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Decoherence of nonrelativistic bosonic quantum fields
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We present a generic Markovian master equation inducing the gradual decoherence of a bosonic quantum field.
It leads to the decay of quantum superpositions of field configurations, while leaving the Ehrenfest equations for
both the field and the mode-variables invariant. We characterize the decoherence dynamics analytically and
numerically, and show that the semiclassical field dynamics is described by a linear Boltzmann equation in the
functional phase space of field configurations.
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I. INTRODUCTION

Quantum systems with a large number of interacting
constituents can often be effectively described in terms of
quantum fields. Examples include degenerate quantum gases
and fluids [1,2], collective degrees of freedom in strongly
correlated solid-state systems [3,4], acoustic vibrations in
superfluid helium [5–7], micromechanical oscillators [8,9],
and closely spaced chains of harmonic oscillators realized,
for example, in ion traps [10] and superconducting circuits
[11]. For such many-body systems a minimal and generic
field-theoretic model that appropriately accounts for the de-
coherence dynamics toward a corresponding classical field
theory is desirable.

The loss of quantum coherence and the emergence of
classical behavior in systems with a finite number of degrees
of freedom have been extensively and successfully studied
using the framework of open quantum systems [12,13]. Un-
derstanding these phenomena is of paramount importance
for the development of quantum technologies, since their
performance is ultimately limited by the coupling to the sur-
rounding environment. Decoherence also plays a central role
in probing the physics at the quantum-classical border [14]
as superpositions of increasingly macroscopic and complex
objects become experimentally accessible [15].

For systems with a large number of interacting constituents
the combined decoherence dynamics become quickly in-
tractable on an atomistic level. This calls for a field-theoretic
description in terms of collective modes. The open quantum
dynamics of fields have so far been formulated assuming a
linear coupling with an environment [1,16–20]. While such
schemes are adequate for small fluctuations of the field ampli-
tude, they cannot appropriately describe the decoherence of
macroscopic superpositions, since the obtained rates become
unrealistically large, growing above all bounds [14].

In this Rapid Communication, we introduce a generic
Lindblad master equation for nonrelativistic bosonic fields
that describes their gradual decoherence. That is, quantum
superpositions of different field configurations quickly decay
into a mixture while classical superpositions remain practi-
cally unaffected. We show that the semiclassical field dy-

namics is described by a linear Boltzmann equation in the
functional phase space of field configurations, which in the
diffusion approximation reduces to a Fokker-Planck equation.
The noise term in the master equation is minimal, in the sense
that it leaves the Ehrenfest equations for both the field and the
mode variables unaffected, while slowly increasing the field
energy with a state-independent rate.

II. FIELD-THEORETIC MASTER EQUATION

We consider a bosonic scalar field confined to a one-
dimensional region of length L, subject to periodic bound-
ary conditions (the generalization to higher dimensions is
straightforward). In the Schrödinger picture, its quantum dy-
namics is described by the master equation

ρ̇t = − i

h̄
[H, ρt ] + γ

∫ L

0

dx

L

∫
d2ξ g(ξ )[Ux(ξ )ρtU

†
x (ξ ) − ρt ].

(1)

The first term describes the unitary dynamics of the field,
as determined by the Hamiltonian H, while the second term
gives rise to the decoherence of the field. The latter involves
unitary phase-space translation operators Ux(ξ ) acting on the
field amplitude and its canonical conjugate momentum in the
vicinity of position x. Combining the field variables into the
complex field �(x), so that [�(x), �†(y)] = δ(x − y), these
operators can be written as

Ux(ξ ) = exp

(∫ L

0
dy f

(
y − x

L

)[
ξ�†(y) − ξ ∗�(y)

])
. (2)

Here f is a real, square-integrable, L-periodic spread function
with maximum f (0) = 1 and width σx/L. The argument ξ

of Ux is a complex random number whose associated prob-
ability distribution g(ξ ) is assumed to be an even function of
width σg.

