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We investigate the impact of higher-order nonlinear and dispersive effects on the dynamics of a single soliton
solution in the complex cubic-quintic Ginzburg-Landau equation. Operating in the regime of soliton explosions,
we show how the splitting of explosion modes is affected by the interplay of the high-order effects (HOEs)
resulting in the controllable selection of right- or left-side periodic explosions. In addition, we demonstrate that
HOEs induce a series of pulsating instabilities, significantly reducing the stability region of the single soliton
solution.
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Soliton explosions are among the most striking and fasci-
nating nonlinear phenomena studied in mode-locked lasers.
They were first predicted theoretically in a one-dimensional
complex cubic-quintic Ginzburg-Landau equation (CQGLE)
[1] for anomalous linear dispersion and then verified experi-
mentally in a Kerr lens mode-locked Ti:sapphire laser [2]. In
this regime, a localized pulse circulating in the cavity experi-
ences an abrupt structural collapse at certain points of its time
evolution and subsequently recovers its original shape. Many
numerical studies were reported in this framework [3–9].
Among the reported features is the stable existence of sym-
metric and asymmetric explosive localized states (LSs) over
a wide range of parameters. Further away from the explosion
threshold, the exploding LSs experience a complex dynamics
and exhibit spatiotemporal chaos following the Ruelle-Takens
route; The LSs conserve an almost identical shape after each
explosion cycle and the times between explosions appear to
be randomly distributed. In two spatial dimensions, it was
shown that the center of mass of asymmetrically exploding
LS undergoes a subdiffusive continuous-time random walk
despite the deterministic character of the underlying model,
while in the case dominated by only asymmetric explosions, it
becomes characterized by normal diffusion [10,11]. Recently,
exploding LSs have been observed in an all-normal-dispersion
Yb-doped mode-locked fiber laser operated in a transition
regime between stable and noiselike emission [12]. The result-
ing experimental evidence has been successfully compared to
realistic numerical simulations based on an envelope func-
tion approach [13]. There, the observed explosions manifest
themselves as abrupt temporal shifts in the output pulse
train. In [14], the connection between the pulse propagation
model in optical fibers developed in [13] and the CQGLE
with additional higher-order nonlinear and dispersive effects
was established. The latter leads to a formation of periodic,
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nonchaotic one-side explosions. Further, it was shown that
the mechanism of the explosion formation is different from
the CQGLE without higher-order effects (HOEs): the periodic
explosions result from a period-halving followed by a period-
doubling bifurcation leading to the formation of chaotic ex-
plosions if the nonlinear gain parameter is varied.

As was mentioned in [2], HOEs and in particular third-
order dispersion can cause the asymmetry of the observed
pulse explosion. The interactions between third-order dis-
persion and other higher-order effects become important for
stable pulse generation [15,16]. The influence of different
HOEs on the exploding LSs in the CQGLE was studied
numerically in [16–23]. In particular, it was shown that a
proper combination of the three HOEs can provide a shape
stabilization of an exploding LS. However, despite significant
theoretical interest, the impact of HOEs on the onset of soliton
explosions have not been extensively studied so far and the
full bifurcation study of the explosion regime is still lacking.

In this Rapid Communication we investigate the impact of
three HOEs, namely, self-frequency shift, self-steepening, and
third-order dispersion on the selection mechanism of soliton
explosions in the CQGLE. Using path following techniques
applied to partial differential equations (PDEs), we map the
evolution of explosion regimes as a function of HOE param-
eters. We show how the interplay of the HOEs can result in
nontrivial interaction of the explosion modes resulting in the
selection of right- or left-periodic explosions for certain sets of
system parameters. Finally we study the impact of HOE terms
on the stable LSs profile and we disclose HOEs-induced,
pulsating instabilities, leading to a significant reduction of the
stability region of the single LSs.

