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We couple the full three-dimensional ab initio quantum evolution of the light pulse polarization in interaction
with an atom with a propagation model to simulate the propagation of ultrashort laser pulses over macroscopic
dimensions, in the presence of self-generated harmonics up to order 11. We evidence a clear feedback of the
generated harmonics on propagation, with an influence on the ionization probability as well as the yield of the

harmonic generation itself.
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I. INTRODUCTION

The propagation of high-intensity, ultrashort laser pulses
gives rise to a wide variety of nonlinear processes, from
higher-harmonic generation (HHG) [1-4] to filamenta-
tion [5-8]. Most descriptions of the processes rely on the
single-atom picture as in the so-called three-step model [9,10].
Propagation effects through the target are often ignored or
modeled as a macroscopic phase matching between the fun-
damental and the harmonics [11,12], neglecting phenom-
ena such as the interplay between the generated harmonics
and the nonlinear propagation of the high-intensity driving
pulse.

An exact treatment combining the time-dependent ab initio
Schrodinger equation (TDSE) description of the interaction
of the electric field with atoms and the Maxwell solving
of the nonlinear propagation is extremely complex. For this
reason, simplified microscopic models such as strong-field
approximation (SFA) [13-15], quantum rescattering [16,17],
or the metastable state theory [18,19] were developed to make
the entire numerical processing tractable.

Filamentation and harmonic generation have long been
treated independently although they occur at similar inten-
sities and rely on nonlinear atom-field interactions. Still,
efficient third-harmonic (TH) generation with a conversion
efficiency up to a few percent was measured in laser fila-
ments [20-25], even on distances as short as a few mm [11].
Harmonics up to the 23rd order have been observed in fil-
aments in argon [24,26], at intensities in the IOOTW/cm2
range at 800 nm.

Recently, the TH and its relative phase were shown to
significantly alter the ionization probability in laser fila-
ments at 800 nm [27-29]. The TH also affects the nonlinear
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refractive index [30], possibly saturating the Kerr ef-
fect [31,32] and affecting phase matching that is crucial to
the HHG yield [33-35]. Harmonics therefore seem to have
a non-negligible feedback on the filamentation dynamics.
Despite this potential impact, they are often omitted in prop-
agation codes. Work including harmonics beyond the fifth is
lacking.

Contradictory results about the higher-order Kerr effect
(HOKE) in air [36,37], that raised both positive [32,35,38—40]
and negative reactions [41-44], showed the limitations of
modeling of filamentation on the basis of a simple empiri-
cal parametrization of the medium polarization and ioniza-
tion [45]. A comprehensive picture requires one to describe
the full quantum polarization response of the medium to
the electric field [43,46-51], including a saturation or an
inversion of the Kerr effect [43,52-54] as well as a closure of
ionization channels due to the Stark effect [S5-57]. Similarly,
the impact of various harmonics, including low-order ones,
on the generation of the HHG themselves, has recently been
evidenced [58-60].

So far, very few ab initio microscopic models are fully cou-
pled with macroscopic propagation codes. In fact, global de-
scriptions of ultrashort-pulse propagation including harmonic
generation is necessary to overcome the limitations of the
above-mentioned simplified models. Such global descriptions
have been proposed over the years [61-65]. However, the
computing requirements limited them to a 10-um propagation
distance [62]. Here, we have implemented an ab initio de-
scription of the atom and a semiclassical representation of the
interaction, and coupled it to a propagation model over 5 mm,
a distance in line with standard gas jet interaction lengths
in HHG experiments [1-4]. By filtering out selected spectral
ranges, we showed that harmonics up to the ninth impact on
both the ionization process and the lower-order harmonics
generation and therefore have a significant feedback on the
pulse propagation.
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II. METHODS

We performed one-dimensional, time-resolved simulations
(1D + 1) of the propagation of a laser pulse initially centered
at 800nm, with a peak intensity of 50 TW/cm? and a full
width at half maximum (FWHM) of 20 fs, in atomic hydrogen
at atmospheric pressure.