From Eq. (1) it follows that the purity pt = Tr(ρ2
t ) of any

quantum state of the field decreases monotonically. To see this
we note that ṗt = 2 Tr(ρt ρ̇t ), and since Tr(ρt [H, ρt ]) = 0 and
Tr[ρtUx(ξ )ρtU †

x (ξ )] − pt = − 1
2‖[ρt ,Ux(ξ )]‖2, the purity
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FIG. 1. The master equation (1) decoheres the state of a bosonic
quantum field �(x) by turning quantum superpositions into mixtures.
The field dynamics can be viewed as a random process in which the
unitary evolution is interrupted by generalized measurements of the
canonical field variables whose outcomes are discarded. These ficti-
tious measurements have finite spatial resolution, as characterized by
the spread function f of width σx .

decay rate is given by

ṗt = −γ

∫ L

0

dx

L

∫
d2ξ g(ξ )‖[ρt ,Ux(ξ )]‖2 < 0, (3)

where ‖A‖2 = Tr(A†A). Therefore, the master equation in-
duces the decay of any quantum superposition of the field into
a mixture. This loss of coherence will be assessed quantita-
tively in Sec. IV.

The master equation can be interpreted as describing a
compound Poisson process with rate γ , in which the unitary
evolution of the field is interrupted by generalized measure-
ments of the canonical field variables whose outcomes are
discarded [21,22]. Whenever a measurement occurs around
a position x ∈ [0, L] it affects an entire neighborhood of
width σx, as illustrated in Fig. 1. The field degrees of freedom
located at any point y within this region experience a random
phase-space kick of strength ξ f (y/L − x/L), in accordance
with the Heisenberg principle. In the framework of general-
ized measurements one can thus construct a master equation
inducing decoherence without specifying a physical mecha-
nism for the incoherent dynamics, be it the interaction with
a practically unobservable environment or, on a more funda-
mental level, a stochastic process augmenting the Schrödinger
equation.

The operators in the master equation can be represented
both in position space, in terms of the canonical field ampli-
tude and its conjugate momentum, and in Fourier space, in
terms of the mode variables. As will be shown the first rep-
resentation is advantageous for semiclassical analysis, while
the second enables the analytic treatment of the decoherence
dynamics.

For definiteness, we take the bosonic field Hamiltonian as

H = 1

2

∫ L

0
dx

[
1

μ
�2(x) + μω2
2(x) + μv2[∂x
(x)]2

]
.

(4)

The field amplitude 
 and its canonically conjugate momen-
tum � are related to the complex field through

�(x) =
√

μω

2h̄

(x) + i√

2h̄μω
�(x). (5)

Here μ is the mass density of the field, ω is a frequency, and
v is a speed.

For example, the Hamiltonian (4) can be used to model
the collective dynamics of a chain of many trapped ions (see
Ref. [10]). For the continuum description to be valid, the
width σx/L of the spread function should be greater than the
mean distance between the ions such that the discrete structure
of the chain does not get resolved. Likewise, the width σg

of the kick distribution must be small enough such that the
harmonic approximation remains valid.

The Hamiltonian (4) can be written in diagonal form
as H = ∑

k∈K h̄ωkc†
kck , with ω2

k = ω2 + v2k2 and K =
{2π j/L | j ∈ Z}, thus k runs over all integer multiples of
2π/L. The bosonic mode operators

ck =
√

μωk

2h̄

k + i√

2h̄μωk
�k, (6)

satisfying the canonical commutation relations [ck, c†
k′ ] =

δkk′ , are defined in terms of the (non-Hermitian) normal
coordinates that diagonalize the Hamiltonian (4), 
k =∫ L

0 dx e−ikx
(x)/
√

L and �k = ∫ L
0 dx e−ikx�(x)/

√
L. In the

basis (6) the field operators are expressed as

�(x) = 1√
L

∑
k∈K

[eikx 
+
k ck + e−ikx 
−

k c†
k ], (7)

with 
±
k = [(ω/ωk )1/2 ± (ωk/ω)1/2]/2.

From a direct calculation using the Baker-Campbell-
Hausdorff formula it follows that the mode operators satisfy

[H, ck] = −h̄ωkck, (8a)

[Ux(ξ ), ck] = − fke−ikx (ξ
+
k − ξ ∗
−

k ) Ux(ξ ), (8b)

where fk = ∫ L
0 dy eiky f (y/L)/

√
L are the Fourier coefficients

of f . Since g(ξ ) is an even function the Ehrenfest equation
for the mode operators ∂t 〈ck〉t = −iωk〈ck〉t is unaffected by
the incoherent part of the master equation (1). The expecta-
tion values of the field amplitude 〈
(x)〉t and its canonical
momentum 〈�(x)〉t therefore satisfy the field equations asso-
ciated with the corresponding classical Hamiltonian.

