Using the results of Eq. (40), we have

∞∑
n odd

γ c
n �n(x) = − sin(2g0τc) sin(2σxτc)e−x2/2.

In view of the above relation,

0 �
∫ b

a
e−x2/2

[
1√
2π

± cσ sin(2g0τc) sin(2σxτc)

]
dx

� 1,

where we have again employed the variable transformation
x → σx + g0 in Eq. (43). In order to analyze the right-hand-
side inequality, we first make some observations. The area
under the function e−x2/2/

√
2π around the origin contributes

the most due to the properties of the error function erf (x)
[30] and sin(2σxτc)e−x2/2 is an odd function. Therefore, if the
following inequalities

0 �
∫ π

2στc

0
e−x2/2

[
1√
2π

− cy sin(2σxτc)

]
dx,

∫ π
2στc

0
e−x2/2

[
1√
2π

+ cy sin(2σxτc)

]
dx � 1,

y = σ |sin(2g0τc)|,

with σ, τc > 0 and 2g0τc �= π + kπ (k ∈ Z) hold, then no
matter how we choose our intervals the condition (43)
is fulfilled. In the case when 2g0τc = π + kπ (k ∈ Z),

condition (43) is automatically satisfied. Making use of the
error function, we obtain

c � 2√
2πσ 2| sin(2g0τc)|e−2σ 2τ 2

c

×
erf

(
π

2
√

2στc

)
erf

(
π+4iσ 2τ 2

c

2
√

2στc

)
+ erf

(
π−4iσ 2τ 2

c

2
√

2στc

) = c1, and

c � 2√
2πσ 2| sin(2g0τc)|e−2σ 2τ 2

c

×
2 − erf

(
π

2
√

2στc

)
erf

(
π+4iσ 2τ 2

c

2
√

2στc

)
+ erf

(
π−4iσ 2τ 2

c

2
√

2στc

) = c2. (44)

As our original task was to maximize the average cost function
C̄, the relevant functions read

fI (x) = 1√
2πσ 2

e− (x−g0 )2

2σ2 and

fz(x) = −cmax sin(2g0τc) sin[2τc(x − g0)]e− (x−g0 )2

2σ2 ,

with cmax = min{c1, c2}. Together with the ansatz (36), we
have determined the ML estimators. Finally, the maximum of
the average cost function reads

C̄max = 1√
4πσ 2

+ cmax
e−γ τ f

√
2

e−2σ 2τ 2
c sin2(2g0τc)

∑
n odd

(
2σ 2τ 2

c

)n

n!︸ ︷︷ ︸
sinh(2σ 2τ 2

c )

= 1√
4πσ 2

+ cmaxe−γ τ f
1 − e−4σ 2τ 2

c

2
√

2
sin2(2g0τc). (45)

The three inconclusive cases identified for the MMSE esti-
mator, i.e., γ τ f � 1, τc = π/g0, and τc = π/(2g0), reduce
the value of C̄max. It becomes clear that, whichever strategy
is adopted, these cases should be avoided. The conditional
PDF in Eq. (12), p(g̃|g), is not an even function of the variable
g − g̃, and therefore the ML estimate will be biased.

The average estimator reads

E [g̃|g] =
∫
R

g̃p(g̃|g)dg̃ = g0 + 4
√

5πcmaxσ
2τc

× e−2σ 2τ 2
c −γ τ f [eγ τ f − 2 cos2(gτc)] sin(2g0τc). (46)

Here, the quantum Cramér-Rao inequality has the same form
as in Eq. (25), i.e.,

E [(g̃ − g)2|g] � |x′(g)|
Tr{ρ̂(g)L̂2} (47)

but

x′(g) =
∫ ∞

−∞
g̃Tr

{
∂

∂g
ρ̂(g)d�̂(g̃)

}
,

and, similarly to Sec. IV,

L̂ = −2τc tan(gτc)|e〉〈e| + τc
sin(2gτc)e−γ τ f

1 − cos2(gτc)e−γ τ f
|g〉〈g|.