To include the quantum calculation of the polarization in
the propagation equation, we start with a real-field propaga-
tion equation

1
AE — <37 = o (.J + 97P), ©)

where E is the electric field, c is the speed of light, and the
polarization P is obtained from the bound states of the atomic
wave function, and the current density J from its continuum
states. We then define P to gather them in a single term in
Eq. (1),

1 2 2
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Considering a field linearly polarized along z, propagating
along x, we can express this equation in the momentum
space as

25 o ~ 25
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where k, is the wave vector and o is the frequency. Then, the
field can be described as

2
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Considering only the forward-propagating field, we can keep
only the right-hand term of

1 _1 1 1 5)
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In this condition, the propagation equation becomes

~ w ~ w ~
—kE,=—E, + —P, (6)
c 2¢pc
with € being the permittivity of vacuum. We define the vector
potential A such that E = —0;A. In the Fourier space, E; =
iwA,, so that
O TV
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In the referential moving at the pulse velocity v,

A, = i(9 — Q)ZZ + LB ®)

Cc v

If we define the polarization as 75’Z = IAP;Z + ia)eo,oa[oeogz (pat
being the density of atoms in the propagation medium and
a ~ 4.593 a.u. the hydrogen polarizability at 800 nm), we can
write the previous equation as
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By definition, py0gp = Xél) and 1 + % ~A1+ XO(U = ny, if
Xél) <« 1. Therefore, the propagation equation rewrites

~ W2 W\ ~ 1 ~
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Since the electric field is linearly polarized along z, the
propagation equation in the referential moving at the phase
velocity v, = ¢/(1 + %) reduces to the unidirectional pulse
propagation equation (UPPE) [66,67], which we use for sim-
ulations:

A (w) = L[771(60) — iwegpaAz(w)].  (12)
26()C
The polarization P is deduced from the wave function
W(r,t) of the atom under the influence of an electric field
E(t), linearly polarized along z. We use the three-dimensional
(3D) TDSE in the velocity gauge [68],

p2

2m,

where p is the momentum. In atomic units, this equation
displays as

ihglll(r,t)z[ +V(r)—iA(t)~p]\If(r,t), (13)
ot me

i%lll(r, t) = [H; + D(@)]¥(r, 1), (14)

where H; = p?/2 + V (r) is the free Hamiltonian of the sys-
tem, and D(t) = A(t) - p. The angular dependence of the
wave function is expressed in terms of spherical harmonics,
while its radial part is discretized on a B-spline basis,

Imax N

N
W)=Y ct)=——=Y0, ). (15)
1=0 i=0 r
Injecting this form into Eq. (14), we get the matrix form of the
coupled equation system,

S . %c(;) = [H, + D] - ¢(t), (16)

where the matrix S stems from the nonorthogonality of the
B-spline functions,

Sij = (B’J‘|Bi‘> = /0 Bi(r)B;(r)dr, (17)

and c(¢) is the projection of W on Nl,x dimensions, that
will be propagated owing to a Crank-Nicolson scheme. This
scheme involves the matrix M(t) = S + i(Hy + D(¢))d¢/2,
that is highly sparse and block-tridiagonal, so that the bicon-
jugate gradient method with preconditioning [69,70] is highly
efficient on a single processor.

We then solve the full TDSE at each propagation dis-
tance and temporal point, using a highly efficient B-spline
basis [71,72]. In this basis the interaction Hamiltonian matrix
is several orders of magnitude sparser as compared to the
eigenbasis. Together with the biconjugate stabilized gradient
(BiCGStab) algorithm [69], this reduces the calculation of
polarization to a few hours on a single processor, allowing
coupling with propagation. Equation (12) was integrated by
using the split-step Fourier method [73], with a fourth-order
Runge-Kutta scheme. The spatial propagation step is dx =
15 um. We used 2048 grid points per optical cycle at the
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FIG. 1. Electric field spectrum of a 50-TW /cm?, 20-fs (FWHM)
Gaussian pulse after propagation over Smm in hydrogen. Ly denote
the Lyman lines. The dotted red line displays the initial spectrum.

fundamental wavelength (800 nm), corresponding to a time
step of ~1 as and a box size of 450fs. To retain adequate
sampling of the wave carrier, we limited the frequency range
to 12wy.

