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Quantum acousto-optic control of light-matter interactions in nanophotonic networks
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We analyze the coupling of atoms or atomlike emitters to nanophotonic waveguides in the presence of
propagating acoustic waves. Specifically, we show that strong index modulations induced by such waves can
drastically modify the effective photonic density of states and thereby influence the strength, the directionality, as
well as the overall characteristics of photon emission and absorption processes. These effects enable a complete
dynamical control of light-matter interactions in waveguide structures, which even in a two-dimensional system
can be used to efficiently exchange individual photons along selected directions and with a very high fidelity.
Such a quantum acousto-optical control provides a versatile tool for various quantum networking applications
ranging from the distribution of entanglement via directional emitter-emitter interactions to the routing of
individual photonic quantum states via acoustic conveyor belts.
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I. INTRODUCTION

Optical signals can be transmitted through waveguides and
fibers without being significantly degraded by the presence
of acoustic excitations in the material. This property can
be attributed to the vast difference in frequency and prop-
agation speed, which makes a direct coupling of photons
and phonons very inefficient. Nevertheless, residual Brillouin
scattering [1,2], where photons are scattered into other orthog-
onal modes by simultaneously emitting or absorbing phonons,
still constitutes a major limitation for optical communica-
tion [3,4], in particular when operating at higher power. In
addition, using intense acoustic waves for the control of
weak optical fields has been suggested, for example, for
frequency conversion [5,6], on-chip phase modulation [7], or
nonreciprocal scattering of optical beams [8,9]. In particular,
in nanophotonic structures, where photons and phonons are
both strongly confined [10–14], such techniques represent a
promising alternative to Kerr- or electro-optical modulation
techniques for manipulating light [15–22].

In this work we investigate the use of strong running acous-
tic waves for the control of nanophotonic quantum networks,
where not only the propagation of single photons but also their
interaction with stationary emitters is of paramount impor-
tance. The basic idea is illustrated in Fig. 1(a), which shows a
generic waveguide QED setting with multiple atoms, quantum
dots, or defect centers that are strongly coupled to a one-
dimensional (1D) photonic channel [23–33]. In engineered
photonic crystal structures or near the edge of a propagation
band, the group velocity of photons is considerably reduced,
which can enhance and modify the coupling to guided modes
[34–42]. However, in the resulting decay neither the shape
nor the direction of the emitted photon is controlled, which
prevents an efficient reabsorption of this photon by a second
emitter. This picture changes in the presence of strong index

modulations induced by a propagating acoustic wave, which
creates a moving lattice potential for the optical field. If
sufficiently strong, this potential can confine and drag pho-
tons along, which induces a broad-band modification and, in
particular, a left-right asymmetry in the effective photonic
density of states, as experienced by the emitter. As a result,
this method allows one to control both the rate as well as
the direction of the emitted photons by simply adjusting the
amplitude of the applied acoustic wave.

The ability to emit photons along a single direction and
with a specified temporal shape is an essential requirement for
the implementation of deterministic quantum communication
protocols in scalable photonic networks [43,44]. Our analysis
shows that acousto-optical control of emitter-photon interac-
tions in waveguide QED systems provides a general method
to achieve this tunability, without relying on specific level
schemes or near-field effects [45–49]. Importantly, this tech-
nique can be applied in two-dimensional (2D) settings, where
usually the dispersion of emitted photons into random direc-
tions prevents efficient interactions between emitters that are
more than a few wavelengths apart. Acoustic control can be
used to overcome this limitation and to implement long-range
emitter-emitter interactions by channeling the emitted photons
into a directed, strongly focused beam. Therefore, this method
can be applied to extend concepts from nonreciprocal optics
[50] and chiral waveguide QED [49] to higher-dimensional
scenarios, where quantum networks with a higher degree of
connectivity as well as new types of quantum-optical and
many-body phenomena can be explored.

This paper is structured as follows. In Sec. II we introduce
a generic model for emitters coupled to an acousto-optical
waveguide (AOW), which we use in Sec. III to derive a
theory of spontaneous emission in the presence of strong
acoustic waves. In Sec. IV we then discuss several quantum
networking applications based on acoustic control techniques
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FIG. 1. Acousto-optical waveguide. (a) Sketch of a waveguide
QED setup with multiple two-level emitters coupled to the field
of a 1D photonic channel. A propagating acoustic wave, which is
launched into the waveguide, for example, by an interdigital trans-
ducer (IDT), creates a strong modulation of the refractive index and
modifies the photon emission and absorption properties. (b) Disper-
sion relation ω(k) of the unperturbed waveguide, which is assumed
to be approximately quadratic above the cut-off frequency ωc. In
this case the emission rates �R,L∼1/|vg(kR,L )| into right- and left-
propagating modes are identical. (c) In the presence of the acoustic
wave, the photon emission is instead determined by the deformed
Floquet quasienergy bands ω̃n(k), which are plotted for Va/Er = 0.2
and �/�r = 0.4. For a finite speed of sound, ω̃n(k) �= ω̃n(−k) and
photon emission becomes directional. In (b) and (c) the red circles
indicate the resonance conditions given in Eq. (9), which determine
the set of wave vectors kμ that contribute to the overall emission rate.

in the weak- and strong-coupling regime. In Sec. V we extend
our model to 2D waveguides and discuss the emergence of
acoustically induced directional emitter-emitter interactions in
this setting. Finally, in Sec. VI we discuss potential experi-
mental settings for observing these effects with atoms or de-
fect centers coupled to photonic crystal structures. In Sec. VII
we summarize our results and discuss future directions of
research.

II. MODEL

We consider a generic setup as depicted in Fig. 1(a), where
N two-level atoms or solid-state emitters with ground state
|g〉 and excited state |e〉 are coupled strongly to the field of
a 1D photonic waveguide. We assume that the emitters are
dominantly coupled to photons of a single propagation band
with a quadratic dispersion relation ω(k) � ωc + h̄k2/(2m∗).
For conceptual simplicity we will primarily focus on homo-
geneous waveguides. In this case, ωc is the cutoff frequency
of a given transverse mode, and m∗ ≈ ωch̄n2/c2, where n
is the refractive index, is the effective mass. However, as
discussed in more detail in Sec. VI, our analysis can be
readily generalized to photonic crystal structures, where very
strong couplings and much larger values of m∗, i.e., a further
reduction of the photonic group velocities, can be realized.

The waveguide is subject to a spatial and time-dependent
modulation of the refractive index, n(x, t ) = n + δn(x, t ),

which creates an effective potential V (x, t ) ∼ δn(x, t ) for
the photons [14,51,52]. In this work we will specifically
focus on strong index modulations induced by propagating
acoustic waves via acousto-optical or optomechanical inter-
actions [7–9,14,51,53,54], but our findings can be generalized
to other electro-optical or Kerr-modulation schemes as well
[17,18,20]. The photons in the waveguide of total length L →
∞ are then described by the Hamiltonian

Hw(t ) =
∫ L

0
dx ψ†(x)

(
h̄ωc − h̄2∂2

2m∗∂x2
+ V (x, t )

)
ψ (x),

(1)
where ψ (x) and ψ†(x) are bosonic field operators obeying
[ψ (x), ψ†(x′)] = δ(x − x′). The photons interact with the
emitters located at positions xi along the waveguide such that
the Hamiltonian for the full system reads

H =
N∑

i=1

h̄ωeg|e〉i〈e| + h̄g
N∑

i=1

[ψ†(xi )σ
i
− + σ i

+ψ (xi )]

+ Hw(t ). (2)

Here σ− = (σ+)† = |g〉〈e|, and it has been assumed that the
transition frequency ωeg as well as the coupling strength
g(xi ) � g is approximately the same for all emitters.