062106-12



OPTIMAL ESTIMATION OF MATTER-FIELD COUPLING … PHYSICAL REVIEW A 99, 062106 (2019)

Inserting Eqs. (36) and (45) into Eq. (47), we obtain

E [(g̃ − g)2|g] � 1 − cos2(gτc)e−γ τ f

sin2(gτc)
|sin(2gτc)|

× 2
√

5πσ 2e−2σ 2τ 2
c |cmax sin(2g0τc)|. (48)

B. Uniform probability density function

As in the previous subsection, we assume that the coupling
strength g has mean value g0 and variance σ 2. The prior PDF
is set to be Eq. (27) with 
 = [g0 − √

3σ, g0 + √
3σ ]. Now,

the average cost function reads

C̄ = 1

2
√

3σ

∫ g0+
√

3σ

g0−
√

3σ

[ fI (g̃) − fz(g̃)(1 − e−γ τ f )

+ fz(g̃) cos(2g̃τc)e−γ τ f ]dg̃. (49)

We employ the transformation g̃ → √
3σx + g0 and obtain

C̄ = 1

2

∫ 1

−1
[ fI (

√
3σx + g0) − fz(

√
3σx + g0)(1 − e−γ τ f )

+ fz(
√

3σx + g0) cos(2
√

3σxτc + 2g0τc)e−γ τ f ]dx.

This time the Hilbert space is L2([−1, 1]) and we choose the
following orthonormal basis [27]:

�n,e(x) = 1√
2

cos(nπx),

�n,o(x) = 1√
2

sin(nπx), n ∈ Z, (50)

where �0,e(x) = 1/
√

2 and �0,o(x) = 0. Every function can
expanded in this orthonormal basis. Thus,

fI (
√

3σx + g0) =
∑
i=e,0

∞∑
n=0

γ I
n,i�n,i(x),

fz(
√

3σx + g0) =
∑
i=e,0

∞∑
n=0

γ z
n,i�n,i(x),

cos(2
√

3σxτc + 2g0τc) =
∑
i=e,0

∞∑
n=0

γ c
n,i�n,i(x),

and

γ c
n,e = 〈cos(2

√
3σxτc + 2g0τc), �n,e(x)〉

= 4
√

3στc sin(2
√

3στc) cos(2g0τc)√
2
(
12σ 2τ 2

c − n2π2
) cos(nπ ) and

γ c
n,o = 〈cos(2

√
3σxτc + 2g0τc), �n,o(x)〉

= −nπ sin(2
√

3στc) sin(2g0τc)√
2
(
12σ 2τ 2

c − n2π2
) cos(nπ ). (51)

Now, taking into account the properties of this orthonormal
basis, we obtain

C̄ = 1

2

[
γ I

0 − γ z
0 (1 − e−γ τ f ) + e−γ τ f

∑
i=e,o

∞∑
n=0

γ z
n,iγ

c
n,i

]
,

a very similar expression to Eq. (41). We observe again that
C̄ depends only on γ I

0 and therefore we set γ I
n = 0 for n �= 0.

The condition on the POVM∫ g0+
√

3σ

g0−
√

3σ

d�̂(x) = Î

results in ∫ g0+
√

3σ

g0−
√

3σ

fI (x)dx =
∫ g0+

√
3σ

g0−
√

3σ

γ I
0√
2

dx = 1

and thus γ I
0 = 1/(

√
6σ ). Similar to the previous subsection,

we have∫ g0+
√

3σ

g0−
√

3σ

fz(x)dx =
√

3σ

∫ 1

−1
fz(

√
3σx + g0)dx = 0,

which yields γ z
0,e = 0. As we would like to maximize C̄,

we set γ z
n,i = constant × γ c

n,i for n �= 0 (i ∈ {e, o}), a similar
geometrical strategy to the one employed in the previous
subsection. Thus,

fI (x) = 1

2
√

3σ
and

fz(x) = c

[
cos(2xτc) − sin(2

√
3στc) cos(2g0τc)