The knowledge of the atomic wave function W then allows
us to calculate the polarization P, as ge par(¥|z| W), with g,
the electron charge. Note that this polarization includes both
free and bound electrons, as their respective contributions are
calculated in the same term, without introducing the usual
arbitrary distinction between the current of free charges J
and polarization P [see Egs. (1) and (2)]. Unlike phenomeno-
logical models, it also intrinsically includes quantum effects
such as the Stark effect, that strongly affect the ionization via
channel closure [55].

III. RESULTS

Figure 1 shows the electric field spectrum after propagating
over 5mm. As expected at 50 TW/cm? [51], the harmonic
yield decays by one to two orders of magnitude between
two consecutive odd orders: 2%, 0.08%, and 0.008% for
the third, fifth, and ninth harmonics, respectively, as also
evidenced by the ranges of color bars in Figs. 2 and 3(c)-3(e).
The propagated pulse spectrum also includes the well-known
Lyman emission lines between 6wq and 9wy, especially where
the seventh harmonic is expected.

These Lyman lines correspond to transitions from ex-
cited states with levels n > 1 to the ground state n = 1 (see
Table I). At intensities of several tens of TW/cm?, they are
much more intense than the harmonics, and only one order
of magnitude below the fundamental. Since the decoherence
between excited and fundamental states is not considered
in our model, the system continues to oscillate even after
the field is switched off. As they travel slower than the
fundamental frequency, the Lyman lines would be transferred
from the positive (pulse trail) end to the negative (pulse front)
end of the temporal box during the split-step calculation, be

(TW/cm?) (GW/cm?)

3" Harmonic 5th

7" Harmonic ot Harmonic

1 2 3 4 5 1 2 3 4 5
Propagation distance (mm) Propagation distance (mm)

FIG. 2. Temporal evolution of the harmonics along the
propagation.

caught up by the fundamental pulse, and resonantly amplified.
To prevent this, the Lyman frequencies are absorbed on the
edge of the temporal numerical box with a soft filter (erf
function). This artificial damping forbids quantitative analyses
of the evolution of Lyman lines, and of their interaction with
the remaining of the pulse, especially the seventh and ninth
harmonics.

Figure 2 displays the evolution of the temporal shape of the
harmonics along the propagation. The fundamental intensity
decays linearly until 2.5 mm and then regrows [Fig. 3(b)].
Conversely, harmonics 3, 5, and 7 first grow over approx-
imately 2.5mm, and then decay. In contrast, harmonic 9
reaches a peak after as little as 0.2 mm, then decays almost
fully until 3 mm, before entering in a new growth cycle. The
faster rise and decay of the seventh, and even more of the
ninth harmonics, can be expected to stem from their partial
overlap with the Lymann resonances, that strongly affect both
their absorption, and, via Kramers-Kronig relationships, their
dispersion.

The evolution of the harmonic temporal pulse shape is
more marked for the higher-order harmonics. The third har-
monic remains rather bell shaped over more than 3 mm, before
a temporal shift accompanied with a slight pulse splitting. The
fifth harmonic self-shortens down to as little as less than 10 fs,
before splitting during the first mm of propagation and around
4mm. Pulse splitting is even more obvious in the seventh

TABLE I. The Lyman series.