The master equation (1) is most easily solved in the ba-
sis of the Weyl operators D[{ηk}] = ∏

k∈K exp(ηkc†
k − η∗

k ck ).
For each mode variable with wave number k, they effect a
phase-space displacement by the complex amplitude ηk . In
this representation, the state of the field is encoded in the
characteristic functional χt [{ηk}] = Tr(ρt D[{ηk}]).

In the interaction picture with respect to the Hamiltonian
(4), henceforth denoted with a tilde, the equation of motion
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for χ̃t [{ηk}] is given by

∂t χ̃t [{ηk}] = −�t [{ηk}] χ̃t [{ηk}]. (9)

This follows from Eq. (1) using the cyclic property of the trace
and the canonical commutation relations in Weyl form. For an
isotropic g(ξ ) = gr (|ξ |)/2π the ξ integral is conveniently cal-
culated in polar coordinates. Using the Jacobi-Anger formula
for the Bessel function [23] the decoherence rate

�t [{ηk}] = γ − γ

L

∫ L

0
dx ĝr (st [{ηk}, x]) (10)

can be written in terms of the Hankel transform of g, ĝr (s) =∫ ∞
0 dr rgr (r)J0(sr), evaluated at

st [{ηk}, x] = 2

∣∣∣∣∣
∑
k∈K


+
k fkeikxeiωktηk + 
−

k f ∗
k e−ikxe−iωktη∗

k

∣∣∣∣∣.
(11)

Equation (9) can be readily solved up to a quadrature. It
will be used below to analyze the dynamics of the purity
decay. Moreover, it serves as the starting point to derive the
semiclassical dynamics of the field. In order to do that, we first
reformulate the above results in the language of functional
calculus.

III. EQUATION OF MOTION FOR
THE WIGNER FUNCTIONAL

The semiclassical field dynamics induced by Eq. (1)
is best described in the phase space of the canonical
field variables 
 and �. In this representation, and
using the complex field (5), the Weyl operators take
the form D[η] = exp{∫ L

0 dx[η(x)�†(x) − η∗(x)�(x)]}. They
are operator-valued functionals effecting a phase-space dis-
placement of the canonical field variables at each point x
by the complex wave amplitude η(x). [Note that η(x) has
dimension of reciprocal square root of length, the same as
�(x) and ξ .]

In this representation, the equation of motion for the char-
acteristic functional takes a form analogous to (9),

∂t χ̃t [η] = −�t [η] χ̃t [η]. (12)

Here, the decoherence rate is a functional of the complex wave
amplitude η(x),

�t [η] = γ − γ

L

∫ L

0
dx

∫
d2ξ g(ξ )e− ∫ L

0 dy[η∗(y)�t (ξ,x;y)+c.c.].

(13)

It involves the interaction-picture phase-space displacements
�t (ξ, x; y) = ξat (x; y) − ξ ∗bt (x; y), with

at (x; y) = 1√
L

∑
k∈K

[
cos ωkt − i

2

(
ω

ωk
+ ωk

ω

)
sin ωkt

]

× fkeik(x−y), (14a)

bt (x; y) = i

2
√

L

∑
k∈K

(
ω

ωk
− ωk

ω

)
sin(ωkt ) fkeik(x−y). (14b)

The Wigner functional of the field state is defined as the
functional Fourier transform of χ̃t [η]

W̃t [λ] =
∫

D2[η] χ̃t [η] exp

(∫ L

0
dy[λ(y)η∗(y) − c.c.]

)
,

(15)

where the functional integral is defined as the limit n → ∞
of the corresponding integral over n mode variables [1]. The
equation of motion for the Wigner functional follows from the
Fourier transform of (12) as

∂tW̃t [λ] = −γ W̃t [λ] + γ

L

∫ L

0
dx

∫
d2ξ g(ξ )W̃t [λ − �t (ξ, x)].