The CQGLE is an amplitude equation describing the onset
of an Andronov-Hopf bifurcation in dynamical systems [24].
In nonlinear optics, it is considered as one of the paradigms
for LS formation in mode-locked lasers and it is also widely
used to describe such phenomena as short pulse propaga-
tion in optical transmission lines, dynamics of multimode
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lasers, parametric oscillators, and transverse pattern forma-
tion in nonlinear optical media [25–33]. In one dimension,
the CQGLE with HOEs reads

i∂zA + D

2
∂2

t A + |A|2A + ν|A|4A

= iδA + iε|A|2A + iβ∂2
t A + iμ|A|4A + HOE. (1)

Here, z is the normalized propagation distance (or the cavity
round-trip number when used to describe passively mode-
locked lasers), t is the retarded time (or a transversal spatial
coordinate), A is the normalized envelope of the field, D = ±1
is the group velocity dispersion coefficient corresponding to
an anomalous or normal regime, δ > 0 (<0) is the linear gain
(loss) coefficient, β > 0 accounts for spectral filtering, μ < 0
represents the saturation of the nonlinear gain, ν corresponds
to the saturation of the nonlinear refractive index, and ε is
the nonlinear gain parameter. While the classical cubic CGLE
describes a supercritical bifurcation, in the case of subcritical
instability this equation is augmented with fifth-order terms
to allow the existence of stable pulselike localized solutions
if δ < 0 and ε > 0. The HOE contributions are given by the
nonlinear gradient and third-order dispersion terms:

HOE = iβ3∂
3
t A − is∂t (|A|2 A) + τR A∂t |A|2 ,

where β3 accounts for the third-order dispersion (TOD),
whereas the last two terms represent the nonlinear gradient
terms. Here, s corresponds to the self-stepping (SST) and τR is
a coefficient related to the intrapulse Raman scattering (IRS),
which determines the soliton self-frequency shift. Note that
in an envelope expansion near onset, the nonlinear gradient
terms occur to the same order as the quintic term and cause
the fixed-shape solution to be asymmetric and to move at a
velocity other than the group velocity [34]. Note also that in
the pulse propagation model in optical fibers [13] a nonlocal
term accounting for both instantaneous electronic and delayed
Raman contributions is considered. However, in [14] it was
shown that for pulses that are wide enough (∼0.1 ps), the
general nonlocal pulse propagation model can be reduced to
the form of Eq. (1). Because the local IRS term is a consistent
contribution resulting from the general gradient expansion and
the bifurcation analysis of nonlocal PDEs is very involved, we
consider the local IRS term in the following.

Stationary localized solutions of Eq. (1) can be found
using the ansatz A(t, z) = A(t − vz)e−iωz, where ω is the
spectral parameter and v is the propagation speed which
adds a contribution (v∂t + iω)A to the right-hand side of
Eq. (1). We choose the parameters of Eq. (1) in a range where
soliton explosions exist [1] and can now track the solutions
of the resulting equation in parameter space using the path
following technique within the PDE2PATH framework [35].
During continuation, both ω and v become two additional
free parameters that are automatically adapted. In order to
determine them, we impose additional auxiliary conditions,
accounting for the translational and phase-shift symmetries
of Eq. (1) and preventing the continuation algorithm from
trivially following solutions along the corresponding neutral
degrees of freedom. Note, that in contrast to direct numer-
ical simulations, continuation algorithms are able to track
both stable and unstable solutions of the underlying system
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FIG. 1. (a) A maximal intensity of a single LS of Eq. (1) as
a function of the loss parameter δ for β3 = s = τr = 0. A LS is
stable between an AH point H0 and the threshold of explosions,
given by a double AH point HL, HR at δ = −0.5537. (b) Space-
time representation of the time evolution of a LS from a DNS for
δ = −0.3. (c),(d) Real parts of the critical eigenfunctions (red) at
δ = −0.6, corresponding to asymmetrical and symmetrical explo-
sions, respectively. Cyan lines represent the Re(A) field, whereas
the black line corresponds to the intensity profile. All quantities are
dimensionless. Parameters are ε = 1.0188, β = 0.125, μ = −0.1,
and ν = −0.6.

