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Uniquely determined pure quantum states need not be unique ground states
of quasi-local Hamiltonians
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We consider the problem of characterizing states of a multipartite quantum system from restricted, quasi-local
information, with emphasis on uniquely determined pure states. By leveraging tools from dissipative quantum
control theory, we show how the search for states consistent with an assigned list of reduced density matrices may
be restricted to a proper subspace, which is determined solely by their supports. The existence of a quasi-local
observable which attains its unique minimum over such a subspace further provides a sufficient criterion for
a pure state to be uniquely determined by its reduced states. While the condition that a pure state is uniquely
determined is necessary for it to arise as a nondegenerate ground state of a quasi-local Hamiltonian, we prove
the opposite implication to be false in general, by exhibiting an explicit analytic counterexample. We show how
the problem of determining whether a quasi-local parent Hamiltonian admitting a given pure state as its unique
ground state is dual, in the sense of semidefinite programming, to the one of determining whether such a state
is uniquely determined by the quasi-local information. Failure of this dual program to attain its optimal value is
what prevents these two classes of states from coinciding.

DOI: 10.1103/PhysRevA.99.062104

I. INTRODUCTION

Understanding the way in which states of subsystems
(“parts”) relate to states of the system as a “whole” has helped
elucidate some of the most profound differences from the
classical setting since the early days of quantum mechanics
[1] and has since remained a major theme of investigation
in quantum information science. Even in situations where
the constituent subsystems represent distinguishable degrees
of freedom, so that no additional constraints from quantum
statistics arise and the global quantum state may be assumed
to be pure, the relationship between parts and whole remains
highly nontrivial in general because of the presence of mul-
tipartite entanglement. Given access to local information, as
provided by a collection of reduced density matrices (RDMs)
describing subsystem states, the very problem of deciding
their “consistency”—namely, the existence of a valid global
state, pure or mixed, whose reduced states match the in-
put list—is known to be quantum Merlin Arthur–complete
(QMA-complete) [2]. In this work, we will assume that such
a “quantum marginal problem” does admit a solution and
focus on the following inter-related questions: If the joining
set of quantum states that share a specified list of RDMs is
indeed nonempty, how can it be characterized and computed?
What conditions can guarantee that it consists of a single
element, making the corresponding quantum state uniquely
determined among all (UDA) possible states? What special
physical significance do UDA states enjoy? In particular, can
every UDA be seen as the unique ground state (UGS) of some
“locally determined” Hamiltonian?

Elucidating the above questions has both fundamental and
practical implications. On the one hand, characterizing what
possible set(s) of RDMs may uniquely determine the under-
lying quantum state sheds light on how multipartite entangle-
ment is distributed across different subsystems. For instance,
failure of a state to be UDA by knowledge of all the RDMs of
k out of N total parties (2 � k � N) signifies the existence of
irreducible (k + 1)-party correlations [3–5]; among N-qubit
pure states, most are completely determined by only two of
their RDMs of just over half the parties [4,6,7] (in fact, knowl-
edge of their support suffices [8]), whereas the irreducible
N-party correlation is nonzero only for Greenberger-Horne-
Zeilinger (GHZ)–type pure states [3,9]. On the other hand,
determining whether a state of interest is UDA relative to
a specified set of RDMs that reflects a certain physical or
operational constraint or, more generally, characterizing its
joining set, may be crucial to enable or inform quantum tasks
ranging from quantum state tomography using local data [10]
to quantum self-testing [11].

In this work, we provide a deeper understanding of the
UDA property for pure states of multipartite quantum sys-
tems from a twofold standpoint. Our first contribution is to
bring tools from dissipative quantum control—in particular,
quantum state stabilization under (quasi-)locality constraints
[12,13]—to bear on the problem of characterizing the joining
set of a target quantum state |ψ〉 relative to a specified list of
RDMs. While the only general approach known to date entails
an extensive search for compatible states over all possible
density operators, we show how the search space may be
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exactly reduced to a specific subspace of the multipartite
Hilbert space, called the dissipatively quasi-locally stabiliz-
able (DQLS) subspace, which is determined by the supports
of the given RDMs. In addition to substantially lowering
the complexity of the underlying search problem, the DQLS
subspace may offer an analytical means for establishing the
UDA nature of |ψ〉 in principle; in particular, we show how
it leads to sufficient conditions for |ψ〉 to be UDA via the
identification of an appropriate UDA witness—namely, an
observable whose expectation must be uniquely extremized
over the DQLS subspace.

Since QL constraints are naturally obeyed by “few-body”
(k-local) Hamiltonians, it is natural to ask whether any pure
state that is UDA must arise as the UGS of a Hamiltonian
that respects the same constraint. As our main contribution,
we prove that, perhaps surprisingly, this need not be true in
general, by constructing an example of a six-qubit pure state
that is UDA by its two-body RDMs yet cannot be the UGS
of any two-body Hamiltonian. This answers, in the negative,
a special relevant instance of a broader question posed by
Chen and coworkers in Ref. [14]: While they could show
that the condition of a space V to be “k-correlated”—loosely
speaking, to only support states that are uniquely determined
by their k-body RDMs—is necessary for V to be a ground-
state manifold of a k-local Hamiltonian, sufficiency was left
open in general. By focusing on the limiting case where the
k-correlated space V is one-dimensional, we further establish
that the problems of determining whether |ψ〉 is UDA or,
respectively, UGS may be cast as a primal-dual pair in the
language of semidefinite programming (SDP) [15]. We show
that while the condition of |ψ〉 being UDA is necessary
and sufficient for it to be the UGS of a quasi-local (QL)
Hamiltonian when both the primal and dual programs attain
their optimal value, no guarantee exists for this to happen in
general. Specifically, we identify the failure of the dual pro-
gram to achieve its maximum as the mechanism that prevents
the equivalence between the UDA and UGS properties from
holding in general.

The content is organized as follows. Section II introduces
relevant notation and collects definitions and prior results that
will be needed in our subsequent analysis. In Sec. III, we es-
tablish the above-mentioned characterization of the joining set
of a multipartite quantum state in terms of the DQLS subspace
by also providing a constructive procedure for reconstructing
global states from local data solely based on knowledge of
the support of relevant RDMs. The concept of a UDA witness
is introduced as well, and the usefulness of the proposed
tools is demonstrated by showing how all N-qubit states that
are equivalent to W states under stochastic local operations
assisted by classical communication (SLOCC) are UDA rela-
tive to arbitrary nontrivial QL constraints. This recovers and
unifies a number of specific results in the literature [16,17]
by also offering a significantly more streamlined proof tech-
nique, applicable to other multipartite pure states of interest
in principle. Section IV is devoted to presenting our explicit
counterexample of a pure state that is analytically proved to
be UDA via construction of an appropriate witness—but not
UGS—by also leveraging dynamical symmetrization ideas
[18,19]. In Sec. V, we cast and analyze the UDA-UGS prob-
lem within a general SDP framework by also contrasting QL

with more general linear constraints. A brief summary along
with a discussion of the remaining open questions conclude
in Sec. VI, whereas Appendixes A and B are devoted to
presenting complete technical proofs and some basic elements
of SDP, respectively.

II. NOTATION AND PRELIMINARIES

Throughout this work, we consider a multipartite quantum
system consisting of N distinguishable, finite-dimensional
subsystems. The associated multipartite Hilbert space has a
tensor product structure given by

H =
N⊗

a=1

Ha, dim (Ha) = da, dim(H) =
N∏

a=1

da ≡ D < ∞.

We shall use B(H) to denote the D2-dimensional space
of (bounded) linear operators acting on H. Density oper-
ators representing the physical states of the quantum sys-
tem are trace-one, positive semidefinite operators which
belong to the convex space D(H) ⊂ B(H). The extreme
points of D(H) correspond to the one-dimensional projectors,
ρ = ρ2 ≡ |ψ〉〈ψ |, which are in one-to-one correspondence
with state vectors |ψ〉 ∈ H.

Multipartite qubit systems will have a special promi-
nence in our discussion. In this case, da ≡ 2, for all a, and
H = ⊗N

a=1Hq 	 (C2)⊗N , with Hq = span{|0〉, |1〉}. In addi-
tion to the standard representation of N-qubit pure states as
superposition of computational basis states [20], a more com-
pact notation will also be used, in terms of the “excitations”
they contain. A qubit is said to be excited if it is in its |1〉
state. A product state of N qubits is then described by a
string consisting of the indexes of the excited qubits. For
instance,

|0〉N ≡ |0〉⊗N , |2〉3 ≡ |010〉, |13〉4 ≡ |1010〉, (1)

where the subscript in this new notation represents the total
number of qubits. Given the above representation for basis
states, arbitrary pure states on N qubits are written as a linear
combination of different excitation states. Multiqubit opera-
tors in B(H) will be constructed, as usual, out of a product
operator basis consisting of {1, σ x, σ y, σ z}, where σα are the
Pauli operators on C2, and we will also let σ± ≡ (σ x ± iσ y)/2
be raising and lowering spin-angular momentum operators.
The notation σα

j will be used to denote the Pauli operator σα

acting on the jth qubit, that is, σα
j ≡ 1 ⊗ · · · ⊗ σ x ⊗ · · · ⊗ 1,

and similarly for ladder operators.
Single-qubit Pauli operators such the ones above are the

simplest example of local (or unilocal) operators. While con-
straints imposed from either (or both) the coupling topology
and the geometry of the underlying lattice typically restrict
the structure of naturally occurring or engineered many-body
Hamiltonians, strictly local constraints are too restrictive in
practice. Following prior work [12,13,21], we focus on quasi-
local (QL) constraints, which we formalize as follows:

Definition II.1. A neighborhood Nk is a collection of sub-
system indexes given by Nk � {1, . . . , N}. A neighborhood
structure N ≡ {Nk}M

k=1 is a finite collection of such neighbor-
hoods.
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N12 N23 N(N−1)N

FIG. 1. N-party spin chain with two-body NN interactions
and open boundary conditions. Dotted ovals represent the neigh-
borhoods. The neighborhood structure is given by N ≡ NNN =
{N12, . . . ,N(N−1)N }. For periodic boundary condition, a neighbor-
hood N1N should be included in NNN in addition to the above.

In this work, we only consider neighborhood structures that
are nontrivial, that is, we require each subsystem j to belong
to at least some neighborhood Nk and each Nk to overlap
with at least another neighborhood Nk′ . Notice that the above
QL notion includes k-local interactions as considered, for in-
stance, in Ref. [14]; in such a case, the relevant k-local neigh-
borhood structure consists of neighborhoods each containing
at most k subsystems, with 1 < k < N . Figure 1 illustrates the
QL notion that is associated to a one-dimensional lattice (a
spin chain) with two-body nearest-neighbor (NN) interactions
that let us define a nontrivial neighborhood structure.