(16)

This equation describes the time evolution of a quasiprobabil-
ity distribution on a functional phase space. Each point therein
is described by a complex function λ(y) corresponding to a
linear combination of the canonical field variables. The latter
are subject to random kicks whose strength is given by the
function �t (ξ, x; y), playing the role of the random variable
ξ f (y/L − x/L) in the interaction picture. It thus follows that
Eq. (1) can be considered the field-theoretic generalization of
a quantum linear Boltzmann equation [24].

We note that in the diffusion limit of small and frequent
kicks Eq. (16) can be approximated by a Fokker-Planck
equation [25]. Expanding the exponential in Eq. (13) to sec-
ond order in ξ and using that g(ξ ) is an even function, the
dynamics of χ̃t [η] reduces to

∂t χ̃t [η] = −γ σ 2
g

L

∫ L

0
dx

∣∣∣∣
∫

dy[η(y)at (x; y) + η∗(y)bt (x; y)]

∣∣∣∣2

,

(17)

where σ 2
g is the second moment of g. The functional Fourier

transform of (17) can be written in terms of functional deriva-
tives of the Wigner functional using

δ

δλ(y)
W̃t [λ] =

∫
D2[η]η∗(y)χ̃t [η]e

∫
dz[λ(z)η∗(z)−λ∗(z)η(z)],

δ

δλ∗(y)
W̃t [λ] = −

∫
D2[η]η(y)χ̃t [η]e

∫
dz[λ(z)η∗(z)−λ∗(z)η(z)],

(18)

which make use of the identity δλ(z)
δλ(y) = δ(z − y) [26]. The

resulting equation is

∂tW̃t [λ] =
∫

dx1dx2

[
Qλλ

t (x2 − x1)
δ

δλ(x1)

δ

δλ(x2)

+ Qλλ∗
t (x2 − x1)

δ

δλ(x1)

δ

δλ∗(x2)

+ Qλ∗λ
t (x2 − x1)

δ

δλ∗(x1)

δ

δλ(x2)

+ Qλ∗λ∗
t (x2 − x1)

δ

δλ∗(x1)

δ

δλ∗(x2)

]
W̃t [λ], (19)
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with the coefficients

Qλλ
t (x2 − x1) = −γ σ 2

g

∫ L

0

dx

L
bt (x; x1)a∗

t (x; x2),

Qλλ∗
t (x2 − x1) = γ σ 2

g

∫ L

0

dx

L
bt (x; x1)b∗

t (x; x2),

Qλ∗λ
t (x2 − x1) = γ σ 2

g

∫ L

0

dx

L
at (x; x1)a∗

t (x; x2),

Qλ∗λ∗
t (x2 − x1) = −γ σ 2

g

∫ L

0

dx

L
at (x; x1)b∗

t (x; x2). (20)

Since the Wigner functional (15) is analytic in the complex
wave amplitude λ, the functional derivatives treat λ and λ∗ as
independent variables, like in the Wirtinger calculus [27]. This
field-theoretic Fokker-Planck equation can be solved using the
techniques introduced in [16].

The Wigner representation is also convenient for de-
scribing the gradual loss of quantumness induced by the
exact Eq. (1). This is because quantum superpositions of
macroscopically distinct field states are characterized by a
quasiprobability distribution displaying strong oscillations be-
tween positive and negative values in a local phase-space
region of volume h̄. The decoherence of a superposition due to
random phase-space kicks results in the blurring of these fine
structures. Once the Wigner functional is non-negative, it can
be viewed as a probability distribution in a functional phase
space. The corresponding field state is then indistinguishable
from a (mixed) classical field configuration. This loss of
coherence will now be quantified through the decay of the
purity of the state.

IV. DECOHERENCE DYNAMICS

Physically, one would expect that the purity decay rate
of a quantum superposition of field states depends on their
initial separation as compared to the characteristic width
of g. Moreover, as we showed in Eq. (3), the purity of a
superposition decays monotonically with time. Its functional
dependence on the parameters of Eq. (1) is determined by
the state of the field. In the following we characterize the
dynamics of the purity decay both numerically and analyt-
ically for superpositions of single-mode coherent states in
the ground mode, |ψ〉 = N (|α〉0 + |β〉0) |{0}k �=0〉, with N =
[2 + 2 exp(− 1