and make the reconstruction of the whole solution branch,
including the information of possible instabilities, feasible.
The latter can be followed in the parameter space so that
bifurcation diagrams containing the important information
about a stability region of the studied solution can be created.
Note that path continuation techniques are widely employed
to obtain different types of solutions of nonlinear ordinary
or delay differential equations. However, continuation tools
for multidimensional partial differential equations are still
scarce. In nonlinear optics, the bifurcation analysis can be
quite involved because of the presence of complex fields and
different continuous symmetries [36,37]. In particular, for the
CQGLE (1) the frequency shift ω which is connected to the
phase-shift invariance is very large, demanding high-accuracy
calculations: To obtain the LS properly we track Nt = 4 ×
2048 degrees of freedom (real and imaginary parts of the field
and their gradients) together with 550 eigenvalues to resolve
the explosion modes.

In the absence of HOE terms, the velocity v remains zero
and a branch of a stationary LS emerges when changing the
loss parameter δ. Figure 1(a) shows the maximal intensity
I = |A|2 of the field as a function of δ. One can see that a sin-
gle LS bifurcates subcritically from a homogeneous zero state
at δ = 0 and experiences a fold F (red point) at some negative
value of δ. The LS’s stability is governed by the Andronov-
Hopf (AH) point H0, where a pair of complex eigenvalues
corresponding to the symmetrical pulsation becomes stable.
The LS remains stable for the increasing δ (thick blue line)
up to a double AH bifurcation point (HL, HR), corresponding
to the symmetric (even) and asymmetric (odd) perturbations.
The corresponding eigenmode for Re(A) is shown in cyan
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FIG. 2. (a),(b) Single LS branch of Eq. (1) as a function δ for
β3 = 0.016, τR = 0.032, s = 0.009 where the splitting of AH points
HR, HL can be seen. (a) Maximal intensity and (b) drift velocity. A
LS is stable between an AH point H0 and the threshold of right-side
explosions HR. (c),(d) Real parts of the critical eigenfunctions (red),
Re(A) (cyan), and I = |A|2 (black) at δ = −0.6 for the right- and
left-side explosions, respectively. All quantities are dimensionless.

together with the intensity profile (black line) in Figs. 1(c)
and 1(d). One notices that the critical symmetric (asymmet-
ric) modes are localized on both flanks of the LS in phase
(antiphase). At the double AH point, two branches of periodic
solutions emerge leading to the formation of symmetric and
asymmetric explosions at these branches. Figure 1(b) shows
an example of the symmetrically-asymmetrically exploding
LS obtained from a direct numerical simulation (DNS) of
Eq. (1) on the domain of Lt = 100 with Nt = 1024 grid points
for δ = −0.3 far above from the bifurcation point. Note that in
[3] the double AH point and the critical eigenfunctions were
found for fixed values of δ using numerical linear stability
analysis.

However, the presence of HOEs significantly changes the
behavior of the LS: Each of the TOD, SST, and IRS terms
in Eq. (1) break the parity symmetry of the system and affect
the leading and falling edges of LSs differently [cf. black
dashed lines in Figs. 2(c) and 2(d)] and the LSs start to drift
as presented in Fig. 2(b), where the dependence of the LSs
velocity v on δ is shown for nonvanishing fixed values of β3,
s, and τ . One can see that the unstable part of the branch is a
nonlinear function of δ. However, after a fold, the velocity v

monotonously increases with δ. In Fig. 2(a) the peak intensity
of a single LS as a function of δ is presented. Note that the
overall shape of the branch remains the same as in the case
of vanishing HOEs, namely, a single LS emerges from the
homogeneous background at δ = 0. The solution branch
has a fold at a certain δ value (cf. the red circle) and gains
stability at the AH point H0. However, at the high power
branch the double AH point HL,R breaks in the presence
of HOEs and two distinct AH points HR and HL form. The
eigenfunctions corresponding to the perturbation of Re(A)
are not located symmetrically anymore and are localized at
the left or right flanks of the LS as shown in Figs. 2(c) and