2
√

3στc

]
, (52)

with c > 0. Imposing the constraint that∫
�

d�̂(x) = �̂(�)

is a positive semidefinite operator with a spectrum confined
to the interval [0,1] for every compact interval � in [g0 −√

3σ, g0 + √
3σ ], we find

0 �
∫ b

a
[ fI (x) ± fz(x)]dx � 1, (53)

where b � g0 + √
3σ and a � g0 − √

3σ . After performing
the definite integral, we get

0 � x ± c

τc
[sin(x2

√
3στc) cos(y2g0τc)

− x sin(2
√

3στc) cos(2g0τc)]� 1, x = b − a

2
√

3σ
∈ [0, 1],

y = b + a

2g0
∈ [1 −

√
3σ (1 − x)/g0, 1 +

√
3σ (1 − x)/g0],

(54)

with g0 �= 0. It is interesting to note the extreme cases x = 0
and x = 1, when the term

f±(x, y, c) = x ± c

τc
[sin(x2

√
3στc) cos(y2g0τc)

− x sin(2
√

3στc) cos(2g0τc)] (55)

is equal to 0 and 1, respectively. The functions f+(x, y, c) and
f−(x, y, c) are continuous in x and have extrema, where they
can violate the conditions of being smaller than 1 and greater
than 0. The strategy is to find these points xext = xext(c). Upon
replacing these back to into Eq. (54), one is able to find
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cmax. In order to demonstrate the procedure, let us consider
2
√

3στc = 2g0τc = π/2. Then, Eq. (55) reads

f±(x, y, c) = x ± c

τc
sin

(
x
π

2

)
cos

(
y
π

2

)
,

x ∈ [0, 1], y ∈ [x, 2 − x].

The two extrema of f−(x, y, c) are found at y = x (minimum)
and y = 2 − x (maximum), yielding

1 − cπ

2τc
cos(x−

minπ ) = 0,

1 + cπ

2τc
cos(x−

maxπ ) = 0.

These equations, together with Eq. (54), result in

c � 2τc

π
= c1.

f+(x, y, c) has two extrema at y = x (maximum) and y = 2 −
x (minimum), and therefore we have

c � 2τc

π
= c2 = c1.

Finally, the task to maximize C̄ yields

cmax = min{c1, c2} = c1. (56)

The functions defining the ML estimator through the ansatz
(36) finally read

fI (x) = 1

2
√

3σ
and

fz(x) = cmax

[
cos(2xτc) − sin(2

√
3στc) cos(2g0τc)

2
√

3στc

]
.

The maximum of the average cost function is

C̄max = 1

2
√

3σ
+ cmax

[
1

2
− sin2(2

√
3στc) cos2(2g0τc)

12σ 2τ 2
c

+ sin(4
√

3στc) cos(4g0τc)

8
√

3στc

]
e−γ τ f . (57)

The conditional PDF p(g̃|g) in Eq. (12) is again not an even
function of the variable g − g̃. Therefore, the ML estimate, as
in the case of the prior Gaussian PDF, will be biased.

In the special case 2
√

3στc = 2g0τc = π/2 discussed
earlier,

C̄max = 1

4g0
(2 + e−γ τ f ),

and the average estimator reads

E [g̃|g] =
∫ π

2τc

0
g̃p(g̃|g)dg̃

= g0 + 4g0

π2

[
1 − 2e−γ τ f cos2

(
g

g0

π

4

)]
.

Furthermore, the inequality for the mean-squared error in
Eq. (48) yields

E [(g̃ − g)2|g] � 8g2
0

π2

1 − cos2
(

π
4

g
g0

)
e−γ τ f

π sin2
(

π
4

g
g0

) ∣∣∣∣sin

(
π

2

g

g0

)∣∣∣∣.