III. PHOTON EMISSION IN ACOUSTO-OPTICAL
WAVEGUIDES

Let us first consider the spontaneous emission of pho-
tons from a single emitter at position x1 = 0, which is ini-
tially prepared in the excited state |e〉. Since the Hamil-
tonian (2) preserves the total number of excitations, the
resulting system evolution is described by the wave func-
tion |	(t )〉 = ce(t )|e〉|vac〉 + ∫

dx φ(x, t )ψ†(x)|g〉|vac〉. Here
pe(t ) = |ce(t )|2 is the excited-state probability, and φ(x, t ) is
the amplitude of the emitted photonic wave packet in position
space. For V = 0 and ωeg far from the cut-off frequency
we can use a conventional Wigner-Weisskopf approach to
derive an effective equation for the decay of the excited-state
amplitude

ċe(t ) = −iωegce(t ) − �

2
ce(t ), (3)

as well as for the right- and left-propagating emitted fields
φR/L(t ) = limε→0+ φ(±ε, t ),

φR/L(t ) = −i
√

�R/L/|vg(kR/L )|ce(t ). (4)

In these equations, � = �L + �R is the total decay rate and
�R and �L are the rates of photons emitted to the right and
to the left, respectively. For the unperturbed waveguide we
recover the standard result, �R = �L = g2/|vg(kR/L )|. Here
vg(k) = ∂ω(k)/∂k is the group velocity, and the two wave
vectors kR = −kL are determined by the resonance condition
ωeg = ω(kR/L ).

A. Bloch-Floquet theory of spontaneous emission

In the presence of the potential V (x, t ) = Va cos[ka(x −
vt )] induced by a right-propagating acoustic wave with a
speed of sound v > 0, the photons experience an addi-
tional periodic modulation in space and time with frequency
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�= vka and wavelength λ = 2π/ka. In this case it is conve-
nient to change into the interaction picture with respect to the
decoupled Hamiltonian H0 = h̄ωeg|e〉〈e| + Hw(t ). In this new
representation, the field operator ψI (x, t ) = U †(t )ψ (x)U (t ),
where U (t ) = T e− i

h̄

∫ t
0 dsH0(s) and T is the time-ordering oper-

ator, can be written in terms of a Bloch-Floquet expansion as

ψI (x, t ) = 1√
L

∑
n,k

eikxunk (x, t )ank . (5)

Here k ∈ [−ka/2, ka/2) lies within the Brillouin zone (BZ)
defined by the acoustic wave vector ka and the ank (a†

nk ) are
bosonic annihilation (creation) operators. The unk (x + λ, t +
2π/�) = unk (x, t ) are periodic functions, which satisfy the
differential equation

u̇nk = − i

h̄

[
h̄ωc − h̄2

2m∗

(
∂

∂x
+ ik

)2

+ V (x, t )

]
unk (6)

and can be decomposed as

unk (x, t ) = e−iω̃n (k)t
∞∑

�=−∞
u(�)

nk ei(kax−�t )�. (7)

From the numerical solution of Eq. (6) we obtain a set of
quasienergy bands ω̃n(k) [see Fig. 1(c)], which for a static po-
tential just correspond to the usual Bloch bands. For Va/Er �
1, where Er = h̄�r = h̄2k2

a/(2m∗) is the photonic recoil en-
ergy, the lowest bands become well separated and their width
decreases. Importantly, for finite propagation velocity v, we
observe an asymmetric distortion of the quasienergy bands,
i.e., ω̃n(k) �= ω̃n(−k). Therefore, the density of right- and left-
propagating photonic states in an acousto-optical waveguide is
no longer the same, which can give rise to directional emission
of photons, as discussed below.

By using the decomposition (7), the remaining interaction
Hamiltonian can be written as

HI (t ) = h̄g√
L

∑
kn�

u(�)
nk e−i(ω̃n (k)+��−ωeg)t ankσ+ + H.c. (8)

This expression shows that resonant interactions between the
emitter and the field can occur at multiple wave vectors kμ,
which satisfy the resonance condition

ωeg = ω̃nμ
(kμ) + ��μ (9)

for a band index nμ and a Floquet index �μ [see Fig. 1(c)].
The emission rate into modes around kμ will depend on the

coupling ḡμ = gu(�μ )
nμkμ

and the quasi group velocity ṽg,μ =
∂ω̃nμ

(k)/∂k|k=kμ
. By summing over all resonant k vectors we

obtain the total emission rate � = �R + �L. The correspond-
ing rates for emitting into right- and left-propagating modes
are now given by [see Appendix A]

�R,L =
∑

μ

|ḡμ|2
|ṽg,μ|θ [±ṽg,μ], (10)

where θ (x) denotes the Heaviside step function. In the
following we introduce the characteristic decay rate �0 =
g2/|vg(ka/4)| = 4πg2

0/�r , where g0 = g/
√

λ is the coupling
strength between an emitter and a single photon of extent

FIG. 2. Directional photon emission. The directionality param-
eter D = (�R − �L )/�0 is plotted as a function of the detuning
of the emitter from the band edge, δ = ωeg − ωc, and in (a) for
varying Va and fixed �/�r = 0.2 and in (b) for varying � and fixed
Va/Er = 0.2. The dashed black line indicates the position of the
band edge of the unperturbed waveguide. Note that in both plots we
have restricted the maximum value of the directionality parameter
to |D| � 10 in order to avoid unphysical divergencies near the band
edges, where the assumption of an exponential decay breaks down. In
addition, for frequencies outside the modified photonic band, where
the Wigner-Weisskopf approach is no longer valid, D has been set to
zero. (c) Illustration of a Brillouin-scattering process between two
modes k and k′ = k + ka for a quadratic dispersion relation. For
finite Va the coupling of modes in the vicinity of k and k′ leads
to an avoided crossing in the quasienergy band structure, as shown
in (d). Here the main resonances [see Eq. (9)] are indicated by red
circles.

λ. This rate corresponds to the rate of emission into the
unperturbed waveguide at a frequency ωeg = ω(ka/4) in the
middle of the first BZ.