Consider a quantum state ρ ∈ D(H). Given a neighbor-
hood Nk , the RDM of ρ on Nk is determined by ρNk ≡
TrN k

(ρ), where N k is the neighborhood complement of Nk ,

that is, Nk ∪ N k = {1, . . . , N}. While the mapping from ρ to
the list of RDMs {ρNk , ∀Nk ∈ N } is unique for fixed N , the
converse is generally not true. This motivates the following
definition:

Definition II.2. The joining set of a state ρ ∈ D(H) rel-
ative to N = {Nk}M

k=1, denoted MN (ρ), is the set of all
quantum states that share the same list of RDMs on each
neighborhood in N as ρ:

MN (ρ) = {σ ∈ D(H) : TrN k
(ρ) = TrN k

(σ ), ∀Nk ∈ N }.
It is immediate to see that MN (ρ) is closed and convex.

Determining whether, for a given set of RDMs on N , the
corresponding joining set is nonempty, that is, the RDMs
are consistent with a valid (pure or mixed) quantum state, is
an instance of the quantum marginal problem. The latter is
known to be QMA-complete [2].

Quantum states for which the joining set relative to a fixed
neighborhood structure consists of a single element deserve
special attention:

Definition II.3. A quantum state ρ ∈ D(H) is uniquely
determined among all states (UDA), with respect to a neigh-
borhood structure N = {Nk}M

k=1, if there exists no other state
σ ∈ D(H) with the same set of RDMs.

In other words, ρ is UDA with respect to N if and
only if MN (ρ) = {ρ}. A related notion is that of uniquely
determined among all pure states (UDP) [10]: A pure state
ρ = |ψ〉〈ψ | is UDP with respect to N if it is the only pure
state belonging to MN (ρ).

A useful construct that helps in understanding the structure
of the joining set of a multipartite pure state of interest
relative to a specified neighborhood structure is the so-called
dissipatively quasi-locally stabilizable (DQLS) subspace. This

concept was introduced in the context of QL stabilization
problems in Ref. [12] and was further used and characterized
in subsequent related analysis [8,13,21,22]. Formally, we have
the following:

Definition II.4. The DQLS subspace of a pure state |ψ〉 ∈
H relative to the neighborhood structure N = {Nk}M

k=1, de-
noted HN (|ψ〉), is given by

HN (|ψ〉) ≡
⋂

Nk∈N
supp

(
ρNk ⊗ IN k

)
. (2)

From a control-theoretic standpoint, HN (|ψ〉) represents
the smallest subspace which contains |ψ〉 and can be stabi-
lized via (continuous or discrete-time) Markovian dynamics
that is QL relative to N . In particular, in the continuous-
time setting, the Lindblad generator is purely dissipative (has
vanishing Hamiltonian contribution) in its standard form. The
DQLS subspace enjoys a number of properties that will be
relevant to our analysis:

(i) For given |ψ〉 and N , we have

HN (|ψ〉) = span{|ψ〉} (3)

if and only if |ψ〉 is the unique ground state (UGS) of a
frustration-free parent Hamiltonian H that is QL relative to N
[12,21]. That is, we may express H as a sum of neighborhood
operators, H ≡ ∑

k Hk = ∑
k HNk ⊗ IN k

, and, in addition, the
ground space of H is contained in the ground-state space
of each such Hk . Accordingly, if Eq. (3) holds, the DQLS
subspace is one dimensional.

(ii) More generally, if two pure states |ψ〉 and |φ〉 are
equivalent under SLOCC transformations, their DQLS sub-
spaces, relative to any nontrivial neighborhood structure N ,
have the same dimensionality [8].

(iii) Furthermore, as established in Refs. [8,21], we have

supp(σ ) ⊆ HN (|ψ〉), ∀ σ ∈ MN (|ψ〉). (4)

That is, all states in the joining set of a pure state ρ = |ψ〉〈ψ |
relative to N have their support contained in the correspond-
ing DQLS subspace.

As we will now show, the DQLS subspace may be lever-
aged to gain insight about the joining set of general, mixed
quantum states as well.

III. CHARACTERIZING THE JOINING SET OF A
MULTIPARTITE QUANTUM STATE

Given a quantum state and a neighborhood structure of in-
terest, no efficient procedure is available to determine whether
the state is UDA or construct its joining set in general. In spe-
cific scenarios, it is possible to make headway by exploiting
structural or symmetry properties of the state: For instance,
the extent to which generic pure states in N-party systems are
UDA by appropriate subsets of RDMs has been extensively
investigated [4,6–8]; likewise, conclusions have been reached
on a case-by-case basis for entangled states encompassing
N-qubit GHZ states and their local unitary equivalents [9],
stabilizer and Dicke states [23], and generalized W states, as
we will further discuss in Sec. III B.
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In principle, the most straightforward way to characterize
the joining set MN (ρ) of ρ relative to N is to numerically
search over all the possibilities in the associated density
operator space D(H). However, such a brute-force procedure
becomes exponentially harder with increasing N . For partic-
ular instances, this search space may be reduced to a certain
extent. For example, if |ψ〉 is known to be UDP relative to
N , the joining set MN (|ψ〉) may be computed by searching
only in the set of genuinely mixed states. Similarly, under the
promise that a given set of RDMs in N corresponds to a pure
state that is UDP, one can reconstruct such a global state by
searching over the set of pure states alone. Still, such prior
information is not always available. Here, we show how, by
leveraging the DQLS subspace concept, we can both simplify
the problem of characterizing MN (ρ) for arbitrary ρ and N
by reducing the search space and obtain sufficient conditions
for a pure state to be UDA.

A. Reduced search space and UDA witnesses

As a first step, we extend Definition II.4 to general quantum
states: The DQLS subspace of ρ ∈ D(H) relative to N which,
with slight abuse of notation, we shall still denote as HN (ρ),
is given by

HN (ρ) ≡
⋂

Nk∈N
supp

(
ρNk ⊗ IN k

)
. (5)

Through the following theorem, we show that the desired
“reduced search space” for UDA characterization is indeed
related to the above DQLS subspace.

Theorem III.1. Let ρ ∈ D(H), with associated joining set
MN (ρ) relative to a nontrivial neighborhood structure N =
{Nk}M

k=1. Then every state in the joining set has support on the
corresponding DQLS subspace:

supp(σ ) ⊆ HN (ρ), ∀ σ ∈ MN (ρ). (6)

Proof. Since all states in MN (ρ) share the same set
of RDMs on N , their DQLS subspaces coincide. That is,
HN (ρ) = HN (σ ), for all σ ∈ MN (ρ).

To complete the proof, it only remains to show that
supp(ρ) ⊆ HN (ρ), for arbitrary given ρ ∈ D(H) and N . Fix
a neighborhood Nk ∈ N . Let ρNk = ∑

q pq�q be the spectral
decomposition of the RDM ρNk , where {�q} is a resolution
of the identity. By definition of partial trace, pq = Tr(ρ�q ⊗
IN k

). If pq̄ = 0 for some q̄, this implies Tr(ρ�q̄ ⊗ IN k
) = 0.

Consequently, ρ(�q̄ ⊗ IN k
) = 0 due to the positivity of the

two operators. Thus, supp(ρ) ⊥ supp(�q̄ ⊗ IN k
), for all pq̄ =

0, and supp(ρ) ⊆ ∪pq �=0supp(�q ⊗ IN k
) = supp(ρNk ⊗ IN k

).
This implies supp(ρ) ⊆ HN (ρ), as desired. �

Based on Theorem III.1, an algorithmic procedure for re-
constructing global states from local data may be summarized
as follows:

(1) Collect information about the support of the RDMs on
selected neighborhoods {Nk}.

(2) Construct the associated DQLS subspace, using
Eq. (5).

(3) Search for states consistent with the given RDMs
having support in the DQLS subspace.

An immediate corollary also follows:

Corollary III.2. Consider ρ ∈ D(H) and a nontrivial
neighborhood structure N . Then the rank of any state in the
joining set of ρ is no larger than the dimensionality of the
corresponding DQLS subspace:

rank(σ ) � dim[HN (ρ)], ∀σ ∈ MN (ρ).

As we noted in Eq. (3), pure states that are UGS of a
QL Hamiltonians are associated to a one-dimensional DQLS
subspace. By the above corollary, we then recover the known
fact that UGS are always UDA relative to the corresponding
neighborhood structure [14], as we also further discuss in
Sec. IV A.

Besides reducing the search space for characterizing the
joining set, the DQLS subspace is also instrumental in obtain-
ing a sufficient criterion for certifying the UDA property. This
is formalized in the following:

Theorem III.3. Consider a pure state |ψ〉 ∈ H with DQLS
subspace HN (|ψ〉) relative to a nontrivial neighborhood struc-
ture N = {Nk}. Assume that there exists a QL Hermitian
operator, W = ∑

k WNk ⊗ IN k
, such that

〈ψ |W |ψ〉 < 〈φ|W |φ〉, (7)

for any normalized state |φ〉 ∈ HN (|ψ〉), with |φ〉〈φ| �=
|ψ〉〈ψ |. Then |ψ〉 is UDA relative to N .

Proof. We prove this by contradiction. Assume that
|ψ〉 is not UDA relative to N . Then, there exists
some σ �= |ψ〉〈ψ | with the same marginals as |ψ〉 in
N . By Theorem III.1, supp(σ ) ⊆ HN (|ψ〉). That is,
σ = ∑

i pi|φi〉〈φi|, where |φi〉 ∈ HN (|ψ〉) and pi � 0 for all
i, with

∑
i pi = 1.

Also assume that an operator W obeying Eq. (7) exists.
Owing to the QL nature of W relative to N , 〈ψ |W|ψ〉 =
Tr(Wσ ). Then, in order for the expectation Tr(Wσ ) =∑

i pi〈φi|W|φi〉 to be minimum, each pure-state expectation
〈φi|W|φi〉 must be minimum. But, following Eq. (7), this is
only possible if p1 = 1 and |φ1〉 = |ψ〉, whereby the conclu-
sion follows. �

We call a QL observable W with the above properties
an (N -)UDA witness for |ψ〉. We note that W only needs
to be uniquely extremized by |ψ〉 over the DQLS subspace
HN (|ψ〉): If 〈ψ |W|ψ〉 is a unique maximum on this subspace,
it can still be brought under the purview of Eq. (7) by
simply choosing −W as the UDA witness. It is important to
appreciate that the restriction to a pure state |ψ〉 is crucial.
A UDA witness cannot be used, as in Theorem III.3, to
diagnose a proper mixed state as UDA. To see this, consider
a UDA proper mixed state with spectral decomposition ρ =∑

i pi|ψi〉〈ψi|. From Theorem III.1, each |ψi〉 is in HN (|ψ〉).
Since ρ is a proper convex combination of {|ψi〉〈ψi|}, there
must be at least one pure state, not equal to ρ, for which
Tr(W|ψi〉〈ψi|) � Tr(Wρ). Thus, ρ is not the unique mini-
mizer of Tr(Wρ) among states with support in HN (|ψ〉) [24].