Notation Transition A (nm) Order (w/wy)
a-Lyman n=2ton=1 121.5 6.58
B-Lyman n=3ton=1 102.5 7.80
y-Lyman n=4ton=1 97.2 8.23
Limit n—>ooton=1 91.15 8.78
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FIG. 3. Simulated propagation of a 50-TW /cm?, 20-fs pulse in
atomic hydrogen. (a) Ionization yield, (b) intensity of the fundamen-
tal, (c) third, (d) fifth, and (e) ninth harmonic. (f) Relative phase of
the harmonics with regard to the fundamental, calculated with the
full spectral range. Dotted lines display the linear dispersion of the
third and fifth harmonics [74].

harmonic, both around 1 mm and from 4 mm on, with even
three subpulses at the end of the simulation. The ninth har-
monic splits from the very first steps of the propagation, and
the two subpulses merge back after 2.5 mm. We attribute the
complex evolution of the harmonics pulse shape to their wide
band associated with their short duration. As a consequence,
group-velocity dispersion is significant within each harmonic.
The phase matching and the associated (back-) conversion
efficiency are therefore different among spectral slices within
each harmonic.

To get more insight into the impact of each harmonics
on the propagation and ionization, we applied a low-pass
filter with different cutoff frequencies to the polarization,
preventing the generation and propagation of wavelengths
beyond 2wy, 4wy, 6wy, 10wy, and 12wy, i.e., respectively al-
lowing propagation of the fundamental only, and of harmonics
up to the third, fifth, ninth, and 11th. Note that the effect
of the seventh harmonics on the propagation has not been
investigated due to potential interferences, which cannot be
adequately quantified, with the overlapping Lyman transition
lines (see Fig. 1).

The ionization probability strongly depends on the har-
monics taken into account in the propagation [Fig. 3(a)].
For example, considering harmonics up to the 11th reduces
the ionization probability by a factor 2, as compared with
simulations considering the fundamental frequency only. The
harmonics intensity is insufficient to yield any significant
ionization by themselves. They contribute to the ionization
via quantum interferences between pathways implying only
photons at the fundamental wavelength, and pathways im-
plying, e.g., one harmonic photon of higher energy, beside
fundamental photons, as was evidenced experimentally in the
case of the third harmonic [75]. This effect therefore depends
on both the intensity of the harmonics [Figs. 3(c)-3(e)] and
their phases relative to each other and to the fundamental
[Fig. 3(f)], as discussed below in more detail. Note that
these phases do not depend much on the different spectral
truncations. The TH contribution explains the oscillation of
the ionization probability over the propagation, as the third
harmonic is generated up to 0.8 W/cm? and subsequently
decays [Fig. 3(c)].

The fast oscillation of the ionization yield over the first
600 um when considering the ninth and 11th harmonics
also clearly correlates with that of the intensity of the ninth
harmonic, as well as the relative phase of the ninth and
11th harmonic during the propagation [Fig. 1(f)]. All in
all, depending on the range of harmonics considered in the
calculation, the ionization yield can vary by a factor of more
than 2 after 2-mm propagation, clearly evidencing that the
harmonics are not a by-product of the propagation, but rather
actively contribute to its dynamics, at least up to the ninth.
In contrast, the 11th harmonics with only 0.002% conversion
efficiency has no influence on the ionization yield, although a
single 11th harmonic photon has an energy of 17 eV, sufficient
to photoionize the hydrogen atom.

The presence of harmonics also affects the evolution of
the fundamental [Fig. 3(b)]. Without harmonics, the linear
decay of the fundamental intensity is due to dispersion, as well
as to losses due to the energy spent to excite and/or ionize
the atoms. Accounting for harmonics reduces the ionization
yield, but as expected it accelerates the intensity decay of the
fundamental along the propagation, due to its conversion into
harmonics.

Harmonics up to the ninth therefore substantially impact
the propagation and deform the carrier wave, despite the very
low conversion efficiencies. As shown in Fig. 4(a), the carrier
wave deformation is mostly explained by the contribution of
the third harmonic. This is confirmed by Fig. 4(c), where the
envelope deformation is strong at the propagation distance
(2mm) where the TH intensity is close to its maximum. In
spite of a minimal impact on the carrier wave, harmonics from
the fifth have a substantial influence on ionization.