2(d) (red lines). Again, at both HL,R points, two branches
of periodic solutions emerge leading to the formation of
left- and right-periodic explosions at these branches (cf.
Ref. [14]). In [19], the stationary LS profiles of Eq. (1) with an
IRS term were reconstructed by using a shooting method. The
splitting of HL,R points in the presence of IRS and TOD was
shown in [22,23]. There, a numerical linear stability analysis
using Evans functions was used to follow the evolution of
critical eigenvalues as a function of IRS and TOD coefficients.
In contrast, the continuation algorithms presented here allow
one to track the eigenvalue spectrum along the whole solution
branch giving complete information about the LS stability.

This splitting of the explosion modes leads to the emer-
gence of two branches of periodic solutions, where periodic
one-side left and right explosions start to exist. We stress
that the splitting of symmetric explosion modes is a general
consequence of the presence of HOE terms in the system.
It can be interpreted as a result of the breaking of the parity
symmetry; that is, any combination of HOEs would lead to the
splitting of explosion modes. However, the question whether
the left- or right-explosion mode (or both) is selected is more
complicated and the position of the selected left or right
modes strongly depends on the values of HOE coefficients
β3, s, and τ . In order to study the selection of the one-side
explosion modes systematically and to determine the region
of stability of a LS in the presence of HOEs, we perform
fold and AH point continuations and reconstruct a bifurcation
diagram in the plane spanned by δ and HOE parameters. We
start with the case where both IRS and SST effects are absent
(i.e., s = τR = 0) and study the impact of the TOD coefficient
β3 on the evolution of the fold F , as well as the AH points
H0, HL, and HR in the (δ, β3) plane. The results are presented
in Fig. 3(a). One can see that the positions of the fold F as
well as of the AH point H0 remain almost unaffected by the
TOD. However, even a small amount of positive β3 induces
a splitting of the double AH point HL,R, eliciting first the
right-explosions mode HR. That is, for any fixed small β3 > 0,
a LS is stable between the H0 and HR lines, and right-side
explosions set in first. Increasing δ, the left-side explosion
curve HL can also be crossed and a combination of right-
and left-side explosions can be found. Note that a similar
behavior and selection order can be achieved by changing
the SST coefficient s (or the IRS τR) keeping the other two
HOEs to zero. Note also that in all these cases the order of
the selected explosion modes can be changed by changing the
sign of the corresponding HOE term. However, the selection
of the HL or HR mode can also be tuned by choosing a nonzero
amount of all three HOE coefficients as shown in Fig. 3(b),
where the bifurcation diagram in the (δ, β3) plane is presented
for nonvanishing values of τR and s. One can see that as in
the case of zero SST and IRS terms, the positions of the
fold F and the AH point H0 remain almost the same in δ

and the double AH point splits again. However, a presence
of nonzero s and τR shifts the HL, HR crossing point in the
direction of the positive TOD coefficient β3. This leads to
the formation of two regions in the parameter space: Whereas
after the crossing point, the right-side explosions are selected
(red dashed line), a new region emerges, where the left-side
explosion mode wins for small values of β3 (green dotted
line). That is, depending on the loss parameter δ one can select
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FIG. 3. (a),(b) Bifurcation diagram of a single LS of Eq. (1) in
the (δ, β3) plane showing the splitting of the explosions modes for
(a) τR = 0, s = 0 and (b) τR = 0.032, s = 0.009. Magenta solid lines
F correspond to folds, blue dashed lines H0 are symmetrical pulsa-
tion thresholds, whereas HL and HR are lines corresponding to the
left- and right-side explosion thresholds, respectively. (c),(d) Space-
time plots showing the (c) left- and (d) right-side explosions cal-
culated within DNSs at (δ, β3) = (−0.45, 0.001) and (−0.5, 0.01),
respectively. All quantities are dimensionless.

left- or right-side explosions depending on the values of the
TOD. Two examples of the direct numerical simulations of
Eq. (1) showing the left- and right-side periodic explosions of
a single LS are presented in Figs. 3(c) and 3(d). Note that in
this case both left- and right-side explosions keep the positive
propagation direction.