Clearly, in order for the DQLS subspace to be useful
in analyzing UDA properties, it is both important that it is
efficiently computable and of sufficiently low dimensionality
compared to the full H. We refer to Theorem 4.1 in Ref. [8]
for a discussion of conditions under which HN (|ψ〉) = H for
a generic multipartite pure state |ψ〉. While the complexity of
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obtaining HN (ρ) has not been investigated in general so far,
it is often possible to leverage structural properties of the state
of interest to analytically characterize HN (ρ) for arbitrary N ,
as we explicitly illustrate next.

B. Application to W state and SLOCC equivalents

We focus on the paradigmatic W state and its SLOCC
class on N qubits. The W state on N qubits is a symmetric
combination of one qubit excitations, namely,

|W 〉N ≡ 1√
N

(|10 . . . 0〉 + |01 . . . 0〉 + . . . |00 . . . 1〉)

= 1√
N

N∑
k=1

|k〉N .

It has been shown that the SLOCC equivalents of |W 〉N may
be represented, up to local unitary transformations, by using a
generalized W state [16] of the form

|GW〉N = c0|0〉N +
N∑

k=1

ck|k〉N ≡ c0|0〉N +
√

1 − c2
0 |W 〉N ,

(8)
for real coefficients that obey c0 � 0, ck > 0, for all k > 1,∑N

k=0 c2
k = 1 and where, by construction, |W 〉N is orthogonal

to |0〉N . If two multipartite states are related by a local unitary
transformation, that is, if

ρ = ( ⊗N
k=1 Uk

)
σ

( ⊗N
k=1 U †

k

)
,

it is immediate to verify that their joining sets relative to any
given neighborhood structure N are also related by the same
transformation. Hence, we can construct the joining set of
the SLOCC class of the W state by investigating the one for
|GW〉N .

Let us first characterize the DQLS subspace of |GW〉N

relative to arbitrary N . Thanks to the fact that, as recalled
in Sec. II, the dimension of the DQLS subspace is invariant
under SLOCC transformations, we have that

dim(HN (|GW〉N )) = dim(HN (|W 〉N )). (9)

We can use this result to characterize HN (|GW〉N ):

Proposition III.4. The DQLS subspace of the generalized
W state |GW〉N relative to any nontrivial neighborhood struc-
ture N is given by

HN (|GW〉N ) = span{|0〉N , |W 〉N }, (10)

where the corresponding states are defined in Eq. (8).

Proof. From Theorem III.1, we know that |GW〉N ∈
HN (|GW〉N ). Since we also know from previous analysis
[12,13] that the DQLS subspace of the W state is two dimen-
sional for any nontrivial N , we only need to find another pure
state that is linearly independent from |GW〉N to fully charac-
terize this subspace. We now show that |0〉N also belongs to
HN (|GW〉N ).

Fix a neighborhood N j = {k1, . . . , kL} ∈ N such that it
contains L < N qubits. With respect to the N j |N j bipartition,
we can rewrite the one-excitation terms in Eq. (8) in the

following form:

|k〉N = | f (k)〉L|0〉N−L, ∀ k ∈ N j,

|k〉N = |0〉L|g(k)〉N−L, ∀ k /∈ N j .

Here, | f (k)〉L, |0〉L ∈ HN j and |g(k)〉N−L, |0〉N−L ∈ HN j
, and

f (k) ∈ {1, . . . , L}, g(k) ∈ {1, . . . , N − L} denote the relative
position of the kth qubit that is excited, depending on the
neighborhood to which it belongs. In terms of this bipartition,
we can express |GW〉N as

|GW〉N = c0|0〉N +
∑
k∈N j

ck| f (k)〉L|0〉N−L

+
∑
k /∈N j

ck|0〉L|g(k)〉N−L.

Now define |ν〉L ≡ ∑
k∈N j

ck| f (k)〉L. The RDM of the state in
N j is given by

ρN j = (1 − 〈ν|ν〉)|0〉L〈0| + |ν〉L〈ν| + c0(|0〉L〈ν| + |ν〉L〈0|).
It is thus easy to verify that |0〉L ∈ supp(ρN j ) for all N j ∈ N
and, therefore,

|0〉N ∈
⋂
N j

supp
(
ρN j ⊗ IN j

) = HN (|GW〉N ).

We conclude that both |0〉N , |GW〉N ∈ HN (|GW〉N ). Choos-
ing an orthonormal basis yields Eq. (10). �

Note that determining HN (|W〉N ) is a special case of
the above proposition, corresponding to c0 = 0 and ck =
1/

√
N for all k in Eq. (8). This recovers the observation that

HN (|W〉N ) = span{|0〉N , |W〉N }, originally made in Ref. [12].
It is remarkable that the search space for determining the
joining set of any generalized W state is reduced from the
2N -dimensional Hilbert space to the two-dimensional DQLS
subspace, for arbitrary N and N .

Furthermore, we now exploit the structure of the DQLS
subspace of generalized W states to prove that these pure
states and, consequently, the entire SLOCC equivalence class
of the W state, are indeed UDA relative to arbitrary N .
We do so by constructing an explicit UDA witness for the
representative state |GW〉N . An alternative direct proof that
uses the structure of the DQLS subspace itself is also included
in Appendix A.

Corollary III.5. SLOCC equivalent states of the N-qubit
W state are UDA relative to any nontrivial neighborhood
structure N , with the UDA witness given by

W =
{

1 − 2c2
0

d2
1

[(
d2

1 − 1
)
1 + σ z

1

] + 2c0

d1

√
1 − c2

0 σ x
1

}
⊗ 12,N ,

(11)
where d1 = c1(1 − c2

0 )−1/2 and 12,N is the identity operator
acting on qubits 2, . . . , N .

Proof. Although the structure of the QL operator W may
look complicated, we show that the particular choice of UDA
witness is not arbitrary. Consider the isometric embedding
V : H → H2, where H2 ≡ span{|0〉, |1〉} a two-dimensional
Hilbert space such that

V |0〉N = |0〉, V |W 〉N = |1〉,

062104-5



KARUVADE, JOHNSON, TICOZZI, AND VIOLA PHYSICAL REVIEW A 99, 062104 (2019)

and V †V is a projector onto HN (|GW〉N ). We are required
to find an Hermitian operator W ∈ B(H) such that it is QL
relative to N and

(〈GW|W|GW〉)N > 〈	|W|	〉, ∀ |	〉 ∈HN (|GW〉N ). (12)

Since V is an isometry from HN (|GW〉N ) to H2, it is distance
preserving. Thus, the above expression is equivalent to finding
an operator VWV † ∈ B(H2) such that

〈gw|V WV †|gw〉 > 〈φ|V WV †|φ〉, |φ〉 ∈ H2,

where |gw〉 ≡ V |GW〉N = c0|0〉 +
√

1 − c2
0 |1〉 and |φ〉 ≡

V |	〉. We now use the Bloch sphere representation of the
former [20], namely, |gw〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉,
with θ = 2 arccos c0 and φ = 0, to observe that

�n · �σ ≡ cos θZ + sin θX = (
1 − 2c2

0

)
Z + 2c0

√
1 − c2

0 X

(13)

is an operator in B(H2), which is uniquely maximized by
|gw〉. Our remaining task is to find W ∈ B(H), such that it
is QL relative to N and VWV † = �n · �σ .

The QL operator σ z
1 ⊗ 12,N transforms under the isometry

V in the following way:

V
(
σ z

1 ⊗ 12N
)
V † =

(
N 〈0|σ z

1 |0〉N N 〈0|σ z
1 |W 〉N

N 〈W|σ z
1 |0〉N N 〈W |σ z

1 |W 〉N

)

=
(

1 0
0 1 − 2d2

1

)
,

where we have suppressed σ 1
z ⊗ 12,N to σ 1

z within the matrix
representation. In terms of Pauli operators in H2, V (σ 1

z ⊗
12N )V † = (1 − d2

1 )1 + d2
1 Z . We can do a similar analysis for

σ x
1 ⊗ 12,N , σ

y
1 ⊗ 12,N as well. We now express Pauli operators

in H2 in terms of {σ x
1 , σ

y
1 , σ z

1 } and 1N , the identity operator in
H. That is,

X = 1

d1
V

(
σ x

1 ⊗ 12,N
)
V †, (14)

Y = 1

d1
V

(
σ

y
1 ⊗ 12,N

)
V †, (15)

Z = 1

d2
1

V
(
σ z

1 ⊗ 12,N − (
1 − d2

1

)
1N

)
V †. (16)

Finally, we combine Eq. (11) and Eqs. (14)–(16) to verify that
V WV † is indeed equal to the operator �n · �σ in Eq. (13). Thus,
W is uniquely maximized by the state |GW〉N in HN (|GW〉N ).
Since W is strictly local, it can serve as the UDA witness for
|GW〉N relative to any nontrivial neighborhood structure N ,
as claimed. �

The UDA nature of the N-qubit W state and its SLOCC
equivalents relative to specific neighborhood structures has
been previously investigated in the literature [16,23]. Aside
from being technically simpler and more transparent, our
analysis has the advantage of being directly applicable to any
neighborhood structure, as long as it is nontrivial. Thus, the
existing results are obtained as special instances of a unified
framework. Our approach can be extended to other quantum
states as well, provided that the relevant DQLS subspaces can
be characterized efficiently.

Remark III.6. It is worth spelling out in more detail the
connection between Theorem III.5 and the results reported in
Ref. [17]. There, the authors show that the SLOCC class of the
N-qubit W state is UDA relative to a special neighborhood
structure Ntree, which is a collection of (N − 1) two-body
neighborhoods. The neighborhoods in Ntree are chosen in
such a way that the corresponding qubits form a tree graph
on N vertices, whose (N − 1) edges represent the relevant
two-body neighborhoods.

We now show how the result in Ref. [17] can be also used
to arrive to the same conclusions, provided that a suitable
procedure is preliminarily implemented in order to reduce an
arbitrary nontrivial N to Ntree. Consider the set of RDMs of
a quantum state ρ on N , given by RN ≡ {ρNk : Nk ∈ N }.
By partial trace over the appropriate indexes, we can further
produce another set of RDMs, R2 ≡ {ρi j : i, j ∈ Nk, ∀Nk},
which is the collection of all two-body RDMs of ρ that can
be inferred from RN . Further, R2 may be reduced to a set
of (N − 1) element Rtree ⊆ R2 by only retaining those ρi js
whose indexes constitute the vertices of a tree graph. Such
a reduction is always possible because N is a nontrivial
neighborhood structure. Each neighborhood in N represents
a collection of edges that belong to a connected graph with
N vertices. Such a graph is necessarily spanned by a tree
graph containing (N − 1) edges, each of which represent a
two-body RDM in the list Rtree. Notice that the construction
is not unique in general, as different spanning tree graphs can
be considered.

Having exhibited a way to reduce RN to Rtree, it is easy
to see that if two states ρ, σ share the same set of RDMs
in N , they share the same two-body RDM list Rtree as well.
Therefore, any state that is non-UDA relative to a nontrivial
N is also non-UDA relative to Ntree. Taking the converse
of this statement, since the authors of Ref. [17] proved that
the SLOCC class of the W state is UDA relative to Ntree-
type neighborhood structures, it follows that they are also
UDA relative to any nontrivial N . While this establishes the
equivalence between the two results on a formal level, a main
advantage of our approach is that it is directly expressed
in terms of the original QL constraint of the problem, as
desirable from both a physical and a control-engineering
perspective.