B. Acoustically induced directionality

As compared to the standard setting, the traveling acoustic
wave imposes a preferred direction, thereby breaking the
symmetry of the band structure ω̃n(k). As a result the emission
rates into right- and left-propagating photons, as defined in
Eq. (10), will in general be different. This difference can
be quantified in terms of the directionality parameter D =
(�R − �L )/�0, which is plotted in Figs. 2(a) and 2(b) for
various potential parameters. We see that for a weak acoustic
perturbation and low frequencies, Va < h̄� � Er , an asym-
metric emission occurs only at two specific resonances,

δ = ωeg − ωc � �r

4
∓ �

2
, (11)

where D can be both positive (the photons are emitted into
the direction of the acoustic wave) or negative (the photons
are emitted into the opposite direction). As indicated in
Fig. 2(c), these resonances arise from a Brillouin-scattering
process between modes k and k′ = k + ka of the unperturbed
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waveguide. This scattering process is resonant only for wave
vectors that satisfy ω(k) + � = ω(k′) [indicated by the red
arrow in Fig. 2(c)], which for finite Va leads to an avoided
crossing in the vicinity of these modes. When either kR or
kL lies within this avoided crossing, the corresponding left-
or right-propagating emission channel is suppressed and the
emission becomes directional.

This mechanism can also be understood from the opening
of a gap in the quasienergy band structure, which is de-
fined within the first BZ associated with the acoustic wave
vector ka. Here one has to keep in mind that the acoustic
modulation ∼Vae±i(kax−�t ) induces Umklapp processes that
connect neighboring Brillouin zones in Floquet sectors that
differ by � = ±1. Therefore, as illustrated in Fig. 2(d), when
folding the original dispersion relation into the first BZ,
the individual branches must be simultaneously shifted in
frequency by ±�,±2�, . . . in order to obtain the correct
avoided crossings. This construction explains the resulting
asymmetry of the quasienergy bands, which is retained when
the potential strength is increased [see Fig. 1(c)]. Note that in
this quasienergy picture higher � resonances must be taken
into account already for small values of Va. For example,
for the backward-emission process (which takes place in the
second BZ) the resonances at � = ±1 are more important than
the � = 0 contribution.

C. Photon-dragging regime

As evident from Figs. 2(a) and 2(b), this simple Brillouin-
scattering picture no longer applies for stronger potentials,
Va/Er � 0.1. In this regime, the acoustic index modulation
is already sufficiently strong to spatially confine the photons,
meaning that the emitted photons are dragged along by the
moving lattice potential rather than simply being reflected
from it. As a consequence, the effective photonic density of
states of the waveguide changes substantially over a wide
range of optical frequencies, and instead of individual reso-
nances, broad windows of directional emission appear. Im-
portantly, strong forward emission can now occur even for
frequencies ωeg < ωc, where in the absence of the acoustic
wave emission into waveguide modes is completely inhibited.
These features vanish again for � � �r , where the modula-
tion is already too fast to significantly influence the decay
process.

The photon-dragging effect not only affects the direction-
ality but can also significantly enhance the overall emission
rate due to a strong reduction of the quasi group velocity
ṽg. This enhancement becomes most pronounced when the
reduced photonic group velocity of the static lattice matches
the speed of sound. In this case the photons reside in the
vicinity of the emitter for a very long time and therefore
interact more efficiently. This effect is closely related to the
appearance of nonperturbative features in the emission of
Cherenkov photons into slow-light waveguides [55], where a
similar enhancement of the coupling between copropagating
photons and atoms can occur. Note, however, that the process
of photons being emitted from a moving emitter and the emis-
sion of photons into a moving photonic lattice are generally
not the same, since the presence of a periodic structure breaks
Galilean invariance [56].

D. Multiemitter waveguide QED

The Bloch-Floquet theory for spontaneous emission dis-
cussed above can be readily generalized to settings where
multiple emitters are placed along the waveguide. To account
as well for additional external driving fields, such a scenario
can be modeled by an effective equation of motion for the
reduced density operator of the emitters ρ, as obtained after
eliminating all the photonic modes within a standard Born-
Markov approximation. Note that this approximation is valid
away from any divergencies in the density of states associated
with the quasienergy bands, which no longer coincide with
the divergency at the original band edge at δ = 0. As a result
of this derivation detailed in Appendix B, we obtain a master
equation of the general form

ρ̇ = − i

h̄
[He, ρ] +

N∑
i, j=1

[Ai j (σ
i
−ρσ

j
+ − σ

j
+σ i

−ρ) + H.c.].

(12)
Here, the first term describes the coherent evolution of the
individual, laser-driven emitters. In a frame rotating with the
laser frequency ωL, it reads

He =
N∑

i=1

−h̄δL|e〉i〈e| + h̄�L

2
(eiϕiσ i

− + e−iϕiσ i
+), (13)

where δL = ωL − ωeg, �L is the Rabi frequency, and the ϕi are
locally adjustable laser phases. The second term in Eq. (12)
accounts for all decay and waveguide-mediated interaction
processes, ∼Ai jσ

j
+σ i

−, which arise from the emission and
reabsorption of photons between different emitters i and j.
The corresponding amplitudes are given by

Ai j = �ng

2
δi j +

∑
μ

|ḡμ|2ei(kμ+ka�μ )ri j

|ṽg(kμ)| θ [ṽg(kμ)ri j], (14)

where ri j = x j − xi, and the index μ runs again over all
resonant wave vectors, kμ.

In Eq. (14), the diagonal terms, Aii = (� + �ng)/2, de-
scribe the decay of each individual emitter, where we have
included an additional rate �ng to account for all other decay
processes into nonguided modes. The general expression for
Ai j explicitly shows that not only the decay of each individual
emitter but also their mutual interactions can be strongly in-
fluenced by the applied acoustic modulation. This allows one,
for example, to switch between a regular (|Ai j | = |Aji|) and a
fully chiral (|Aji| � |Ai j | for x j > xi) waveguide QED system
in a dynamical and fully tunable way by simply varying the
amplitude of the acoustic wave.

IV. QUANTUM NETWORKING APPLICATIONS

In the previous section we have shown that the presence
of strong acoustic waves can influence both the strength and
the directionality of photon emission, or even open up a decay
channel at frequencies where otherwise emission into guided
modes would not be possible. The key feature is that such
modification can be induced dynamically by simply chang-
ing the amplitude or direction of the acoustic modulation.
This level of control becomes an essential ingredient for
various quantum communication schemes, where propagating
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FIG. 3. Acoustic emission control. (a) Plot of the excited-state
probability pe(t ) for an emitter with a frequency ωeg slightly below
the band edge. During the time interval �TR, a right-propagating
acoustic wave passes the emitter and induces a rapid decay. After
the acoustic wave has passed the emission is again inhibited until
a second left-propagating acoustic wave packet induces another
decay during the time interval �TL . The solid red line shows the
results from a numerical simulation of the full Hamiltonian and the
dashed line the results obtained from a Markovian theory with time-
dependent decay rates �R,L (t ) evaluated from Eq. (10). (b) Plot of
the emitted photon wave packet |φ(x, t )|2, which shows that during
the two time intervals the photon is emitted into different directions.
The parameters for both plots are Va/Er = 0.8, �/�r = 0.2, δ/�r =
−0.2, and g0/�r = 0.015. (c) Dependence of �R and �L on the
potential strength Va for �/�r = 0.2 and δ/�r = −0.2. Within the
slowly varying envelop approximation, this dependence can be use to
achieve a time-dependent control of the emission rate �R(t ) � �L (t ).

photons are used to distribute quantum states or generate
entanglement between multiple emitters along the waveguide
[43,44,49,57–59]. In this context it is not only important to
control the emission of photons but also to efficiently reabsorb
these photons at a distant site. In the following we will
illustrate some of the possibilities that are offered by acoustic
control schemes for optical quantum networking applications.