Figure 3 indicates that the presence of HOEs does not
change the number of critical modes responsible for the pri-
mary destabilization of the LS but only the explosion modes.
However, this situation changes dramatically when, e.g., the
TOD coefficient β3 is increased further. To study the impact
of TOD on the dynamics of the LS, we first fixed both SST
and IRS terms to zero and performed a continuation in β3,
keeping the value of the loss parameter δ fixed at the value
inside the stability region. As was mentioned above, TOD
affects the leading and falling edges of a LS differently and
leads to the emergence of an asymmetric pulse whose right
(trailing) tail contains a weakly decaying dispersive wave
which is visible only in logarithmic scale if β3 is very small.
However, with increase of β3, the effect of TOD becomes
visible and a LS with a strongly oscillating profile emerges
as shown in Fig. 4(a). This kind of LS solution can be stable
for a large range of β3 and finally loses its stability in a new,
TOD-induced, AH bifurcation H1. Our results are depicted in
Fig. 4(b), where the velocity of a LS is shown as a function
of β3. The corresponding critical eigenfunction is depicted
in red in Fig. 4(a) together with Re(A), whereas in panel
(c) a time evolution of the LS above the bifurcation point
is shown. One can see that after the H1 bifurcation point,
a number of other AH modes become unstable, leading to
a complex chaotic dynamics of the pulse [see Fig. 4(d)].
This scenario is different from the one responsible for the
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FIG. 4. (a) Intensity profile (black dashed line) of a single LS of
Eq. (1) calculated at β3 = 0.068 and δ = −1 together with the real
part of the critical eigenfunction H1 (red) and Re(A) (cyan). (b) Drift
velocity v as a function of the TOD coefficient β3. The points
H1−4 correspond to the TOD-induced AH bifurcations, whereas
H0 corresponds to a symmetric pulsation (cf. Fig. 3). (c),(d) Time
evolution of the LS calculated from DNS for β3 = 0.07 and β3 =
0.08, respectively. All quantities are dimensionless.

explosions: They are formed at the periodic branch emerging
from HL,R points, whereas the periodic and chaotic behavior
here result from the chain of the unstable AH modes acting on
the LSs. The full bifurcation analysis in the region of high
β3 is very involved and is beyond the scope of this Rapid
Communication. However, our preliminary results indicate
that the mode H1 remains the most unstable mode for the large
region of δ where the explosion modes are not responsible
for the primary instabilities. It is overtaken by the HL mode
only if the gain value is increased to a value comparable
to those shown in Fig. 3. Furthermore, for nonvanishing s
and τR the overall behavior remains qualitatively identical
and the position of the first TOD-induced instability shifts to
smaller β3 values, making the region of the LS stability even
smaller. This result is markedly different from the conclusion
obtained for the Lugiato-Lefever equation with TOD, where
a stabilization of a LS by TOD was demonstrated in a wide
range of parameters [38].

In conclusion, we studied the impact of self-frequency
shift, self-steepening, and third-order dispersion on the selec-
tion mechanism of soliton explosions in the CQGLE. Using
path continuation techniques, we showed how the interplay
between different HOEs inducing the splitting of the symmet-
ric and asymmetric explosion modes results in the controllable
selection of left- and right- one-side periodic explosions.
Finally we found that the third-order dispersion leads to
pulsating regular and irregular instabilities, which leads to the
significant reduction of the stability region of the single LS.
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