2 |α − β|2) cos(2 Im αβ∗)]−1.
The purity of the time-evolved quantum field in the mode

representation follows from the solution to Eq. (9),

pt =
∫

D2[{ηk}] |χ0[{ηk}]|2 exp

(
−2

∫ t

0
dτ �τ [{ηk}]

)
,

(21)

where χ0 is the characteristic functional of the initial state. For
definiteness, we take the kick distribution to be given by

g(ξ ) = exp
(− |ξ |2/2σ 2

g

)
/2πσ 2

g , (22)

and choose the spread function f (s) so that

fk =
√

L exp
( − σ 2

x k2/2
)
/ϑ3

(
0, exp

( − 2π2σ 2
x /L2

))
, (23)

FIG. 2. Purity decay of a superposition of single-mode coherent
states |ψ〉 = N (|α〉0 + |−α〉0 ) |{0}k �=0〉, with α = 2 + 2i, v/Lω =
0.01, and σx/L = 1. The dots correspond to the exact numerical
calculation of Eq. (21). The top panel shows the case of a narrow
kick distribution with σ 2

g L = 0.32 and for γ /ω = 1. The solid line
is the analytic approximation of Eq. (21) for σ 2

g L � 1 and σx/L 
 1
given in Eq. (24). The opposite case of a broad kick distribution with
σ 2

g L = 32 and for γ /ω = 0.2 is illustrated in the bottom panel. The
solid line gives the long-time behavior obtained using the Laplace
approximation, pt 
 1/4γ tLσ 2

g , while the dashed line shows the
short-time behavior pt 
 exp(−2γ t ).

where ϑ3 is the Jacobi theta function [23]. In the following
we consider a broad spread function with σx/L 
 1. In this
case the approximations fk 
 √

Lδk,0 and �t ({ηk}) 
 γ −
γ exp(−2Lσ 2

g |η0|2) can be used.
For the numerical calculation of Eq. (21) the quantum field

is modeled as a harmonic chain of 32 local oscillators. The
corresponding phase space is discretized using a generalized
Faure sequence [28–30].

Figure 2 shows the purity decay for two limiting values
of the width of the kick distribution. The initial state is given
by |ψ〉 = N (|α〉0 + |−α〉0) |{0}k �=0〉. In the limit of a narrow
distribution g, such that σ 2

g L � 1, the purity can be calculated
analytically from Eq. (21),

pt 
 2N 2

1 + μ2

[
1 + e−[|α−β|2/(1+μ2 )]+4e−(1/2)|α−β|2 cos(Imαβ∗)

+ e−[|α−β|2μ2/(1+μ2 )] + e−|α−β|2 cos(2 Imαβ∗)
]
, (24)

where μ2 = 4γ tσ 2
g L. This expression corresponds to the solid

line in the top panel of Fig. 2, which is in excellent agreement
with the exact numerical calculation of Eq. (21). For the
case of a broad distribution, σ 2

g L � 1, the purity cannot be
calculated analytically for all times. Its short-time behavior is
given by pt 
 exp(−2γ t ), as indicated by the dashed line in
the bottom panel, and its long-time evolution can be deter-
mined using Laplace’s method [31], yielding pt ∼ 1/4γ tLσ 2

g
as γ t → ∞. This asymptotic behavior is indicated by the
solid curve in the bottom panel of Fig. 2.

In order to investigate how the purity decay depends on the
separation |α − β| between the superposed coherent states,
we calculate the initial purity decay rate R0 = −ṗ0 from
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FIG. 3. Initial purity decay rate, R0/γ , of a superposition of
single-mode coherent states |ψ〉 = N (|α〉0 + |β〉0 ) |{0}k �=0〉 as a
function of the separation |α − β|, for the case σx/L = 1, with
v/Lω = 0.01 and γ /ω = 1.0. The curves show the behavior of R0/γ

for a narrow kick distribution with σ 2
g L = 0.08. They correspond

to superpositions such that α + β = 8, 4, 0 (from left to right) with
α − β = i|α − β|. The circles give the exact numerical values of
Eq. (25), and the solid lines show the analytic approximation of this
equation for σx/L 
 1.