A. Dynamical control of photon emission

As a first example, we illustrate in Fig. 3 the ability to
dynamically control the emission properties of a single emitter
by acoustic wave packets with varying propagation directions
and amplitudes Va(t ). Here we consider an emitter with a
frequency well within the band gap, ωeg < ωc, such that
initially emission into the unperturbed waveguide is strongly
suppressed. During the time interval �TR a right-propagating
acoustic pulse with amplitude Va/Er = 0.8 passes the emitter.
According to Fig. 2, under these conditions one expects a
strong decay into right-propagating photons, which is clearly
evident from the decay of pe(t ) and the emitted photon wave
packet shown in Figs. 3(a) and 3(b), respectively. Once the
acoustic wave packet has passed, the decay process stops
halfway in between. After a certain waiting time a second

wave propagating in the opposite direction leads to a decay of
the remaining population by emitting a photon to the left. Note
that in the absence of other decay channels, the whole process
is fully coherent and produces a superposition between a right-
and a left-propagating photon.

In Fig. 3(a) the evolution of pe(t ) is calculated from Eq. (3)
with time-dependent rates �R,L(t ). These rates are derived in a
quasistatic approximation from the slowly varying envelop of
the modulation, Va(t ), as depicted in Fig. 3(c). This approxi-
mate theory is compared with an exact simulation of the emis-
sion process based on the full Hamiltonian (2). We see that
within the regime of validity, g0 � �r , the system dynamics
is captured very well by the Markovian model. Therefore, this
comparison shows that by slowly modulating the envelope
of the acoustic wave, Va(t ), a complete dynamical control
over the emission rate combined with a high degree of direc-
tionality, �R(t ) � �L, can be achieved. This feature enables
the emission of photonic wave packets of arbitrary shape, or
conversely, the absorption of arbitrarily shaped photons with
close to unit efficiency. These are the central requirements for
implementing deterministic quantum-state-transfer protocols
between two separated emitters [43].

B. Generation of stationary entangled states

To avoid precise pulse control, quantum correlations be-
tween multiple emitters can also be established under con-
tinuous driving conditions, as described by master equation
(12). In this case, the interplay between laser excitations and
correlated decay processes into the waveguide can result in a
nontrivial steady state, ρ0 = ρ(t → ∞), with a high degree
of entanglement [49,57–59]. However, since the maximal
amount of entanglement that can be reached by this approach
depends crucially on the waveguide properties [characterized
by the set of Ai j in Eq. (14)], such schemes are not ap-
plicable in most conventional settings. By manipulating the
Ai j via strong acoustic waves, it is possible to overcome
this limitation and to turn even a regular waveguide into an
entanglement-mediating quantum channel.

To illustrate this concept, we consider in Fig. 4 the case
of two resonantly driven emitters with frequencies ωeg > ωc

within the propagation band of the unperturbed waveguide.
Although in this case the emitters can mutually exchange
photons through the waveguide, many of these photons will
simply be lost and the resulting steady state is highly mixed
and completely disentangled. As the acoustic modulation is
gradually turned on, a directional emitter-emitter coupling,
|A12| � |A21|, is established [60]. After this point the system
relaxes into an almost pure state, with a high degree of entan-
glement, expressed in terms of the concurrence C [61]. Indeed,
in the limit of an ideal unidirectional quantum channel, where
A12 = �ReikR (x2−x1 ) and A21 = 0, master equation (12) has a
unique, pure steady state, ρ0 = |ψ0〉〈ψ0| [57,58], where

|ψ0〉 =
√

�2
R

�2
R + 2�2

L

(
|gg〉 − i

√
2�L

�R
|S〉

)
(15)

is a superposition between the ground and the maximally
entangled singlet state, |S〉 = (|ge〉 − |eg〉)/

√
2. As shown in

Fig. 4, a steady state with a similar degree of entanglement can
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FIG. 4. Steady-state entanglement. Evolution of the purity P and
the concurrence C of the reduced density operator of two driven
emitters coupled to a waveguide. During times t1 and t2 the strength
of the right-propagating acoustic potential, Va, is gradually turned
on and kept at a fixed value of Va/Er = 0.4 afterwards (see lower
plot). This tunes the waveguide into a regime where the directional
correlation parameter � = |A12|/(� + �ng) (dotted line) is close to
1. As a result, the system evolves into an almost pure steady state
with a high degree of entanglement. For this plot we have assumed
δ/�r = 0.08, �/�r = 0.2, g0/�r = 0.08, �ng/�0 = 0.001, and we
have set φi = −ikRxi to compensate for propagation phases. The inset
shows the steady-state concurrence C(t → ∞) as function of δ and
Va for �/�r = 0.2 and �ng/�0 = 0.002. For the simulations shown
in the inset, we fixed the Rabi frequency to a value of �L = 1.3� and
averaged the resulting concurrence over different emitter separations
d = x2 − x1 to eliminate position-dependent interference effects.

be achieved, even for a bidirectional but modulated waveg-
uide. This scheme for generating entangled steady states
works for a large range of parameters and within both the
forward- and backward-emission window (see inset). Note
that by choosing a detuning δ < 0, the acoustic modulation
can also be switched off after the steady state is reached, leav-
ing behind a protected entangled state between two emitters
inside the band gap [62].

C. An acoustic conveyor belt for light

In the examples discussed so far we have considered the
weak-coupling regime, where the emitted photons extend
over many acoustic wavelengths and a Markovian description
of emitter-waveguide interactions applies. As the coupling
strength increases or much shorter acoustic pulses are used
this picture changes, and for g0 ∼ �r a coherent exchange
of excitations between an emitter and a photon residing in-
side a single potential well becomes possible. In this strong-
coupling regime, the nature of emitter-photon interactions and
the described photon-dragging effects change completely and
gives rise to new mechanisms for communicating between
separated emitters.

To illustrate this point, we focus again on the scenario
where the frequency of the emitters lies within the band gap,
ωeg < ωc. However, instead of a continuous wave, we now
consider a short acoustic pulse,

V (x, t ) = −Va cos[ka(x − vt )]e− (x−vt )2

2(�x)2 , (16)

FIG. 5. An acoustic conveyor belt. (a) Energy-level diagram for
the waveguide QED system in the presence of a propagating acoustic
potential well V (x, t ), as defined in Eq. (16). The excitation of the
first emitter can be coherently converted into a single bound photon,
which is dragged along by the acoustic wave and can successively in-
teract with other emitters along the waveguide. (b) Excitation transfer
between two atoms as a function of time as predicted from the full
model (continuous lines) and the effective moving cavity model Hmc

(dashed lines). In this example the emitters are detuned by δ/�r =
−0.096 and are separated by |x2 − x1|/λ = 6, which corresponds to
a propagation time of τ = 754�−1

r for an acoustic wave frequency
of �/�r = 0.05. The other parameters are Va/Er = 0.5, �x/λ = 2.
The bare coupling strength is fixed to g0/�r = 0.007. (c) Plot of the
transfer probability p(2)

e (Tf ) as a function of the width �x and the
strength Va of the acoustic potential. This plot is obtained from
the effective cavity model, and the other parameters are the same
as in (b).