IV. UDA PURE STATES AS GROUND STATES
OF QL HAMILTONIANS

So far we have approached the problem of characterizing
the joining set of a quantum state, relative to an arbitrary
neighborhood structure, as a search problem in the associ-
ated space of density operators. While the DQLS subspace
provides insight into the structural features of quantum states
that make them UDA or not, a complete mathematical charac-
terization is still lacking. Physically, it also remains unclear
how strong a constraint UDA is for a quantum state in a
given multipartite setting and, consequently, whether UDA
states may commonly occur in typical scenarios. Since most
physical Hamiltonians are QL relative to some neighborhood
structure, it is then natural to explore what connection may
exist between a pure state being a UGS of such a QL Hamil-
tonian and being UDA with respect to the same constraint.
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A. UGS of QL Hamiltonians are always UDA

It is easy to verify that pure states that arise as UGS of
QL Hamiltonians are necessarily UDA relative to the same
neighborhood structure. While this result may be seen as a
special instance of the fact that the ground-state space of a
k-local Hamiltonian is k correlated [14], and while we also
reobtained it as a consequence of Corollary III.2, a direct
proof is also straightforward:

Proposition IV.1. If |ψ〉 is the UGS of a QL Hamiltonian
relative to N , then |ψ〉 is UDA by its N -neighborhood RDMs.

Proof. Let |ψ〉 be the UGS of H = ∑
k HNk ⊗ IN k

. As-
sume that |ψ〉 is not UDA. Then there exists some σ �=
|ψ〉〈ψ | ∈ MN (|ψ〉). Accordingly, Tr(H |ψ〉〈ψ |) = Tr(Hσ ),
since the energy expectation value of the quantum state de-
pends only on its RDMs in N due to H being quasi-local with
respect to N . It follows that σ also belongs to the ground-
state space of H , contradicting the assumption that |ψ〉 is the
unique ground state of H . �

Prior to our work, it was not conclusively established
whether the UDA property would suffice, for arbitrary |ψ〉,
to guarantee the existence of a parent QL Hamiltonian having
|ψ〉 as its UGS, relative to the given N . Unlike the implication
discussed above, it is hard to validate the sufficiency criterion
due to the lack of any apparent mathematical connection in
this direction [14,25]. Nonetheless, a number of physically
relevant UDA pure states are known to arise as the UGS of QL
Hamiltonians. For example, the W state on N qubits, which
we proved to be UDA relative to arbitrary nontrivial neigh-
borhood structures in the previous section, is also known to be
the UGS of a simple XX -type ferromagnetic Hamiltonian in
a transverse magnetic field, at least for NN interactions [26].
Likewise, injective matrix product states that are DQLS [12],
and hence UDA relative to the corresponding neighborhood
structure, have also been proved to be the UGS of frustration-
free QL Hamiltonians [27]. Prompted by these positive exam-
ples, it is indeed tempting to conjecture the two properties of
UDA and UGS to be equivalent [28]. We now show, however,
that this is false in general, by exhibiting an explicit coun-
terexample of a pure state that is provably UDA but not UGS.

B. UDA states need not be UGS of QL Hamiltonians

Our counterexample involves a six-qubit pure state, which
we denote by |�〉6 and which, using the compact notation
discussed in Sec. III B, has the following form:

|�〉6 ≡ 1√
2

(|0〉6 + |D〉6), (17)

where |D〉6 is a “modified” two-excitation Dicke state, with
all the NN excitations removed, that is,

|D〉6 = 1

3
(|13〉6 + |14〉6 + |15〉6 + |24〉6 + |25〉6

+ |26〉6 + |35〉6 + |36〉6 + |46〉6). (18)

Accordingly, we can rewrite |�〉6 as

|�〉6 = 1√
2

(
|0〉6 + 1

3

∑
( j−i)>1

|i j〉6

)
. (19)

We choose a fixed neighborhood structure, N2, given by all
the two-body neighborhoods that are available in this six-
qubit system. While our initial identification of this state and
QL constraint was guided by numerical investigation in the
context of the SDP approach we discuss in Sec. V [29], we
here show in fully analytical fashion that |�〉6 is indeed UDA
with respect to N2, yet it cannot occur as the UGS of any
two-local Hamiltonian.

1. |�〉6 is UDA relative to two-body neighborhoods

We begin by characterizing the DQLS subspace of |�〉6.
According to Eq. (3), we only need to consider the support
of all the two-body RDMs for this purpose. Thanks to the
symmetries that |�〉6 enjoys, it can be verified that its RDMs
on NN neighborhoods coincide with each other. The same
observation holds for non-NN RDMs as well. Let us exam-
ine the expectation values of the two-qubit projectors onto
the standard basis {|00〉, |01〉, |10〉, |11〉} of the two-qubit
space H2, for different combinations of qubit pairs, with
respect to |�〉6. This lets us conclude that, for NN subsystems,

ker(ρi j ) = span{|11〉} ⇒ supp(ρi j )

= span{|00〉, |01〉, |10〉}, ∀ j = i + 1. (20)

Similarly, in the non-NN case,

ker(ρi j ) = ∅ ⇒ supp(ρi j ) = H2, ∀ j > i + 1.

Since the support of the non-NN RDMs coincides with the full
space, such RDMs contribute trivially to the DQLS subpace
HN2 (|�〉6), following Eq. (2). Therefore,

HN2 (|�〉6) = HNNN (|�〉6), (21)

where NNN is the NN neighborhood structure under periodic
boundary conditions. It follows that, in order to determine
HN2 (|�〉6), we only need to characterize the DQLS subspace
of |�〉6 relative to NNN.

To this end, consider the standard basis for the
64-dimensional six-qubit Hilbert space H = H6, namely,

B6 = {|0〉6, |i1〉6, |i1i2, 〉6, . . . , |i1i2 . . . i6〉6},
where each ik ∈ {1, . . . , 6} denotes the position of an excita-
tion. We now determine whether each of these basis elements
belongs to HNNN (|�〉6). Let |φ〉 ∈ H6, with the correspond-
ing NN RDMs denoted by σi(i+1). Then, |φ〉 ∈ HNNN (|�〉6)
only if

supp(σi(i+1)) ⊆ supp(ρi(i+1))

= span{|00〉, |01〉, |10〉}, ∀i = 1, . . . , 6, (22)

with the second equality following from Eq. (20). Thus, it
immediately follows that |0〉6 ∈ HNNN (|�〉6), as its NN RDMs
are equal to |00〉〈00|, thereby satisfying Eq. (22). We also
observe that for all one-excited basis states {|i1〉6}, the NN
RDMs are either |00〉〈00|, |10〉〈10| or |01〉〈01|, depending on
the neighborhood chosen. Thus, |i1〉6 ∈ HNNN (|�〉6).

A similar reasoning applies for any two-excited basis states
with non-NN excitations. Therefore, |i1i2〉6 ∈ HNNN (|�〉6), as
long as |i1 − i2| > 1. Two-excited basis states of the form
|i(i + 1)〉6 do not belong to the DQLS subspace, for the
RDM σi(i+1) = |11〉〈11|, and therefore the support condition
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in Eq. (22) is not satisfied. This also includes the state |16〉5,
given that we are considering periodic boundary conditions.

Following the same arguments, three-excited basis states
|135〉, |246〉 ∈ HNNN (|�〉6). However, any other state from
the basis set B does not belong to the DQLS subspace as
their RDMs in the appropriate neighborhoods have nontrivial
action on the subspace spanned by |11〉. In summary, we
conclude that

HNNN (|�〉6) = span{|0〉6, |i〉6, |i1i2〉6, |135〉6, |246〉6},
i, i1, i2 = 1, . . . , 6; i2 �= i1 + 1; {i1, i2} �= {1, 6}. (23)

Hereafter we shall use the notation (i2 − i1) > 1 to refer to the
above allowed (nine) non-NN pairs of qubits.

In view of the equality in Eq. (21), Eq. (23) characterizes
HN2 (|�〉6) as well. We now focus on this 18-dimensional
subspace HN2 (|�〉6) to determine the UDA nature of |�〉6.
We do so by utilizing the concept of UDA witness introduced
in Theorem III.3:

Theorem IV.2. |�〉6 is UDA relative to N2 as the QL
operator

W6 ≡
∑

(i2 − i1 ) > 1

(
σ+

i1
σ+

i2
+ σ−

i2
σ−

i1

)
(24)

serves as a 2-local UDA witness for the state.

Since the proof is lengthy, we defer it to Appendix A.

2. |�〉6 is not UGS of any two-body Hamiltonian

Having established that |�〉6 is UDA relative to N2, we
next look at the properties of 2-local Hamiltonians for which
|�〉6 is a ground state. We intend to show that such QL
Hamiltonians have at least a twofold degeneracy for their
ground-state space, thereby ruling out the possibility that |�〉6

may arise as their UGS.
Before doing so, we make an observation about the ground-

state space of general (not necessarily QL) Hamiltonians,
under the action of a group symmetrization operation [18,19]:

Proposition IV.3. Let H be a Hamiltonian with its ground-
state space denoted by g.s.(H ). Assume that there exists a pure
state |ψg〉 ∈ g.s.(H ) and a finite group of unitary operations
G ≡ {G1, . . . , G|G|}, such that Gk|ψg〉 = |ψg〉, for all Gk ∈ G.
Let a new G-symmetrized Hamiltonian be constructed from H
via

H ≡ 1

|G|
|G|∑

k=1

G†
kHGk . (25)

Then we have that g.s.(H ) ⊆ g.s.(H ).

Proof. Assume, without loss of generality, that the ground-
state energy of H is zero. This implies H � 0, as each term in
the sum of Eq. (25) has the same spectrum as H , by unitarity
of each Gk . Next, we notice that

Tr(H |ψg〉〈ψg|) = 1

|G|
∑

k

Tr(HGk|ψg〉〈ψg|G†
k )

= Tr(H |ψg〉〈ψg|) = 0,

since by assumption |ψg〉 is invariant under G. The above rela-
tion also establishes that |ψg〉 ∈ g.s.(H ), with a corresponding

ground-state energy of zero, since H � 0 as already seen.
Therefore, in order to fully characterize g.s.(H ), we need to
figure out which other pure states have zero expectation value
with respect to H .