C. Numerical results

In the previous subsections, we have calculated analyti-
cally the ML estimators for both the Gaussian (23) and the
uniform (27) prior PDF. Because of the analytically involved
solutions, we have used the density matrix in Eq. (22), where
� = 0 and the field mode is initially in the vacuum state.
Therefore, the only parameters left for the numerical investi-
gations are the spontaneous decay rate γ τ f and the interaction
time τc. We have shown in the case of the uniform prior PDF
that in Eq. (57) the calculation of cmax is very intricate and
very much depends on the relation between the variance σ 2

and the mean g0. Therefore, we consider here only the ML
estimator obtained for the Gaussian prior PDF.

Figure 9(a) shows the numerical evaluation of the average
maximum cost function C̄max. It shows that the best time to
perform the measurements is approximately g0τc = π

4 + kπ ,
cf. Eq. (45), with k ∈ N0 and with better results as k increases.
This means that as the interaction between the field and the
TLS is longer, the average cost becomes bigger. The spon-
taneous decay rate γ τ f affects the quality of the estimation
by reducing C̄max. However, on the other hand, Fig. 9(b)
shows that the average estimate conditioned on the mean
g0, a possible true value of g, for long interaction times is
simply equal to our prior expectation. This type of dichotomy
has been found by us [6], where a more optimal average
cost function merely leads to the reinforcement of our prior
knowledge. Finally, the lower bound of the mean-squared
error in Fig. 9(c) demonstrates the decrease of the accuracy
of the estimation caused by the increase of γ τ f .

VI. CONCLUSIONS

We have discussed Bayesian-inference approaches with a
special focus on the dipole coupling of matter-field inter-
actions. Our scheme is based on two-level systems (TLSs)
which transit through a cavity and interact with a single-mode
radiation field. The state of the TLS is subsequently measured.
Spontaneous emission of the excited state of the TLS is taken
into account. Our protocol assumes that all the TLSs are
prepared initially in the excited states, and that the cavity field
is reset before the transit of each TLS. We have derived the
minimum mean-square error (MMSE) estimator for both the
Gaussian and the uniform probability density functions (PDF)
with given mean and variance. It has been demonstrated
that the detuning between the TLS transition frequency and
the cavity resonance frequency has a destructive effect on
parameter estimation. Furthermore, spontaneous emission, as
well as interaction times that are too long or too short, result
in the reinforcement of our prior expectations. In the case
of resonant interactions with initial ground state of the field
mode, we have explicitly shown that the MMSE estimator
M̂min is diagonal in the basis of the qubit. Dividing M̂min in
Eq. (24) by the prior mean g0 results in a positive-operator
valued measurement (POVM) element associated with an
inefficient measurement scenario,

�̂ = η1|e〉〈e| + η2|g〉〈g|, 0 � η1, η2 � 1,

where the detection efficiencies are characterized by η1 and
η2. These efficiencies are known functions of the prior
expected parameter values according to Eq. (24). For example,
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FIG. 9. Figures obtained in the case of the Gaussian prior PDF.
We set σ 2/g2

0 = 1. We see that spontaneous decay reduces the
average cost function (a). In panel (b), we set g = g0. We see there
is a jump at g0τc = π/2 due to the properties of cmax defined in
Eqs. (44) and (45). In panel (c), the interaction time is τc = π/(4g0).
(a) The average maximum cost function C̄maxg0 as a function of g0τc.
(b) The average estimator E [g̃|g0]/g0 as a function of g0τc. (c) The
lower bound of the mean–squared error as a function of g/g0.

in the experiment described in Ref. [31], the final state of the
TLS leaving the cavity is detected with the help of a push-out
laser. This method has the potential to perform the above

described inefficient measurement scenario. Furthermore, we
have computed the average estimator and showed the biased
nature of the obtained MMSE estimators. We have determined
the lower bound of the mean-squared error with the help
of a quantum Cramér-Rao-type inequality by constructing
the symmetrized logarithmic derivative of the density matrix
subject to estimation. These calculations have been performed
for initial coherent field states. The increase of the initial mean
photon number decreases the effectivity of the estimation sce-
nario because a lot of information is deposited in the photon
number states, which in turn are traced out to obtain the state
of the TLS subject to the measurements. We have also found
that the mean-square error estimation scenario is optimal, and
our prior expectations are not reinforced, when the TLS emits
a photon into the single-mode field with 50% probability. This
is in contrast with many experimental situations, where every
parameter is tuned such that every TLS emits a photon in the
cavity, thus realizing the so-called one-atom maser [32].