where the extent of the wave packet, �x, is in the order of a
few wavelengths. As shown in Fig. 5(a), for the static case
v = 0, this wave packet creates a localized potential well,
which for sufficiently strong Va induces a set of spectrally
isolated bound photonic states below the band edge. To model
these states also at a finite speed of sound, it is convenient to
change to a co-moving frame via the unitary transformation
H̃w = T HwT † + ih̄Ṫ T †, where

T = eip̂vt = eh̄vt
∫

dxψ†(x) ∂
∂x ψ (x). (17)

The binding energies En = h̄ωn and bound-state wave func-
tions φn(x) of the resulting time-independent Hamiltonian H̃w

are then solutions of the effective Schrödinger equation

(En − h̄ωc)φn(x) =
[
− h̄2

2m∗
∂2

∂x2
+ V (x) + ih̄v

∂

∂x

]
φn(x).

(18)
In the laboratory frame these photonic states are dragged
along by the acoustic wave, resulting in moving bound states.
By assuming that the emitters are tuned close to the reso-
nance of the lowest bound state with energy E0 = h̄ω0 and
wave function φ0(x), we can then derive an effective moving
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cavity model,

Hmc(t ) = h̄ωeg|e〉〈e| + h̄ω0a†
0a0

+ h̄
∑

i

[gi(t )a†
0σ

i
− + g∗

i (t )a0σ
i
+], (19)

where a0 and a†
0 are photon annihilation and creation op-

erators, and gi(t ) = gφ0(xi − vt ) is the effective coupling
strength between a single bound photon and the ith emit-
ter. This single-mode model is valid for |gi|, |�| � |ωeg −
ωn �=0|, |δ|, i.e., as long as transitions to other bound or con-
tinuum states can be neglected.

The Hamiltonian Hmc is formally equivalent to models that
are used in the context of atomic cavity QED to describe
the interaction of multiple Rydberg atoms flying through a
single resonator [63–67]. However, here the roles are reversed,
allowing the successive interaction of fixed emitters with a
common cavity mode that is carried by the acoustic wave
packet along the waveguide. In Fig. 5(b) we show how this
acoustic conveyor belt can be used for implementing a state-
transfer protocol between two emitters with x2 > x1. In this
example, the first emitter is initially prepared in the excited
state |e〉, and we are interested in the excitation probability of
the second emitter, p(2)

e (Tf ), at a final time Tf , once the acous-
tic wave has left the interaction region. The frequencies of
both emitters are set to ωeg � ωc − 0.096�r , which matches
the frequency of the lowest photon bound state for a value
of Va/Er = 0.5. From the plot in Fig. 5(b) we see an almost
perfect transfer of the excitation between the two emitters,
where the delay between photon emission and reabsorption
just corresponds to the propagation time τ = (x2 − x1)/v.
We also find a very good agreement between the numerical
simulations of the full and the effective model, as expected
for the considered parameter regime, |gi| � |ωeg − ωn>0|.

In the example above, the potential parameters Va and
�x have been chosen to achieve perfect resonance condi-
tions, ωeg = ω0, and to obtain a coupling gi(t ) satisfying∫ Tf

0 gi(t )dt = π , in order to realize a complete transfer be-
tween the photon and the emitter. In Fig. 5(c) we plot the same
state-transfer probability for varying potential parameters.
This plot demonstrates that changing the strength and the
width of the acoustic wave packet already provides enough
flexibility for fine tuning the emitter-photon interaction, as-
suming that ωeg, g, and the speed of sound are fixed.

V. DIRECTIONAL PHOTON-EMITTER
INTERACTIONS IN 2D

For the implementation of extended on-chip quantum net-
works, it would be preferential to arrange the emitters in 2D
lattices instead of along 1D arrays to achieve a higher degree
of connectivity and an improved scalability. However, photons
emitted into 2D waveguides quickly spread into all directions,
and for two emitters separated by only several wavelengths,
the ability to deterministically exchange photons becomes
vanishingly small. In this section we show that the mecha-
nism of acoustic emission control can be used to overcome
this problem and to achieve fully directional emitter-emitter
interactions even in a 2D scenario.

FIG. 6. Acousto-optical waveguides in 2D. Sketch of 2D waveg-
uide QED setting, where two emitters are coupled to photons con-
fined along the x-y plane. Acoustic waves create traveling lattice
potentials with strengths V1 and V2 and wave vectors k1 and k2.
The potential strengths and wave vectors can be adjusted to induce
long-range emitter-emitter interactions along a chosen direction.

A. Photon emission in 2D acousto-optical waveguides

In the following we generalize our previous analysis to
the case of a 2D optical waveguide, where the photons are
strongly confined along the z axis but propagate freely in the
x-y plane (see Fig. 6). In this case, the Hamiltonian for the
guided optical modes reads

Hw(t ) =
∫

d2r ψ†(r)

(
h̄ωc − h̄2

2m∗ ∇2
r + V (r, t )

)
ψ (r),

(20)
where r = (x, y), and V (r, t ) is the potential for the pho-
tons generated by acoustic waves inside the 2D waveguide
structure. In the examples below we restrict ourselves to
combinations of two orthogonal plane waves,

V (r, t ) = V1cos(r · k1 − �1t ) + V2cos(r · k2 − �2t ), (21)

where k1 ⊥ k2. However, all the results can be generalized to
other configurations as well.

To evaluate the emission characteristic of a single emitter
under the influence of this modulation, we extend the Bloch-
Floquet theory developed in Sec. III A to two dimensions (see
Appendix B for more details). From this analysis we obtain
the quasienergy bands ω̃n(k) within the first BZ defined by
k1 and k2. Spontaneous emission occurs for all wave vectors
where the resonance condition

ωeg = ω̃n(k) + �1� + �2�
′ (22)

is satisfied for a pair of Floquet indices � and �′. This condition
defines a set of isoenergetic lines in the first BZ. For simplicity
we focus in the remainder of the discussion on the regime
where the acoustic potential is already sufficiently strong such
that the emission is dominated by resonances in the lowest
quasienergy band (n = 1) and with � = �′ = 0. Under this
assumption the total emission rate is given by

� � g2

2π

∫
res

dk

∣∣u(0,0)
1k

∣∣2

|ṽg(k)| =
∫ 2π

0
dϕ �(ϕ), (23)

where u(�,�′ )
nk are Bloch-Floquet expansion coefficients and

ṽg(k) = ∇kω̃n(k) is the group velocity in 2D. The first integral
in Eq. (23) runs over the line of k vectors satisfying the
resonance condition (22) for n = 1, and � = �′ = 0. In the
second expression we have introduced the polar emission rate
�(ϕ), which directly provides the relative fraction of photons
that are emitted along the polar angle ϕ.
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FIG. 7. Directional emission in 2D. Plots of the lowest
quasienergy band ω̃1(k) of a 2D waveguide with a periodic potential
with wave vectors k1 = (ka, 0) and k2 = (0, ka ). The three plots cor-
respond to the case of (a) an unperturbed 2D waveguide (V1,2 = 0),
(b) a propagating acoustic wave along y (V1 = 0 and V2/Er = 0.4),
and (c) two propagating waves along x and y (V1,2/Er = 0.4). The
black arrows indicate the direction of the group velocity ṽg(k). The
solid lines represent the isoenergetic lines defined by the resonance
condition in Eq. (22) for the detunings (a) δ/�r = 0.02, (b) δ/�r =
0.2, and (c) δ/�r = 0.1. For each of these resonance lines, the plots
in the right column show the resulting polar emission pattern, �(ϕ).
In all plots the acoustic frequency is fixed to �1,2/�r = 0.2.