The feedback of the harmonics on the pulse propagation is
also clearly visible on the harmonic generation itself, as well
as on their temporal pulse shape [Figs. 3(c)-3(e)]. Consider-
ing a broader spectral range covering the fifth harmonic in-
creases the yield of the third harmonic [Fig. 3(c)]. In contrast,
considering the ninth harmonics boosts the third harmonics
while reducing the fifth one [Fig. 3(d)], that saturates already
after 0.5 mm of propagation and even decays beyond 3 mm.
Finally, the 11th harmonic has little influence, if any, on
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FIG. 4. (a) Electric field close to the centermost positive 0s-
cillation after x = 2mm propagation, for simulations considering
different spectral limit. (b) Overall pulse. (c) Evolution along the
propagation of the centermost positive oscillation of the electric field.

the generation of the harmonics [Figs. 3(c)-3(e)], as was
the case for ionization. This suggests that, in the considered
conditions, the spectral range of the simulation does not need
to be extended beyond the ninth harmonics.

The ionization yield also depends on the relative phases
Aoy, = P, — ne,, between the nth harmonics and the fun-
damental field, which modify the interferences between the
above-mentioned ionization pathways. This can also be seen
in terms of the influence of the harmonics on the carrier wave
shape. In-phase (out-of-phase) harmonics lead to a triangular
(square) optical cycles as expected from the Fourier series
decomposition of triangle- and squarelike periodic signals.
Figure 3(f) displays A¢,, as a function of the propagation
distance. At the beginning of the propagation, the third har-
monic is weak (below 1%) and in phase quadrature with the
fundamental, as expected from a three-photon process. As
determined by Doussot et al. [29], this results in a lower ion-
ization probability. However, when the third harmonic rises
beyond 1%, its contribution to ionization becomes positive,
regardless of the phase [29]. But the monotonous increase of
the phase during the propagation due to group-velocity dis-
persion finally induces back-conversion of the third harmonic,
reducing its intensity, and consequently resulting in a drop in
the ionization yield.

The fifth harmonic is out of phase with respect to the
fundamental field at the beginning of the propagation. This
implies that the former is generated by the cascading process
combining two photons of the fundamental field with a third-
harmonic photon: 5wy = 3wy + wy + wp.

The relative phases display wiggles that translate into
fluctuations of the ionization probability [see Fig. 3(f)]. This
complex evolution of the phases cannot be described by

group-velocity dispersion only (see the dotted lines for the
third and fifth harmonics) [74]. It emphasizes that harmonics
follow a complex dispersion relationship influenced by the
phase with which they are generated along the propagation,
by the nonlinear refractive index they encounter, as well as
by the free electrons, in a process comparable to macroscopic
quasi-phase matching relying on dispersion of a mixture of
the neutrals and plasma [33,34].

Our simulations are consistent with experimental results
displaying efficient harmonic generation in the propagation of
high-intensity laser pulses [20-26]. Furthermore, the observed
strong effect of the harmonics on ionization widely general-
izes and extends previous experimental and numerical results
on the third harmonic [27,29]. Note that the same approach
could be used for, e.g., rare gases, by using a single-active
electron potential instead of the purely Coulombian potential
of the atomic hydrogen.

IV. CONCLUSION

As a conclusion, a full coupled TDSE-UPPE propagation
model has been developed and used to investigate the propa-
gation of an ultrashort, high-intensity laser pulse over 5 mm.
Simulations over such a distance have been made possible
by an efficient ab initio TDSE solver based on the B-spline
basis set. The consideration of harmonics and their relative
dephasing up to the ninth strongly influences the propagation
of ultrashort pulses, and especially their harmonic generation
and ionization yield. Our results illustrate that empirical mod-
els based on a complex envelope and phenomenological coef-
ficients for ionization and the Kerr effect cannot adequately
reproduce the complex behavior of the high-field-atom in-
teraction. The emergence of single attosecond pulses may
allow one to probe the propagation at the sub-fs scale, i.e.,
at the sub-optical-cycle scale [76], therefore providing direct
experimental comparison with our calculations, especially if
the propagation is considered in two dimensions. Such a
2D + z extension, implementing a transverse resolution, to-
gether with radial symmetry and efficient parallelization of the
propagation steps, will allow its application to filamentation.
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