Comment on "Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons"

Bruno Macke and Bernard Ségard^{*}

Université de Lille, CNRS, UMR 8523, Physique des Lasers, Atomes et Molécules, F-59000 Lille, France

 \blacksquare (Received 18 September 2018; published 23 May 2019)

In their study of superluminal propagation, rotary drag, and surface polaritons [Khan *et al.*, [Phys. Rev. A](https://doi.org/10.1103/PhysRevA.96.013848) **[96](https://doi.org/10.1103/PhysRevA.96.013848)**, [013848](https://doi.org/10.1103/PhysRevA.96.013848) [\(2017\)](https://doi.org/10.1103/PhysRevA.96.013848); **[96](https://doi.org/10.1103/PhysRevA.96.049906)**, [049906\(E\)](https://doi.org/10.1103/PhysRevA.96.049906) [\(2017\)](https://doi.org/10.1103/PhysRevA.96.049906)], the authors consider a four-level atomic arrangement with transitions in the optical domain. In fact, the values they give to the parameters lead to a probe wavelength lying in the decimeter band and we point out that, in such conditions, all their results are irrelevant.

DOI: [10.1103/PhysRevA.99.057801](https://doi.org/10.1103/PhysRevA.99.057801)

In their study of superluminal propagation, rotary drag, and surface polaritons [\[1,2\]](#page-1-0), Khan *et al.* consider a four-level atomic arrangement with transitions in the optical domain. See Fig. 1(a) in Ref. [\[1\]](#page-1-0). On the other hand, they specify in Ref. [\[2\]](#page-1-0) that all the (angular) frequencies are given in units of $\gamma = (2\pi) \times 1$ MHz and that the probe frequency $v_p =$ 1000 γ . The corresponding wavelength is thus $\lambda_p = 30 \text{ cm}$ (in the decimeter band). As shown in the following this invalidates all the results given in Refs. [\[1,2\]](#page-1-0).

As correctly given in Ref. [\[1\]](#page-1-0), the electric susceptibility for the probe reads, in SI units,

$$
\chi = \frac{2N|\wp_{ac}|^2 \rho_{ac}}{\varepsilon_0 \hbar \Omega_p},\tag{1}
$$

where *N* is the atomic number density, *a* (*c*) is the upper (lower) level of the probe transition, \mathcal{G}_{ac} (ρ_{ac}) is the corresponding matrix element of the dipole moment (of the density operator), and Ω_p is the Rabi (angular) frequency of the probe. Expressing the susceptibility as a function of the probe wavelength as made to obtain Eq. (5) in Refs. [\[1,2\]](#page-1-0) can be achieved by introducing the Einstein's coefficient *Aac* associated with the transition $a \to c$. From its expression given in Ref. [\[3\]](#page-1-0), we get

$$
|\wp_{ac}|^2 = \left(\frac{3\lambda_p^3}{8\pi^2}\right) \hbar \varepsilon_0 A_{ac},\tag{2}
$$

and finally

$$
\chi = \left(\frac{3N\lambda_p^3}{32\pi^3}\right) \left(\frac{8\pi A_{ac}}{\Omega_p}\right) \rho_{ac}.
$$
 (3)

The expression $\chi = (\frac{3N\lambda_p^3}{32\pi^3\Omega_p})\rho_{ac}$ given by Eq. (5) in Ref. [\[2\]](#page-1-0) thus holds only if Ω_p is expressed in units of $8\pi A_{ac}$. According to the above choice of γ as unit of (angular) frequency, this implies that $8\pi A_{ac} = \gamma$.

It is specified in Ref. [\[2\]](#page-1-0) that "the susceptibility and group index plotted versus probe detuning have units of $2N|\mathcal{G}_{ac}|^2/\mathcal{E}_0\hbar$." As shown in Eq. (1), this quantity has the dimension of an angular frequency and, for consistency, it should also be expressed in units of γ . It then reads $u_{\gamma} =$ $2N|\mathcal{G}_{ac}|^2/\mathcal{E}_0\hbar\gamma$ and, taking into account the above relations,

$$
u_{\chi} = \left(\frac{3N\lambda_p^3}{32\pi^3}\right). \tag{4}
$$

For wavelengths λ_p in the visible domain and typical values of the atomic number density *N*, the susceptibility unit *u*^χ given by Eq. (4) is in the order of 3×10^{-3} . On the other hand, for $\lambda_p = 30$ cm with $N = 5 \times 10^{12}$ cm⁻³ as considered in Ref. [\[2\]](#page-1-0), this unit rises to $u_x \approx 4 \times 10^{14}$. Figure 2 in Ref. [2] shows that the peak value of the *relative* susceptibility χ/u_{χ} can exceed 5 [×] ¹⁰−3. The corresponding *absolute* susceptibility χ is then in the order of 10^{12} . *Such values are meaningless.*