Consider an arbitrary state |φ〉 ∈ H. Then,

Tr(H |φ〉〈φ|) = 1

|G|
∑

k

Tr(HG|φ〉〈φ|G†
k ) � 0,

where the equality holds if and only if

|φk〉 ≡ Gk|φ〉 ∈ g.s.(H ), ∀ k. (26)

A special instance of Eq. (26) occurs for Gk = I , which then
implies |φ〉 ∈ g.s.(H ). Thus,

g.s.(H ) ⊆ g.s.(H ),

and the two subspaces coincide if and only if Eq. (26) holds
for all ground-state elements of H . �

By construction, the symmetrized Hamiltonian in Eq. (26)
is projected onto the commutant of the group algebra CG;
hence, in particular it commutes with all the unitaries in G
[18,19]. Returning to our problem, we now examine how such
a symmetrization procedure can be useful for our analysis.
The state |�〉6 has a number of symmetry properties such
as invariance under cyclic permutations as well as reflections
of qubits. If we are able to find a unitary group that leaves
|�〉6 invariant, while preserving the QL nature of Hamilto-
nians relative to N2, we can thus restrict our investigation
to the class of symmetrized QL Hamiltonians and exploit
their simpler structure. Proposition IV.3 shows that such sym-
metrized Hamiltonians necessarily have |�〉6 in their ground-
state spaces. Therefore, if we can show that there exists no
symmetrized QL Hamiltonian for which |�〉6 is the UGS, we
may infer that such a scenario is impossible for general QL
Hamiltonians as well.

Consider the group of cyclic permutations on six qubits,
namely, P ≡ {P, P2, . . . , P6 = I}, with P representing a uni-
tary operator in H6 whose action is to permute the qubits in
the order (123456) �→ (234561). Similarly, we also consider
the group generated by the (unitary) reflection operator R
whose operation is to swap the qubits as follows: (123456) �→
(654321). We denote this latter group by R ≡ {R, R2 = I}.
Now, let

G6 ≡ 〈R, P〉 (27)

be the finite group generated by P, R together, namely, the set
of unitary operators on H6 that can be written as products of
elements in P or R. Clearly,

Gk (|�〉6) = |�〉6, ∀ Gk ∈ G6.

It is essential to note that all the group operations in G are
decomposable into a series of two-qubit swap operations that
are nonentangling when acted up on product basis states.
Therefore, basis transformations by the unitaries belonging to
G6 do not alter the QL structure of the operators relative to the
neighborhood structure N2.

We now consider the class of QL Hamiltonians that have
|�〉6 in their ground-state spaces and are symmetrized with
respect to G6 given in Eq. (27), to arrive at the following
theorem:
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Theorem IV.4. There exists no Hamiltonian H that is QL
relative to N2 and symmetrized with respect to the group G6,
such that H has |�〉6 as its UGS.

While a complete proof is deferred to Appendix A, this
establishes |�〉6 as a counterexample to the conjecture that
UDA pure states are the UGS of a QL Hamiltonian.

Remark IV.5. This theorem also highlights the fact that for
a general |ψ〉 under a given neighborhood structure N , having
a UDA witness is a strictly weaker property than it being the
UGS of a QL Hamiltonian. In particular, notice that |�〉6 is
not an eigenstate of the witness W6 given in Eq. (24). In fact,
if |ψ〉 is the not the UGS of any QL Hamiltonian, it has to
be case that it is also not the eigenstate of its UDA witness
W, assuming the latter exists. To see this, observe that the
frustration-free QL Hamiltonian constructed as a sum of the
projectors onto supp(ρNk ), for all Nk ∈ N , has the DQLS
subspace HN (|ψ〉) as its ground-state space [12]. Now, W
has higher energy for all states but |ψ〉 in HN (|ψ〉). Thus, an
appropriate linear combination of these two QL operators will
have |ψ〉 as the UGS, if |ψ〉 is an eigenstate of W. The crucial
difference to be noted here is that while being UGS forces the
pure state to be the extremal eigenstate of a QL Hamiltonian,
in order to be UDA it is sufficient that the state extremizes
a QL Hamiltonian restricted to the DQLS subspace, without
being its eigenstate.

V. UGS VS UDA PROPERTIES: SEMIDEFINITE
PROGRAMMING APPROACH

Having established the inequivalence between the two
properties of UDA and UGS by counterexample, we present
a framework that allows exploring the relation between these
two classes of pure states more generally, while also hinting
at how such counterexamples may arise, at least from a
mathematical standpoint.

As we mentioned in the introduction, the key idea is to
describe the search problem for determining the UDA nature
of a general pure state |ψ〉 ∈ H relative to a nontrivial N
as a SDP. SDPs form a subclass of convex optimization
problems [15] that are ubiquitous in engineering and physics.
They emerge naturally in the quantum context, as the sets
of density operators and quantum channels can be described
by intersections of convex cones with linear constraints. The
existence of a number of efficient solvers also makes SDP a
very practical numerical optimization tool. After formalizing
the UDA problem as an SDP, we construct the dual of the
original problem and show that it can be interpreted as the
optimization program to find a QL Hamiltonian for which
|ψ〉 has the lowest energy expectation value, subject to certain
convex constraints. This dual program may or may not attain
its optimal value depending on |ψ〉. As a main result, we show
that for a UDA pure state |ψ〉 to be also a UGS of some QL
Hamiltonian, relative to a same, fixed N , it is necessary and
sufficient that the dual optimal value is indeed attained.

A. The UGS problem as a dual optimization problem

It is easy to see why the problem of determining the UDA
nature of |ψ〉 can be formulated as a SDP. If |ψ〉 is non-UDA
relative to N , there exists another quantum state σ such that

σ ∈ MN (|ψ〉). Clearly, the search space for such a σ , which
is nothing but D(H), is a convex set. More importantly, the
requirement that the list of RDMs in N of σ and |ψ〉〈ψ |
must coincide also imposes a linear constraint on B(H), as
we explain next.

We first observe that the mapping from a quantum state
ρ ∈ D(H) to the list of its RDMs on N , given by {ρNk , ∀Nk ∈
N }, can be described in terms of an orthogonal projector, say,
	N : B(H) → B(H). To see this, consider the operator basis
for B(Ha) given by

Xa ≡ {
Ia, X a

ia : ia = 1, . . . , d2
a − 1

}
,

where {X a
ia} are traceless Hermitian operators that are or-

thonormal with respect to the Hilbert-Schmidt norm; that is,
up to the imaginary unit, they form a Lie algebra su(d2

a − 1).
Let then X denote the orthonormal basis for B(H) obtained
from {Xa} via the standard N-fold tensor-product construction
[20]. For every fixed Xi ∈ X , define a mapping 	Xi : B(H) →
B(H) as follows:

	Xi (M ) = Tr(XiM )Xi, ∀ M ∈ B(H).

Evidently, 	Xi is a projector onto B(H) since 	2
Xi

= 	Xi ,
following the orthonormality of the basis vectors in X .

For a fixed neighborhood Nk ∈ N , we can now define a
basis set for the subspace B(HNk ) ⊗ IN k

by letting XNk ≡
{Xi ∈ X : Xi = X i

Nk
⊗ IN k

}. The basis elements in XNk can
then be used to define the RDM ρNk via

ρNk ⊗ IN k
≡

∑
Xj∈XNk

	Xj (ρ).

For the full neighborhood structure N = {Nk}M
k=1, we can

finally consider the union XN ≡ ∪Nk∈NXNk and define a
corresponding mapping 	N such that

	N ≡
∑

Xi∈XN

	Xi . (28)

It can be seen that 	N is an orthogonal projector on B(H)
because it enjoys the following properties:

	Xi	Xj = δi j	Xi , ∀ Xi, Xj ∈ XN ⇒ 	2
N = 	N ,

Tr(M†
1	N (M2)) = Tr([	N (M1)]†M2), ∀Mi ∈ B(H).

By construction, 	N is the desired mapping in B(H) that
effects the reduction from ρ to its list of RDMs {ρNk } on N .
It is immediate to verify the following:

Corollary V.1. Given any two states ρ, σ ∈ D(H), the set
of RDMs relative to any nontrivial N coincide, {ρNk ,∀Nk ∈
N } = {σNk ,∀Nk ∈ N }, if and only if their QL projections
coincide, 	N (σ ) = 	N (ρ).

Following the above, the SDP for determining the UDA
nature of |ψ〉 relative to N is summarized in Table I(a).
The resulting primal program and its dual are in fact a pair
of linear programs in standard form [15]. The aim of the
primal program is to search for a quantum state σ which is
in MN (|ψ〉), such that it has the minimum Hilbert-Schmidt
inner product with |ψ〉〈ψ |. If such a state exists and is not
|ψ〉〈ψ | itself, then clearly |ψ〉〈ψ | is not UDA. Let the optimal
value of the primal problem be denoted by α. It is easy
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TABLE I. SDP programs relevant to probe the relationship be-
tween UDA and UGS properties of multipartite pure states. (a)
UDA primal problem. (b) UDA dual problem. See Appendix B for
additional detail on derivations.

(a) Minimize: Tr(|ψ〉〈ψ |σ ),
subject to: (i.a) 	N (σ ) = 	N (|ψ〉〈ψ |),

(ii.a) σ � 0.

(b) Maximize: −Tr(H |ψ〉〈ψ |),
subject to: (i.b) H + |ψ〉〈ψ | � 0,

(ii.b) H = 	N (H ),
(iii.b) H = H†.

to see that α ∈ [0, 1] depending on the inputs |ψ〉 and N .
Specifically, α = 1 if and only if |ψ〉 is UDA relative to N ,
in other words MN (|ψ〉) = {|ψ〉}. If α = 0, it means that
there exists some σ ∈ MN (|ψ〉) such that the two states are
orthogonal to each other. Notice that constraint (i.a) ensures
that σ has unit trace, since the identity is included in the
basis set XN which we use to construct 	N in Eq. (28).
Combined with constraint (ii.a), this guarantee that the SDP
is indeed searching over D(H). Also note that the optimal
value α is always attained irrespective of the problem inputs,
as a consequence of the fact that the feasibility set of the
primal problem, which is MN (|ψ〉), is a nonempty, closed,
and convex set [15].

Following the procedure outlined in Appendix B, we can
construct the dual to the UDA primal problem, resulting in
the SDP given in Table I(b). This dual problem searches for a
Hermitian operator H, which can be thought as a Hamiltonian
that has minimum energy expectation value with respect to
|ψ〉, subject to the constraints that H is QL relative to N and
H + |ψ〉〈ψ | is a positive-semidefinite operator. Constraint
(i.b), which also results from the dual problem construction,
does not lend itself to an immediate physical interpretation. It
will nonetheless be instrumental to showing that if a solution
to the dual problem exists, the operator H that optimizes the
same is guaranteed to have |ψ〉 as its UGS.

Let the optimal value for the dual program be given by
β. Appendix B shows that strong duality holds, namely, that
α = β, for all |ψ〉, N , thanks to the refined version of Slater’s
condition for programs with affine inequality constraints [15].
Hence, it also follows that β ∈ [0, 1]. In particular, we are
interested in the case where |ψ〉 is UDA relative to N , that is,
α = β = 1. However, it is important to appreciate that strong
duality for a primal-dual pair does not guarantee that the
latter attains the optimum in general: The crucial difference
between the primal and the dual problem is that the set
over which we are optimizing the dual is unbounded. Thus,
while the superior limit for the dual functional is guaranteed
to be equal to the primal optimum, this in certain cases may
be achieved only in the limit of unbounded operators H . The
following result, which complements Proposition IV.1, can be
established:

Theorem V.2. Let |ψ〉 ∈ H be UDA relative to a nontrivial
N and assume that the dual SDP attains its optimal value for
the pair (|ψ〉,N ). Then there exists a Hamiltonian that is QL
relative to N for which |ψ〉 is the UGS.