In Fig. 7 we plot the lowest quasienergy band together with
the profile of the quasi group velocity for the three basic con-
figurations, where either no acoustic wave, a single acoustic
wave, or two acoustic waves propagating along orthogonal
directions are present. While the emission into the unper-
turbed waveguide is always fully isotropic [68], the acoustic
modulation causes again a tilting of the quasienergy bands.
As a result, the group velocities along the isoenergetic lines in
the BZ are no longer equally distributed. For frequencies ωeg

near the upper band edge, this effect can become particularly
pronounced and, as shown in the right column of Fig. 7(c),
configurations can be found where the radiation pattern �(ϕ)
becomes highly peaked along a single direction.

B. Directional emitter-emitter interactions in 2D

For quantum networking applications as discussed in
Sec. IV above, not only a directed emission but also the
efficient reabsorption of these photons by a second emitter is
important. In two or higher dimensions these two properties
are not the same, since even an initially strongly focused beam

FIG. 8. Directional emitter-emitter interactions in 2D. (a),(b)
Plot of the correlation parameter �(R) as a function of R = r2 − r1

for the case of (a) an unperturbed waveguide and (b) a waveguide
modulated by two propagating acoustic waves. The detunings δ

and other parameters for these two plots are the same as in the
corresponding plots in Figs. 7(a) and 7(c). For both cases the
radial dependence of �(R) along the diagonal is plotted in (c).
(d) Illustration of a triangular lattice of emitters, where a long-range
unidirectional coupling along a chosen lattice direction is established
by an appropriate choice of the acoustic wave vectors k1 and k2.

can substantially spread as the distance between the emitters
increases. To account for this effect, it is useful to adopt the
master equation formalism developed in Sec. III D also for
2D waveguides, where the efficiency of photon emission and
reabsorption processes is directly reflected in the correlated
decay rates Ai j . This allows us to quantify the suitability
of a general waveguide for various quantum communication
applications by a single correlation parameter

�(R) = |A12(R)|
� + �ng

� 1, (24)

which takes all the relevant deviations from an ideal unidirec-
tional waveguide (where � = 1) into account. For instance, in
the example studied in Fig. 4, a value of � ≈ 1 indicates the
ability to generate strong quantum correlation between two
emitters, while for � � 0.5 this is no longer the case.

In Figs. 8(a) and 8(b) this correlation parameter is evalu-
ated for a regular 2D waveguide and for a 2D waveguide in the
presence of two propagating acoustic waves. As already antic-
ipated from the corresponding plots of �(ϕ) in Fig. 7, while
in the static case �(R) is fully isotropic, in the latter case
correlated emission processes are established only along a
single line which is defined by the diagonal between the wave
vectors k1 and k2. The important consequence of this directed
emission is more clearly seen in Fig. 8(c), which shows the
radial dependence of �(R) along this diagonal. For a regular
waveguide, we observe the typical decay, �(R)∼1/

√|R|,
as expected for photon-mediated interactions in an isotropic
2D system. Importantly, even at very small distances, the
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TABLE I. Summary of the rescaled parameters �/�r and Va/�r

obtained for diamond, fused silica, and silicon waveguides. For all
examples a value of ωc/(2π ) = 400 THz and δn/n = 10−4 has been
assumed. The other parameters used for these estimates are n = 2.4
and v = 1.7 × 104 m/s for diamond, n = 1.5 and v = 5.7 × 103 m/s
for silica, and n = 3.9 v = 8.4 × 103 m/s for silicon.

λ [μm] �/2π [GHz] �r/2π [GHz] �/�r Va/Er

10 1.70 195 0.009 0.2
Diamond 30 0.56 22 0.03 2

50 0.34 8 0.04 5
10 0.57 500 0.001 0.1

Silica 30 0.19 56 0.003 0.7
50 0.11 20 0.006 2
10 0.84 74 0.01 0.5

Silicon 30 0.28 8 0.03 5
50 0.17 3 0.06 14

correlation parameter is always much below unity, since pho-
tons are uniformly emitted into all directions. In stark contrast,
by applying acoustic control techniques strong correlations,
�(R) � 0.9, can be established over distances that can be in
the order of several tens of the acoustic wavelength, λ.

As illustrated in Fig. 8(d), this possibility to induce di-
rectional, long-range interactions even in 2D enables the im-
plementation of fully connected networks of quantum nodes,
where by rotating the angle of k1 and k2, emitters can interact
in a unidirectional way with every other emitter in large 2D
lattices.

VI. IMPLEMENTATION

The efficient coupling of individual emitters to propagating
optical modes in nanofibers or photonic crystal waveguides
has already been demonstrated [23–33] using trapped atoms
as well as quantum dots. In both cases, the decay into
the waveguide can substantially exceed the emission into
nonguided modes, showing that the waveguide QED regime,
�0 � �ng, can indeed be realized experimentally. Photonic
crystal waveguides can also be fabricated out of diamond
[13,71–73], which is particularly interesting for the present
purpose. Diamond has excellent optical properties and both
the speed of sound, v � 1.7 × 104 m/s (for the longitudinal
modes), and the refractive index, n � 2.4, are exceptionally
high compared to most other materials. At the same time there
are several well-studied emitters, like nitrogen-vacancy (NV)
[74,75] or silicon-vacancy (SiV) [76] centers, which are ide-
ally suited for quantum information processing applications.