In the case of the maximum-likelihood (ML) approach, the
method used for the determination of the MMSE estimator
cannot be applied. The observation strategy formulated with
the help of the infinitesimal operators in Eq. (11) has led
us to a pure mathematical problem. In general, the corre-
sponding equations for the optimum strategy involving the
risk operator are challenging to solve [4], but by constructing
these infinitesimal operators with the help of square integrable
functions, which form a Hilbert space with their respective
inner product, we have been able to calculate the optimal
POVMs. In the case of the Gaussian prior PDF the Hilbert
space is L2(R) with the orthonormal basis formed by Hermite
polynomials. The Hilbert space for the uniform prior PDF
case is L2([−1, 1]) with an orthonormal basis formed by sine
and cosine functions. We have used the geometrical properties
of these Hilbert spaces in order to optimize the average cost
function. In order to be able to solve this problem, we have
considered the detuning to be zero and the initial state of the
field to be the vacuum state. Aside from the main result of
determining the ML estimator and the optimized average cost
function, we have shown that effects of spontaneous emission
are again destructive and that long interaction times lead to
inconclusive estimation scenarios. For both the Gaussian and
the uniform a priori PDF, the POVM elements are diagonal
in the basis of the qubit and as we have discussed in the case
of the MMSE estimator one may implement such quantum
measurements in experiments.

A few generic comments on all of the strategies presented
throughout the paper are in order. The measurement data with
the implemented POVM determines the average estimate or
the a posteriori PDF from which one may infer the value of the
matter-field coupling constant. The lower bound of the mean-
squared error characterizes the accuracy, but we have found
that better accuracy, defined in this way, is usually associated
with inconclusive scenarios. Therefore, if we would like to
compare the different methods then it has to be done through
the average cost function. In this context, we can conclude
that the choice of the uniform prior PDF is more suited for
the model presented here, as shown in, e.g., Fig. 6. In the case
of a Gaussian prior PDF and the MMSE estimator, we are
able to compare the conclusions of Ref. [6] on the estimation
of the optomechanical coupling with those ones obtained
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here in this paper. It seems that this particular estimation
strategy is optimal in the two different models, when the
interaction time is not too long compared to one order of
characteristic time periods of the systems. In general, this may
suggest that exchange of too many excitations between the
interacting systems entail a less favorable MMSE estimation
scenario. A marked difference in the optomechanical system
is the existence of a class of initial states, where the average
minimum cost of error is reduced by the increase of the
average excitation number of the initial state. This is not case
for the matter-field system presented here.

In view of recent developments in quantum information
protocols based on matter-field interactions, our work can be
seen as the step before the real-world application of such
protocols, establishing the tools for the optimal estimation of
the dipole coupling strength. While we have not been able
to solve completely all the problems related to the Bayesian
approach in the context of matter-field interactions, our results
already allow us to make several important observations,

which are crucial prior to the experimental implementation of
any quantum information protocol.

In closing, we note that whereas our discussion has been
framed exclusively in the language of cavity QED and the
interaction between TLSs and electromagnetic cavity mode,
our framework may be applicable more broadly. For example,
in hybrid optomechanical systems where a bosonic mode
(corresponding to the mechanical motion of a high-quality
mechanical oscillator) is coupled to a TLS, the dynamics is
governed by a Hamiltonian similar in structure to Eq. (1)
[33,34]. The application of our techniques to this and similar
scenarios is deferred to future work.
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