Proof. Since |ψ〉 is UDA with respect to N , the primal
problem given in Table I(a) has the optimal value α = 1.
The optimal solution is given by σ = |ψ〉〈ψ | itself. Thanks
to Slater’s condition, the dual optimal value is also β = 1.
Following our assumption, the latter is attained for some
Hermitian operator that is QL relative to N , say, H0; accord-
ingly, we have Tr(H0|ψ〉〈ψ |) = −1.

Let us assume that there exists |φ〉〈φ| �= |ψ〉〈ψ | such
that |φ〉 ∈ g.s.(H0), namely, E0 ≡ Tr(H0|φ〉〈φ|) � −1. This
means that

Tr(|φ〉〈φ|(H0 + |ψ〉〈ψ |)) = |〈φ|ψ〉|2 + E0 < 0,

as the overlap of the two quantum states is strictly less than
1. This, however, contradicts the constraint (i.b) of the dual
program given in Table I(b) and hence the only ground state
of H0 must be |ψ〉. �

Based on the above analysis, it follows that a UDA pure
state is also the UGS of a QL Hamiltonian, provided the dual
program attains its optimal value. However, attainment of the
dual optimal value does not always happen, in which case the
relevant UDA state can only belong to a degenerate ground
space of a QL Hamiltonian. This is precisely what happens
for the state |�〉6 we exhibited in Sec. IV B.

On the contrary, we know (Proposition IV.1) that pure
states which are the UGS of QL Hamiltonians are always
UDA relative to the same neighborhood structure. We can also
see this using the SDP primal-dual relationship. If there exists
a Hamiltonian H0 that is QL relative to N with |ψ〉 as its UGS,
one can show that the dual program for |ψ〉 is optimized by
some xH0 + y1, with appropriate values for x, y ∈ R such that
β = 1. This is possible because the energy gap between the
ground and the first excited states of the Hamiltonian can be
suitably scaled so that constraint (i.b) in Table I(b) is satisfied
for all quantum states with energy above the ground state |ψ〉.
In turn, this means that α = 1 for the primal program, and
hence |ψ〉 is UDA with respect to N , as expected.

B. Generalized vs QL linear constraints

The result established in Theorem V.2 naturally prompts
the question of what features in the structure of the inputs and
(or) the constraints may possibly make the assumption that the
dual SDP attains its optimum value obeyed for any |ψ〉, N . As
it is clear from the steps taken to construct the projector 	N in
Eq. (28), at the heart of our SDP primal problem is the fact that
the QL constraint on B(H) is linear in nature. Therefore, it is
possible to write a similar SDP primal-dual pair for any gen-
eral constraint as long as it acts linearly on B(H) and arrive at
similar conclusions to those of the QL case. For this reason,
one may more generally ask whether (and when so) pure states
which are UDA relative to some specified linear constraints
are the UGS of some Hamiltonian which respects these same
constraints. The corresponding optimization problems will
look similar to the ones given in Table I, with the QL projector
	N replaced appropriately. For instance, this generalized
setting is applicable to scenarios where “generalized locality”
constraints may be attributable to restrictions to a preferred
subspace of observables (a preferred semisimple Lie algebra
in the simplest case) and “generalized RDMs” are constructed
via restriction of the linear functionals representing global
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quantum states to determining only expectation values of
observables in such a distinguished subspace [30].

In Ref. [14], a simple linear constraint in a two-qubit
setting is considered, which forces linear operators to be of the
form M = αH1 + βH2, where α, β ∈ C and H1, H2 ∈ B(H)
are fixed two-qubit operators. A pure state |ψ〉 in this setting
is UDA if there exists no other quantum state with the same
set of expectation values as |ψ〉 for H1, H2. It is easy to check
that for Hamiltonians of the form given above, if the ground
state is unique it has to be UDA as well. However, the authors
could show, by using geometric arguments, that there exist
UDA pure states in this setting, which are not the UGS of any
Hamiltonians of the appropriate kind. In SDP parlance, these
cases would amount to an explicit violation of the assumption
used in Theorem V.2. However, prior to our analysis it was not
clear whether such “outlier” UDA states could possibly be a
peculiarity of the generalized setting in question, as opposed
to the more structured one that pertains to QL constraints in
multipartite systems, as we have focused on.

Mathematically, the QL setting is indeed special for a num-
ber of reasons. Notably, the mapping from a pure quantum
state |ψ〉〈ψ | to its set of RDMs is more complex than merely
considering a set of expectation values; unlike in the latter
case, each RDM is a positive-semidefinite operator not only
on the reduced but also the full state space [31]. Similarly,
the subset of QL Hamiltonians has a richer structure in B(H).
The QL constraint depends on the underlying tensor product
structure as well as the neighborhood structure chosen for
the multipartite system, whereas linear constrains of the form
considered in Ref. [14] reflect only the total dimension and
general geometric properties of B(H). Notwithstanding this
additional structure, our analysis shows that the question of
whether UDA pure states are always UGS of appropriate
Hamiltonians still has a negative answer in general, the reason
being rooted in the failure of the dual SDP to achieve its
maximum possible value.

VI. CONCLUSIONS AND OUTLOOK

We have elucidated aspects of the interplay between
(quasi-)local and global properties in quantum states, in re-
lation to developing better tools for characterizing sets of
quantum states that are compatible with a given collection
of quantum marginals and, more specifically, for better un-
derstanding the distinctive properties that pure states uniquely
determined by such marginals enjoy. Our main findings may
be summarized as follows:

(i) For arbitrary ρ and N , respectively, specifying the
(pure or mixed) state of interest and the relevant QL con-
straint, the search for states consistent with the assigned
neighborhood-RDMs can be restricted to a subset of the full
space, specifically, to density operators with support on a sub-
space which is solely determined from knowledge of the RDM
supports (Theorem III.1). Such a DQLS subspace, which can
be thought of as the minimal subspace that is asymptotically
stabilizable using purely dissipative Markovian dynamics,
may have a dimensionality significantly smaller than the full
Hilbert space, possibly independent of system size—as we
explicitly show for generalized W states. In the important
case where the target state ρ = |ψ〉〈ψ | is pure, this may be

further exploited to introduce the concept of a UDA witness,
as an observable whose expectation is uniquely extremized by
|ψ〉 over the corresponding DQLS subspace [Theorem III.3].
As a by-product, generalized W states are shown to be UDA
relative to arbitrary nontrivial QL constraints, extending and
unifying existing results.

(ii) While any nondegenerate ground state of a Hamiltonian
that is QL relative to N is always UDA by its N -RDMs,
and while many UDA pure states are known to arise as the
UGS of a corresponding QL parent Hamiltonian, we show this
equivalence to be false in general, disproving the conjecture
that UDA alone suffices for |ψ〉 to also be a UGS. We do so by
exhibiting an analytic counterexample of a six-qubit pure state
that is provably UDA by knowledge of its two-body RDMs
(Theorems IV.2) yet cannot be the nondegenerate UGS of any
two-body Hamiltonian (IV.4).

(iii) We recast the problems of determining whether |ψ〉 is
UDA or, respectively, UGS relative to a give QL constraint
as a primal-dual pair of linear programs in the general SDP
framework. As a main result of this reformulation, we es-
tablish that a necessary and sufficient condition for a UDA
pure state |ψ〉 to be a UGS is for the dual problem to attain
its optimal value (Theorem V.2). Failure for this to happen,
in spite of strong duality to be obeyed by the primal-dual
pair, is identified as the mechanism precluding, in general, the
equivalence between UDA and UGS to hold.

The present analysis leaves a number of interesting open
questions for future investigation. In discussing the relation
between the joining set of a quantum state and its DQLS
subspace, we have assumed that the given set of RDMs
corresponds to at least one valid global state. However, in the
more general setting of a quantum marginal problem, where
the aim is to determine whether the given set of RDMs does
indeed correspond to a valid global state, it is still possible to
construct a DQLS subspace using the information about the
supports of the given RDMs. An interesting question to be an-
swered in this case is what structural properties the subspace
so constructed should enjoy, in order for the corresponding
quantum marginal problem to admit a solution. In the impor-
tant case of fermionic systems, also known in the literature as
the N-representability problem [32], we can further restrict the
analysis to the fully antisymmetric subspace of the N-particle
Hilbert space and study the resulting DQLS subspace.

In view of the fact that UGS pure states form a proper
subset of UDA pure states, it is both important and natural
to ask what additional properties, on top of being UDA, a
pure quantum state should obey in order for the equivalence
to be possibly regained relative to a specified QL constraint.
Or, even with UDA being the only property in place, it
may be natural to ask instead what minimal “coarse-grained”
neighborhood structure N ′ [8] (if any) may allow for the UGS
property to be guaranteed as well. From a SDP standpoint,
elucidating these questions calls for a deeper understanding
of the geometric shape that the optimization problem acquires
as a result of the constraints—in particular, the emergence and
nature of nonexposed faces [14,33].

Finally, it is worth noting that, in many ways, UGSs of QL
Hamiltonians “mirror” unique steady states of QL dissipative
evolutions [34]; in particular, they may be prepared by using
purely dissipative QL stabilizing dynamics if their parent
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Hamiltonian is frustration free [12]. A related question one
may thus ask is whether UGSs of QL Hamiltonians can always
be stabilized with QL resources: Interestingly, the answer
turns out to be negative in this case also [35].
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APPENDIX A: TECHNICAL PROOFS

In this section, we present complete technical proofs of
results stated in the main text. First, we provide an alternative
proof of the UDA nature of arbitrary SLOCC equivalents to
the W state (Theorem III.5) that exploits directly the structure
of the DQLS subspace.

Corollary III.5′. SLOCC equivalent states of the N-qubit
W state are UDA relative to any nontrivial neighborhood
structure N .

Proof. Following Theorem III.1, we know that

supp(σ ) ⊆ HN (|GW〉N ), ∀ σ ∈ MN (|GW〉N ).

The structure of HN (|GW〉N ) is given by Eq. (10) in the main
text. Hence, we can express σ in the following way:

σ = p|φ0〉〈φ0| + (1 − p)|φ1〉〈φ1|, 0 � p � 1,

where |φ0〉 = α|0〉N + β|W 〉N , |φ1〉 = β∗|0〉N − α∗|W 〉N are
a pair of orthonormal vectors with |α|2 + |β|2 = 1.