Bulk or surface acoustic waves can be launched into such
a photonic waveguide using either electrical interdigital trans-
ducers (IDT) or side-coupled electrodes [9,77–80]. The result-
ing index modulations can be of the order of δn/n0 � 10−4

[14,51,53], which for optical frequencies of about ωc/(2π ) =
400 THz results in a potential depth of Va/h̄ = ωcδn/n0 ≈
2π × 40 GHz. For a diamond waveguide with an effective
photon mass of m∗ ≈ 1.7 × 10−35 kg and assuming an acous-
tic frequency of �/(2π ) = 1 GHz (λ ≈ 20 μm), we obtain a
recoil frequency of �r/(2π ) ≈ 50 GHz and Va/Er � 0.8 and
�/�r � 0.02. As summarized in Table I, similar values are

FIG. 9. Implementation. (a) Plot of the recoil energy �r and
the width B of the lowest band of a static cosine potential V (x) =
Vst cos(2πx/a) for a silicon waveguide and a = 3 μm. The dashed
lines indicate the values of the potential depth Va/h = 40 GHz and
the acoustic frequency �/(2π ) = 1 GHz corresponding to a wave
propagating at a speed of v � 8.4 × 103 m/s. (b) Decay of the exited
state of a single emitter in a slow-light waveguide described by
the potential Vtot (x, t ) in Eq. (25). Here the exact dynamics (blue
line) is compared with the prediction from the Bloch-Floquet theory
described in Sec. III A (green line) using the effective mass m∗ =
2h̄/(Ba2) obtained from (a). The red line is the prediction from
an improved calculation detailed in Appendix A, using the Born-
Markov (BM) but not the effective mass approximation. For this plot
λ = 3a = 9 μm, Vst/Er = 2.5, g0/�r = 0.02, Va/Er = 0.3, �/�r =
0.4, and δ/�r = −0.25, where Er and �r are defined with respect to
the bare effective mass, have been assumed. (c) Sketch of a dual-rail
waveguide configuration, where the upper rail is used to implement
the static optical crystal structure and contains the emitters, while
the other, structureless rail guides the acoustic wave. By using a
transverse mode profile, which extends over both waveguides, optical
modes are affected by both static and acoustic potentials.

also obtained for fused silica and silicon waveguides. These
estimates show that already under very generic conditions,
acoustic modifications of the emission characteristic, as de-
scribed in this work, become experimentally accessible.

A. Slow-light waveguides

To enhance acoustic effects, the group velocity of the
photons in the waveguide can be further reduced by adding
a static potential, Vst (z), with a periodicity a that is slightly
larger than the optical wavelength. For sufficiently large Vst,
this creates a miniband with a tight-binding dispersion relation
ω(k) � (B/2) cos(ka) and an increased effective mass m∗ =
2h̄/(Ba2). As illustrated in Fig. 9(a), for the simple example
Vst (x) = Vst cos(kstx), where kst = 2π/a, the bandwidth B and
therefore also the recoil frequency �r can be significantly
reduced compared to a regular photonic crystal waveguide.
For example, for a = 3 μm and Vst/h = 2 THz, which corre-
sponds to δnst/n0 ≈ 0.005, the resulting recoil frequency for
a silicon waveguide and �/(2π ) = 1 GHz is already reduced
to �r/(2π ) ≈ 2 GHz. Therefore, a potential strength of up
to Va/Er � 20 and ratios of �/�r � 0.5 can be reached. At
the same time, realistic coupling rates of g0/(2π ) ≈ 300 MHz
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[81] are still compatible with the weak-coupling condition
g0/�r � 1, assumed in most parts of this work, and with the
requirement that the resulting decay rates, � ∼ �0, exceed the
bare decay of the emitter, �ng/(2π ) ∼ 1–10 MHz.

Note that by creating such minibands to reduce the pho-
tonic group velocity, the full optical potential entering in
Hamiltonian Hw(t ) must be replaced by

Vtot (x, t ) = Vst (x) + Va cos(kax − �t ), (25)

which in general makes the analysis of the emission processes
considerably more involved (see Appendix A). However, as
long as a � λ, a quasicontinuum description with an en-
hanced effective mass is still valid. This is demonstrated in
Fig. 9(b), where the decay of a single emitter in the presence
of the combined potential given in Eq. (25) is calculated for
λ/a = 3. Already at these ratios, the predictions from the
Bloch-Floquet theory developed in Sec. III A, but assuming an
enhanced effective mass, reproduce well the actual dynamics
obtained from the evolution of the full model. Therefore, the
implementation of minibands for optimizing the waveguide
parameters can be combined with the acoustic control tech-
niques without significantly affecting the resulting dynamics.

B. Other considerations

In our analysis we have considered so far a single waveg-
uide that confines both the optical and the acoustic waves.
This can be problematic for optimizing the photonic band
structure while leaving the propagation of the acoustic control
signals untouched. In addition, for defects centers or quan-
tum dots located inside the waveguide, strong strain effects
give rise to large modulations of the emitter frequencies,
which interfere with the described emission effects. Such and
related problems can be overcome by considering dual-rail
configurations [24,82], as illustrated in Fig. 9(c). Here one
rail contains the emitters and can be optimized to reduce the
photonic group velocity while the second rail is left unaltered
to minimize the dispersion of the acoustic wave packet, reduce
backscattering, etc. By using a transverse photonic mode,
which has a support in both waveguides [24,82], the photons
can still be simultaneously coupled to the emitters and the
acoustic waves.

VII. CONCLUSIONS

In summary, we have analyzed the influence of strong
acoustic waves on emitter-photon interactions in waveguide
QED. Our findings show that, in particular, under slow-light
conditions substantial modifications of the emission dynamics
and the degree of directionality can occur. These modifica-
tions can enable one to implement and control strong inter-
actions between distant emitters. Since these effects do not
depend on specific properties of the emitter and can be tuned
dynamically by simply varying the strength of the acoustic
modulation, they can be applicable for a large range of
quantum networking applications. Beyond the basic scenarios
considered in this work, the acoustic photon-dragging effects
can be combined with various other lattice geometries in two
or even three dimensions, where emitter-emitter interactions
with different types of connectivity can be engineered.

Note added. Recently, a related study about directional
emission in the context of cold atoms in 2D moving optical
lattices appeared [83].

ACKNOWLEDGMENTS

The authors thank Daniele De Bernardis, Marko Loncar,
and Ephraim Shahmoon for valuable discussions. This work
was supported by the Austrian Science Fund (FWF) through
DK CoQuS W 1210, the COST Action NQO (MP1403)
and a START grant Y 591-N16, and through ONR MURI
(Award No. N00014-15-1-2761), AFOSR MURI (Award No.
FA9550-17-1-0002), CUA, NSF, and a Vannevar Bush Fel-
lowship.

APPENDIX A: BLOCH-FLOQUET THEORY
OF SPONTANEOUS EMISSION

In this Appendix we outline the derivation of the total
emission rate � into a 1D modulated optical waveguide, which
is described by a combination of a static and a propagating po-
tential, Vtot (x, t ) = Vst cos (kstx) + Va cos(kax − �t ). Assum-
ing ka < kst, the photon wave function can be expressed in
terms of the Bloch functions unk of the first BZ defined by
the acoustic wave vector ka. In the interaction picture with
respect to H0, the single-excitation wave function can then be
written as |	I (t )〉 = [c̃e(t )σ+ + ∑

nk φ̃n(k, t )a†
nk]|g〉|vac〉 and

we obtain the following set of coupled equations:

∂t c̃e(t ) = −i
g√
L

∑
nk

φ̃n(k, t )unk (0, t )eiωegt , (A1)

∂t φ̃n(k, t ) = −i
g√
L

c̃e(t )u∗
nk (0, t )e−iωegt , (A2)

where x1 = 0 has been assumed. The equations of motion
of the field amplitudes can be integrated and reinserted into
the equation for ∂t c̃e(t ). The resulting integro-differential
equation can be written as

∂t c̃e(t ) = −g2
∫ t

0
dt ′ G(t ; t ′)c̃e(t ′), (A3)

where we introduced the general correlation function for the
optical field,

G(x, t ; x′, t ′) = 〈ψ (x, t )ψ†(x′, t ′)〉eiωeg(t−t ′ )

= 1

L

∑
nk

unk (x, t )u∗
nk (x′, t ′)eiωeg(t−t ′ )eik(x−x′ ),

(A4)

and the short notation G(t ; t ′) ≡ G(x = 0, t ; x′ = 0, t ′).