Although this point is less important, we note that, in SI units, the refractive index reads $n = \sqrt{1 + \chi}$ and not $n =$ $\sqrt{1+4\pi\chi}$ as used in Ref. [\[1\]](#page-1-0) to determine the group index. Anyway, the approximation $n \approx 1 + 2\pi \chi$ also made to obtain Eq. (6) in Ref. [\[1\]](#page-1-0) fails when $|\chi| \gg 1$.

Without examining in detail the parts of $[1,2]$ devoted to rotary drag and surface polaritons, we remark that these phenomena occur when the sample thickness *L* is large compared to the probe wavelength λ_p . According to [\[2\]](#page-1-0), $L = 10$ cm and this condition is far from being fulfilled since this thickness is only one-third of the probe wavelength. By the way, we also note the incompatibility of Figs. 3(b) and 4 in Ref. [\[2\]](#page-1-0) which show rotary drags, respectively, in the order of 10−² and 10^{-7} rad.

Khan *et al.* support their choice of the ratio $v_p/\gamma = 1000$ by referring to a paper on the phase control of light velocity [\[4\]](#page-1-0). The same ratio v_p/γ was actually considered in this paper but without specifying the absolute value of the frequencies. We, however, point out that, for a probe frequency in the visible domain, this ratio leads to lifetimes of the excited atomic levels which are fully unrealistic (in the subpicosecond domain).

^{*}bernard.segard@univ-lille.fr

Independently of the above criticisms, we remark that, quite generally, large negative group delays are not a sufficient condition to observe significant effects of superluminal propagation. A convincing demonstration of such effects would have required a comparison of the transmitted and incident pulses, which is not made in $[1,2]$.

- [1] N. Khan, B. A. Bacha, A. Iqbal, A. U. Raman, and A. Afaq, Gainassisted superluminal propagation and rotary drag of photon and surface plasmon polaritons, [Phys. Rev. A](https://doi.org/10.1103/PhysRevA.96.013848) **[96](https://doi.org/10.1103/PhysRevA.96.013848)**, [013848](https://doi.org/10.1103/PhysRevA.96.013848) [\(2017\)](https://doi.org/10.1103/PhysRevA.96.013848).
- [2] N. Khan, B. A. Bacha, A. Iqbal, A. U. Raman, and A. Afaq, Erratum: Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons, [Phys. Rev. A](https://doi.org/10.1103/PhysRevA.96.049906) **[96](https://doi.org/10.1103/PhysRevA.96.049906)**, [049906\(E\)](https://doi.org/10.1103/PhysRevA.96.049906) [\(2017\)](https://doi.org/10.1103/PhysRevA.96.049906).

This work has been partially supported by the Ministère de l'Enseignement Supérieur, de la Recherche et de l'Innovation; the Conseil Régional des Hauts de France; and the European Regional Development Fund (ERDF) through the Contrat de Projets État-Région (CPER) 2015–2020, as well as by the Agence Nationale de la Recherche through the LABEX CEMPI project (Project No. ANR-11-LABX-0007).

- [3] R. C. Hilborn, Einstein coefficients, cross sections, *f* values, dipole moments, and all that, [Am. J. Phys.](https://doi.org/10.1119/1.12937) **[50](https://doi.org/10.1119/1.12937)**, [982](https://doi.org/10.1119/1.12937) [\(1982\)](https://doi.org/10.1119/1.12937); see Eq. (40) in the updated version of this article [arXiv:physics/0202029](http://arxiv.org/abs/arXiv:physics/0202029) [physics.atom-ph].
- [4] M. Sahrai, H. Tajally, K. T. Kapale, and M. S. Zubairy, Tunable phase control for subluminal to superluminal light propagation, [Phys. Rev. A](https://doi.org/10.1103/PhysRevA.70.023813) **[70](https://doi.org/10.1103/PhysRevA.70.023813)**, [023813](https://doi.org/10.1103/PhysRevA.70.023813) [\(2004\)](https://doi.org/10.1103/PhysRevA.70.023813).