Let us now write the density operators ρ ≡ (|GW〉〈GW|)N

and σ in terms of the states |0〉N , |W 〉N :

ρ = c2
0(|0〉〈0|)N + (

1 − c2
0

)
(|W 〉〈W |)N

+ c0

√
1 − c2

0 [(|0〉〈W |)N + (|W 〉〈0|)N ],

σ = [p|α|2 + (1 − p)|β|2](|0〉〈0|)N

+ [p|β|2 + (1 − p)|α|2](|W 〉〈W |)N

+ [(2p − 1)αβ∗(|0〉〈W |)N + H.c.],

where H.c. denotes the Hermitian conjugate. Now, consider
the RDMs of ρ and σ on some fixed N j = {k1, . . . , kL} ∈
N . As these are identical by assumption, we denote the
resulting operator by ρN j . Notice the following: (i) Terms of
the form (|k〉〈k′|)L + H.c. arise only from the partial tracing
of (|W〉〈W|)N . (ii) Terms of the form ((|k〉〈0|)L +H.c.) arise
only from the partial tracing ((|W〉〈0|)N+H.c.). Hence, the
coefficients of these two terms must be equal in ρ and σ . That
is, it must be

p|β|2 + (1 − p)|α|2 = 1 − c2
0, (A1)

(2p − 1)αβ∗ = c0

√
1 − c2

0, (A2)

where
√

1 − c2
0 > 0, since it is the normalization constant

used in the definition of |W〉N [see Eq. (8) in the main text].

Therefore, the right-hand side of Eq. (A2) is real and positive.
This implies that αβ∗ is real, and the complex numbers α, β

have the same phase factor which can be absorbed into the
global phase of |φ0〉, |φ1〉. Without loss of generality, we then
take α, β ∈ R and α � 0.

From Eq. (A1), it follows that c2
0 = p|α|2 + (1 − p)|β|2.

Squaring Eq. (A2) and substituting for c0 from this expression
yields

α2β2(2p− 1)2 = [p2 + (1 − p)2]α2β2 + p(1 − p)(α4 + β4),

which may be further simplified to

2α2β2 p(p − 1) = p(1 − p)(α4 + β4).

For p �∈ {0, 1}, we see that this yields (α2 + β2)2 = 0, which
is a contradiction. Therefore, it follows that either (i) p = 0, in
which case α =

√
1 − c2

0 and β = −c0, or (ii) p = 1, in which
case α = c0 and β =

√
1 − c2

0.
Both conditions are equivalent to σ = (|GW〉〈GW|)N . This

shows that |GW〉N , and therefore the SLOCC class of the
N-qubit W state, are UDA relative to any nontrivial N , as
claimed. �

Theorem IV.2. |�〉6 is UDA relative to N2 as the QL
operator

W6 ≡
∑

(i2 − i1 ) > 1

(
σ+

i1
σ+

i2
+ σ−

i2
σ−

i1

)
(A3)

serves as a 2-local UDA witness for the state.

Proof. We aim to show that (〈�|W6|�〉)6 > 〈φ|W6|φ〉, for
all |φ〉 ∈ HN2 (|�〉6), where |φ〉〈φ| �= (|�〉〈�|)6. It is clear
that W6 is Hermitian and QL relative to N2.

Let a general normalized pure state |φ〉 ∈ HN2 (|ψ〉) be
expressed as follows (up to a global phase factor):

|φ〉 = a0|0〉6 + (a135 + ib135)|135〉6 + (a246 + ib246)|246〉6

+
∑

i1

(
ai1 + ibi1

)|i1〉6 +
∑

(i2−i1 )>1

(
ai1i2 + ibi1i2

)|i1i2〉6,

where all the expansion coefficients are chosen to be real
and, due to normalization, they obey

∑
i1

(a2
i1 + b2

i1 ) +∑
i2−i1>1(a2

i1i2 + b2
i1i2 ) + a2

135 + b2
135 + a2

246 + b2
246 = 1. We

now show that |�〉6 is the unique state with maximum
expectation value for W6, among all the pure states in
HN2 (|�〉6). We use the method of Lagrangian multipliers.
Define vectors

�a ≡ {
a0, ai1 , ai1i2 , a135, a246 : i� = 1, . . . , 6, i2 − i1 > 1

}
,

(A4)

�b≡{
bi1 , bi1i2 , b135, b246 : i� = 1, . . . , 6, i2 − i1 > 1

}
, (A5)

where � = 1, 2, and two functions f and h as follows:

f (�a, �b) ≡ 2

[
a0

∑
(i2−i1 )>1

ai1i2 + a135(a1 + a3 + a5)

+ a246(a2 + a4 + a6) + b135(b1 + b3 + b5)

+ b246(b2 + b4 + b6)

]
,

h(�a, �b) ≡ |�a|2 + |�b|2. (A6)
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Note that f (�a, �b) = 〈φ|W6|φ〉 for all |φ〉 ∈ HN2 (|�〉6) fol-
lowing Eqs. (A4)–(A6). Thus, we can also use f (|φ〉) to
represent the expectation of W2 with respect to |φ〉.

Our aim is to maximize f (�a, �b) subject to the constraint
that h(�a, �b) = 1, which represents the normalization condition
on |φ〉 in Eq. (A4). Consider the Lagrangian

L(�a, �b, λ) = f (�a, �b) + λ h(�a, �b), λ ∈ R.

We wish to solve the equations given by ∇�a,�b,λ
L = 0, where

∇�a,�b,λ
represents the partial derivatives of L(�a, �b, λ) with

respect to each real-valued component of the vectors �a, �b,
given by Eqs. (A4) and (A5), as well as the scalar variable
λ. Explicitly, the resulting set of equations reads as follows:

2λa0 + 2
∑

(i1−i2 )>1

ai1i2 = 0, (A7)

2a0 + 2λai1i2 = 0, ∀ (i1 − i2) > 1, (A8)

2λbi1i2 = 0, ∀ (i1 − i2) > 1, (A9)

2
(
ai1 + ai2 + ai3

) + 2λai1i2i3 = 0,

{i1, i2, i3} = {1, 3, 5}, {2, 4, 6}, (A10)

2ai1i2i3 + 2λai = 0,

{i1, i2, i3} = {1, 3, 5}, {2, 4, 6}, i = i1, i2, i3, (A11)

2
(
bi1 + bi2 + bi3

) + 2λbi1i2i3 = 0,

{i1, i2, i3} = {1, 3, 5}, {2, 4, 6}, (A12)

2bi1i2i3 + 2λbi = 0,

{i1, i2, i3} = {1, 3, 5}, {2, 4, 6}, i = i1, i2, i3. (A13)

We first solve Eqs. (A7) and (A8) in order to find the feasible
values for a0, λ. This leads us to the following cases:

Case 1. a0 �= 0, λ = ±3. Plugging in the relevant values,
we get ai1i2 = ±a0/3 in Eq. (A8) and bi1i2 = 0 in Eq. (A9),
for all (i1 − i2) > 1. One may also verify that for the particular
choice of λ, Eqs. (A10) and (A11) and Eqs. (A12) and (A13)
are only satisfied if we set ai1i2i3 , bi1i2i3 = 0 for all suitable
{i1, i2, i3}. As a consequence, the corresponding ai, bi = 0 in
these equations.

The solutions corresponding to this case are (up to an
overall phase) given by

|φ±
1 〉 = a0(|0〉6 ± |D〉6),

where |D〉6 is defined in Eq. (18) of the main text. Upon
normalizing, we get a0 = 1/

√
2. The corresponding func-

tional value can be verified to be f (|φ±
1 〉) = ±3. Since we

are looking for the maximum of f , we only retain the solution
|φ+

1 〉, which is nothing but |�〉6 itself.

Case 2. λ = ±√
3, a0 = 0. Solving for this case leads to

bi1i2 = 0 in Eq. (A9), for all (i2 − i1) > 1. Next, focus on
Eqs. (A10) and (A11). Solving them yields ai = ai1i2i3/λ for
appropriate values of i, {i1, i2, i3}. Similar relations hold for
bi1i2i3 , bi, following Eqs. (A12) and (A13). Accordingly, there
are two different solutions emerging from this case, which

correspond to the two different λ values. Their common form
is given below (again up to an overall phase):

|φ±
2 〉 = (a135 + ib135)

(
|135〉6 ± 1√

3
(|1〉6 + |3〉6 + |5〉6)

)

+ (a246 + ib246)

(
|246〉6 ± 1√

3
(|2〉6 + |4〉6 + |6〉6)

)
,

together with the appropriate normalization condition,
2(a2

135 + b2
135 + a2

246 + b2
246) = 1. Computing the functional

values in this case gives f (|φ±
2 〉) = ±√

3. Since both these
values are lower than f (|φ+

1 〉) from case 1, we discard the
solutions obtained from this case.

Case 3. λ = 0. It follows that a0 = 0 and
∑

(i2−i1 )>1 ai1i2 =
0, after solving Eqs. (A7) and (A8). We are free to choose ar-
bitrary values for ai1i2 , as long as the above relation is satisfied.
Similarly, the variables given by bi1i2 are also chosen freely,
with no constraints, following Eq. (A9). Solving Eqs. (A10)
and (A11) sets ai1i2i3 = 0, with ai1 + ai2 + ai3 = 0. Similar
relations hold for bi1i2i3 , bi in Eqs. (A12) and (A13). However,
one can easily verify that the functional value in Eq. (A6) is
always 0 irrespective of the choices available for the nonzero
variables. Therefore, we discard this case as well.

In summary, we conclude that the unique state which
maximizes the expectation value of W6 is |�〉6, following the
analysis given in case 1. Hence, W6 is a UDA witness for |�〉6

for the neighborhood structure N2 by Theorem III.3. �
Theorem IV.4. There exists no Hamiltonian H that is QL

relative to N2 and symmetrized with respect to the group G6,
such that H has |�〉6 as its UGS.