Eq. (21),

R0 = 2
∫

D2[{ηk}] |χ0[{ηk}]|2 �0[{ηk}], (25)

for different initial states. For a broad spread function with
σx/L 
 1 the phase-space integral can be expressed analyti-
cally. One finds that R0 − 2γ equals Eq. (24) multiplied by
−2γ , with μ2 = 2σ 2

g L.
Figure 3 shows that in general R0 does not increase mono-

tonically with the separation |α − β|; it exhibits oscillations
for |α − β| < 1.5. Moreover, for large separations the deco-
herence rate approaches the maximum value

Rmax

γ
= 2 − 1

1 + 2σ 2
g L

. (26)

In the case of a broad kick distribution R0 does not vary
appreciably with the separation and approaches the value
Rmax/γ = 2 (not shown). We note that the analytic expression
for Eq. (25) (solid curves), calculated assuming σx/L 
 1, is
in excellent agreement with the numerical calculation (circles)
of the exact decay rate R0.

V. MEAN ENERGY INCREASE

In addition to inducing decoherence, a quantum master
equation will in general also affect the dynamics of otherwise
conserved quantities such as energy [32]. Experimental
bounds on the observed conservation of energy will therefore
constrain the parameters entering the nonunitary time
evolution.

From the master equation (1) it follows that the field
energy increases with a constant rate that is independent of

the quantum state of the field,

∂t 〈H〉t = γ
∑
k∈K

h̄ωk| fk|2
∫

d2ξ g(ξ )|ξ
+
k − ξ ∗
−

k |2. (27)

This is obtained by using the exact expansion e−X HeX = H −
[X, H] + 1

2 [X, [X, H]], where X is the exponent in Eq. (2).
In the limit of large L the sum over k can be approximated

as an integral and the heating rate has the explicit expression

∂t 〈H〉t = 2
√

πγ h̄ωσxσ
2
g

(
1 + v2

(2σxω)2

)
, (28)

where we used the distribution (22) and the spread
function (23).

VI. CONCLUSIONS

We introduced a generic Lindblad master equation that
serves to decohere a nonrelativistic bosonic field. The Ehren-
fest equations for the canonical field variables remain iden-
tical with the corresponding classical field equations, while
quantum superpositions of distinct field configurations are
rapidly turned into mixtures. In fact, the master equation
induces a monotonic decay of the purity.

We showed that the Wigner functional is an appropriate
representation to capture the gradual quantum-to-classical
transition of the field. To the extent to which the functional
turns positive, its dynamics can be regarded as being governed
by a linear Boltzmann equation, which in the diffusion limit
reduces to a Fokker-Planck equation. Using the characteristic
functional, the decoherence rate of a quantum superposition
of two effectively classical field configurations was shown to
depend nontrivially on their phase-space separation, and to
saturate for large separations.

The effect of the master equation on the field may be
viewed as arising from a stochastic process of generalized
simultaneous measurements of the field amplitude and its
canonical momentum, whose outcomes are discarded. These
fictitious measurements have finite spatial resolution, as char-
acterized by the spread function f . It is important to remark
that only due to the finite width σx > 0 of f in position
space is the continuous field dynamics physically consistent
and divergence-free. Moreover, the limited resolution σg > 0
associated with the generalized measurement of the phase-
space coordinates ensures a finite back-action on all canonical
field variables.

Notwithstanding the generality of the master equation
and its complex decoherence dynamics, several analytical
expressions were obtained for functionals of the field state.
In particular, we obtained the functional dependence of the
purity in the most important limiting cases, and we calculated
the exact energy increase. The analytical results are in re-
markable agreement with numerical calculations. This shows
that for a superposition of field coherent states expectation
values can be accurately calculated using quasi–Monte Carlo
integration based on generalized Faure sequences, despite the
high-dimensional character of the phase space.

We note that in Ref. [33] the stability of the quantum
state of a macroscopic number of degrees of freedom against
perturbation by a quantum or a classical noise was analyzed
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based on general considerations. Since the present work intro-
duces a concrete decoherence model, it should encourage fur-
ther investigations of macroscopic quantum systems described
by quantum fields.

The methods discussed in this work can be straightfor-
wardly generalized to nonrelativistic bosonic tensor fields. In
principle, a similar treatment can be developed for fermionic
fields, even though their classical analog is less evident.

Finally, a relativistic generalization of the model presented
here would enable the study of the quantum-to-classical tran-
sition of quantum electrodynamics.
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