Proof. Since H is QL relative to N2, it can be written as

H =
∑

Nk∈N2

HNk ⊗ IN k
,

where each HNk is a two-qubit Hamiltonian. Since we are
interested in the action of H on |�〉6, which is a superposi-
tion of states with specified (zero and two) excitations, it is
convenient to represent H in terms of a product operator basis
that makes the creation or annihilation of excitations explicit.
Thus, we represent H in the following form:

H = H2 + H−2 + H1 + H−1 + H0. (A14)

Here, H2 is a QL operator that creates two excitations and is
composed of operators of the form σ+

i σ+
j ≡ |11〉〈00|, i, j ∈

{1, . . . , N}. The term that destroys two excitations is H−2 =
H

†
2. Similarly, we have H1(H−1) for creating (destroying)

one excitation, with H1 = H
†
−1. H1 is composed of two-qubit

operators of the form σ z
i σ+

j or σ+
i σ z

j , or one-qubit operators

σ+
i . H0 is the excitation-preserving term, which consists of

σ z operators in one or two qubits, operators of the form
σ+

i σ−
j or σ−

i σ+
j , or simply the identity operator. Clearly, H0

is Hermitian.
It is evident from the above analysis that the different

terms in Eq. (A14) are linearly independent of each other.
Therefore, they are all individually symmetric relative to the
group G as their sum is. As these terms must then be invariant
under cyclic permutations as well as reflection of qubits,

062104-13



KARUVADE, JOHNSON, TICOZZI, AND VIOLA PHYSICAL REVIEW A 99, 062104 (2019)

they belong to operators subspaces spanned by the following
basis sets:

H2 ∈ spanR{P(σ+
1 σ+

2 ⊗ I3456), P(σ+
1 σ+

3 ⊗ I2456),

P(σ+
1 σ+

4 ⊗ I2356)}, (A15)

H1 ∈ spanR
{
P(σ+

1 ⊗ I23456), RP
(
σ+

1 σ z
2 ⊗ I3456

)
,

RP
(
σ+

1 σ z
3 ⊗ I2456

)
, RP(σ+

1 σ z
4 ⊗ I2356)

}
,

H0 ∈ spanR
{
P
(
σ z

1σ z
2 ⊗ I3456

)
, P

(
σ z

1σ z
3 ⊗ I2456

)
,

P
(
σ z

1σ z
4 ⊗ I2356

)
, P

(
σ z

1 ⊗ I23456
)
,

RP(σ+
1 σ−

2 ⊗ I3456), RP(σ+
1 σ−

3 ⊗ I2456),

RP(σ+
1 σ−

4 ⊗ I2356)
}
. (A16)

Without loss of generality we can assume that H � 0 and,
therefore, H |�〉6 = 0 as it belongs to the ground-state space.
Since |�〉6 = 1/

√
2(|0〉6 + |D〉6) [see Eq. (18) in the main

text for the form of |D〉6], we infer that

H2|D〉6 = 0, (A17)

H1|D〉6 = 0, (A18)

H2|0〉6 = −H0|D〉6, (A19)

H1|0〉6 = −H−1|D〉6, (A20)

H0|0〉6 = −H−2|D〉6. (A21)

Note that H−2|0〉6 = 0 = H−1|0〉6 are trivially obeyed.
We first focus on solving Eq. (A17). Consider an eigen-

basis of the unitary operator P, given by {|φk〉}. Because
P is a permutation operator, it does not create or destroy
excitations when acting on any quantum state. For this reason
and by exploiting the degeneracy in the spectrum of P, we
may choose the eigenbasis of P in such a way that each |φk〉 is
a linear combination of terms with a well-defined number of
excitations, ranging between zero and six. We thus must have

〈φk|H2|D〉6 = 0, ∀k. (A22)

Recalling that |D〉6 is a two-excitation state, Eq. (A22) is triv-
ially satisfied unless {|φk〉} consists of four-excitation terms.
Thus, we focus on |φk〉s that are solely composed of four-
excitation terms and examine what restriction they impose on
the structure of H2. Notice that

〈φk|H2|D〉6 = 〈φk|P†H2P|D〉6 = λk〈φk|H2|D〉6.

The first equality holds because H2 is invariant under the ac-
tion of G. The second equality follows from the fact that |D〉6

is invariant under the action of P and |φk〉 is the eigenstate of
P with eigenvalue λk . This shows that when λk �= 1, Eq. (A22)
is automatically satisfied without imposing any additional
constraint on H2. Therefore, we further restrict our attention
to the following states for which the eigenvalue λk = 1:

|φk〉 ∈ {P(|3456〉6), P(|2456〉6), P(|2356〉6)}. (A23)

Following Eq. (A16), let

H2 ≡ a1P(σ+
1 σ+

2 ⊗ I3456) + a2P(σ+
1 σ+

3 ⊗ I2456)

+ a3P(σ+
1 σ+

4 ⊗ I2356),

where a1, a2, a3 ∈ R are treated as unknowns. We then obtain
three equations of the form 〈φk|H2|D〉6 = 0, corresponding
to the three states in Eq. (A23). This set of equations can
be rewritten in a matrix form A�a = 0, where each entry of
the matrix is given by Ajk = 〈φk|Pj |D〉, with Pi belonging to
the set in Eq. (A15) and �a = (a1, a2, a3)T . By evaluating the
matrix A with MATLAB, we found that det A �= 0 and these
equations are simultaneously satisfied only for a1 = a2 =
a3 = 0. Accordingly, H2 = 0, and similarly for H−2.

Next, we carry out a similar analysis for Eq. (A18). Based
on Eq. (A16), we parametrize H1 as follows:

H1 ≡ b1P(σ+
1 ⊗ I23456) + b2RP

(
σ+

1 σ z
2 ⊗ I3456

)
+ b3RP

(
σ+

1 σ z
3 ⊗ I2456

) + b4RP
(
σ+

1 σ z
4 ⊗ I2356

)
,

with b1, b2, b3, b4 ∈ R treated as unknowns. We observe that
〈φk|H1|D〉6 = 0, similar to Eq. (A17), for |φk〉 in the eigenba-
sis of P. However, this time we only consider

|φk〉 ∈ {P(|123〉6), P(|134〉6), P(|135〉6)}, (A24)

since the most general form of H1|D〉6 can only have three
excitations present. We can then form a matrix B with
elements Bjk = 〈φk|Pj |D〉, for Pj belonging to the set in
Eq. (A16). The set of equations is rewritten as B�b = 0 with
�b = (b1, b2, b3, b4)T . In this case, one can verify that there
exists one nontrivial solution for �b = (−1, 1, 1, 1)T , such that
〈φk|H1|D〉6 = 0 holds for the choice of |φk〉 in Eq. (A24).
However, one may also verify that this solution fails to satisfy
Eq. (A20) and therefore is not a valid choice for H1. Accord-
ingly, we are left with H1 = 0, and similarly for H−1.

Based on the above analysis, we conclude that the relevant
QL parent Hamiltonian H is excitation preserving, H = H0.
Then, the only nontrivial equations that remain are Eqs. (A19)
and (A21), which in turn imply that

H |D〉6 = 0 = H |0〉6.

This shows that the ground-state space of H is at least two
dimensional. Thus, |�〉6 is not UGS of any H that is QL
relative to N2 and invariant under G. �

APPENDIX B: DERIVATION OF THE DUAL PROBLEM

In many cases, in order to solve an SDP problem, it is
convenient to derive its dual counterpart. In essence, this
amounts to writing a parametric lower bound on the primal
problem and maximizing such lower bound on the set of
parameters. The interest in this accessory, in some sense
“relaxed” optimization problem may generally stem from two
reasons: First, the new objective function is concave even
if the original cost function is not convex, making the dual
problem more tractable; second, under some conditions on the
constraints, it can be shown that the optimal value for the dual
functional corresponds to the optimal primal cost. Here, we
explicitly construct the dual problem of our SDP check for
UDA pure states, following the general approach presented in
Ref. [15].

In the primal problem, where the objective is to determine
whether a pure state |ψ〉 is UDA, we aim to minimize the
functional f (σ, ρ) = tr(ρσ ), with ρ = |ψ〉〈ψ |, over the set
of Hermitian positive-semidefinite matrices subject to a set of
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linear constraints subsumed in the linear map 	N :

Minimize : tr[ρσ ]

subject to : 	N (σ ) = 	N (ρ),

σ � 0.

Recall that the minimum always exists since we are opti-
mizing a linear function over a convex, nonempty bounded set
A, which is the admissible set for our problem. Let us call its
value α ≡ minσ∈A f (σ, ρ).

In order to find the lower bounds, that is, functionals of
the dual problem, we first construct the Langrangian of the
primal problem, by essentially incorporating the constraints
as penalties in the primal cost function,

L(σ, λ, ν) ≡ tr[ρσ − λσ + H (	N (σ ) − 	N (ρ))],

with λ � 0 and H Hermitian. The Lagrangian L constructed
in this way is such that for a given σ � 0, its value is always
lesser than or equal to that of f by appropriately choosing the
dual variable H . In order for the comparison to make sense, H
is consistently restricted to be Hermitian. The Lagrange dual
function for f (σ, ρ) is then given by

g(λ, H ) ≡ inf
σ�0

L(σ, λ, H ).

If σ̃ denotes a feasible point for the function f (σ, ρ), that is,
σ̃ ∈ A, it can be shown that

f (σ̃ ) � L(σ̃ , λ, ν) � inf
σ∈D(H)

L(σ, λ, ν) = g(λ, ν).

The first inequality follows by looking at the definition of the
Lagrangian. It is the sum of f (σ ) and two other terms, of
which tr(−λσ ) is always negative for any feasible σ̃ , since
λ � 0 by choice. The second term, tr[ν(	N (σ ) − 	N (ρ))]
is zero for any allowed σ̃ because of the equality constraint
in the primal problem, and hence it does not contribute to L.
Thus, f (σ̃ ) � L(σ̃ , λ, H ) for σ̃ ∈ A and λ � 0. The second
inequality is obvious.

The dual problem is obtained by looking at the best lower
bound that we can derive for the primal optimum using the
Lagrange dual function. Let us denote by 	

†
N the dual of 	N .

Notice that, in our case, one can in fact see that 	
†
N = 	N ,

as both these maps orthogonally project their arguments to
the corresponding QL coordinates. First, we rewrite the terms
composing the function g, so that its structure is more explicit:

g(λ, H ) = tr[−H	N (ρ)] + inf
σ�0

tr[(ρ − λ)σ + H	N (σ )]

= tr[−	
†
N (H )ρ] + inf

σ�0
tr{[−ρ + λ + 	

†
N (H )]σ }.

Accordingly, the Lagrange dual problem for our g(λ, H )
can be written as

Maximize : tr[	†
N (−H )ρ]

subject to : H = H†,

λ � 0.

It can be seen that unless

ρ − λ + 	
†
N (H ) = 0, (B1)

g(λ, H ) can be made to go to −∞ by suitably choosing
σ . So, we include [ρ − λ + 	

†
N (H )] = 0 as a constraint.

Combining this with the inequality constraints, one can write
ρ + 	

†
QL(H ) � 0 by eliminating λ, because for any λ � 0 a

suitable H satisfying Eq. (B1) will also satisfy this inequality.
Also notice that H appears in this dual optimization problem
through 	

†
N (H ). Hence, for any solution H , its QL projection

	N (H ) would work as well. In view of this, we may introduce
an additional constraint, 	

†
N (H ) = H, and simply replace

	
†
N (H ) with H everywhere else in the dual problem. Finally,

the desired form for the dual problem is obtained, as given in
Table I(b) in the main text:

Maximize : −tr(Hρ),

subject to : H + ρ � 0,

H = 	N (H ),

H = H†.

Under the working assumptions of our problem, it is pos-
sible to show that strong duality holds, which means that the
optimal value of dual problem is not just a lower bound for
the primal (weak duality), but they are in fact equal under
the active constraints. This can be shown by resorting to the
refined version of Slater’s condition for a SDP with affine
inequality constraints (see, e.g., Ref. [15], Sec. 5.2.3): In this
case, feasibility of the primal problem is enough to guarantee
α = β.

However, as we remark in Sec. V, it is important to notice
that, unlike the primal problem, the dual problem requires
optimization over an unbounded set. In this case, even with
Slater’s condition there is no guarantee that the optimal value
is reached for a bounded solution. In fact, we have shown in
Sec. IV that it is possible to have UDA states that are not
UGS of any Hamiltonian respecting the same QL constraint,
which is equivalent to the dual problem having no bounded
solution.
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