1. Continuous waveguide

To proceed we first consider the case Vst = 0, which cor-
responds to a continuous waveguide, as studied in Sec. III.
In this limit the unk (x, t ) can be expanded in terms of the
Bloch-Floquet coefficients u(�)

nk [see Eq. (7)], which satisfy the
eigenvalue equation∑

�′
H��′u(�′ )

nk = ω̃n(k)u(�)
nk , (A5)
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where

H��′ =
⎧⎨
⎩

�r
(
� + k

ka

)2 − ��, � = �′
Va
2h̄ , |� − �′| = 1,

0, otherwise.
(A6)

Using this decomposition, the field correlation function can be
written as

G(t ; t ′) = 1

L

∑
nk

∑
��′

u(�)
nk

[
u(�′ )

nk

]∗
e−i�(�−�′ )t ei[δn (k)−��′](t−t ′ )

� 1

L

∑
nk�

∣∣u(�)
nk

∣∣2
ei[δn (k)−��](t−t ′ ), (A7)

where δn(k) = ωeg − ω̃n(k). By going from the first to the
second line we have already assumed that g0 � �, in which
case the terms with � �= �′ are fast oscillating compared to the
dynamics of c̃e(t ) and can be neglected.

In a final step we make use of the fact that for large
|t − t ′|, i.e., on timescales relevant for the emitter dynamics,
the main contributions in Eq. (A7) arise from wave vectors
kμ, which satisfy the resonance condition (9). By linearizing
the dispersion relation in a small interval δk around these
resonances, we can approximate the correlation function by

G(t ; t ′) �
∑

μ

∣∣u(�μ )
nμkμ

∣∣2

2π

∫ kμ+δk/2

kμ−δk/2
dk e−i

∂ω̃nμ

∂k |kμ (k−kμ )(t−t ′ )

�
∑

μ

∣∣u(�μ )
nμkμ

∣∣2

|ṽg,μ| δ(t − t ′). (A8)

This approximation corresponds to the usual Born-Markov
approximation and is valid as long as g0 is small compared
to the width of the nth quasienergy band and away from other
band-edge points where ṽg(kμ) � 0. After this simplification
and by separating contributions from resonances with positive
and negative group velocities, we obtain

∂t c̃e(t ) � −
(

�R

2
+ �L

2

)
c̃e(t ), (A9)

where �R and �L are given in Eq. (10).

2. Photonic crystal waveguide

We now consider the more general case of a photonic
crystal waveguide, where Vst �= 0. For simplicity we con-
sider here only the case where the acoustic wavelength is
an integer multiple of the period of the static potential, i.e.,
λ/a = kst/ka = M ∈ N. Under this assumption the original
band structure generated by Vst is divided into M subbands
by the acoustic wave. Then the Bloch functions unk (x, t ) can
be expanded as

unk (x, t ) =
∑
�,ν

u(�,ν)
nk ei(k+kaν)xe−i(ω̃n (k)+��)t , (A10)

where now an additional index ν for the Fourier expansion
in x must be introduced. By inserting this ansatz into Eq. (6)
we obtain an eigenvalue equation for the quasienergies ω̃n(k),
similar to Eq. (A5). The matrix elements for the corresponding

Floquet Hamiltonian are

H��′,νν ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�r
(
ν + k

ka

)2 − ��, � = �′, ν = ν ′,
Vst
2h̄ , � = �′, |ν − ν ′| = M,
Va
2h̄ , � − �′ = ν − ν ′ = ±1,

0, otherwise.
(A11)

For the derivation of the total decay rate we can then proceed
as above, and under the validity of the Born-Markov approxi-
mation we obtain

� =
∑

μ

|gμ(x1)|2
|ṽg,μ| . (A12)

Note that in contrast to the homogeneous waveguide, the
couplings gμ(x) = g

∑
ν u(�μ,ν)

nμkμ
eikaνx depend explicitly on the

location of the emitter within the static lattice potential, Vst (x).

APPENDIX B: DERIVATION OF THE MASTER EQUATION

For the derivation of the master equation (12) we consider
the general setting of N emitters located at positions xi along
a 1D waveguide. In the interaction picture with respect to H0,
the emitter-field coupling reads

HI (t ) = h̄g
N∑

i=1

[ψ†(xi, t )σ i
−e−iωegt + σ i

+ψ (xi, t )e−iωegt ].

(B1)

Under the validity of the Born-Markov approximation, we
can follow the usual approach and derive an effective, time-
local master equation for the reduced density operator of the
emitters, ρ (see, for example, Ref. [84]). The result is of the
general form

ρ̇ = − 1

h̄2

∫ ∞

0
dτ Tr f {[HI (t ), [HI (t − τ ), ρ(t ) ⊗ ρ f ]]},

(B2)

where ρ f = |vac〉〈vac|, and the trace is over the field degrees
of freedom. By evaluating all the individual terms, the result
can be written in a compact notation as

ρ̇(t ) =
N∑

i, j=1

Ai j (σ
i
−ρσ

j
+ − σ

j
+σ i

−ρ) + H.c., (B3)

where

Ai j = g2
∫ ∞

0
dτ G(x j, τ ; xi, 0). (B4)

For weak enough driving strength, �L, the Hamiltonian for the
external laser fields can be added to Eq. (B3) without affecting
the validity of this result. Then, after identifying � = 2Re{Aii}
and neglecting small frequency shifts ∼Im{Aii} we recover
Eq. (12).

Correlated decay rates in 1D and 2D

For the evaluation of the correlated decay rates Ai j in a
1D waveguide we can use the same set of approximations as
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in Appendix A. As a main difference, the Ai j depend on the
distance ri j = x j − xi, since

G(xi, τ ; x j, 0) � 1

L

∑
nk�

∣∣u(�)
nk

∣∣2
ei[δn (k)−��]τ ei[k+ka�]ri j

�
∑

μ

∣∣u(�μ )
nμkμ

∣∣2

|ṽg,μ| ei[kμ+ka�μ]ri j δ

(
τ − ri j

ṽg,μ

)
.

(B5)

Therefore, nonvanishing contributions to Ai j arise only from
resonances where ri j and ṽg,μ are coaligned. In Eq. (14), this
fact is accounted for by the step function θ [ṽg,μri j].

The derivation of the master equation can be readily gener-
alized to 2D waveguides by using in Eq. (B4) the correspond-

ing 2D correlation function G(ri, τ ; r j, 0) for the evaluation
of the Ai j . In this case and defining Ri j = r j − ri, the general
expression for the correlation decay rates reads

Ai j = g2

2π

∑
n��′

∫
res

dk

∣∣u(�,�′ )
nk

∣∣2
eik·Ri j

|ṽg(k)| θ [ṽg(k) · Ri j], (B6)

where for each set of indices n, �, and �′ the k integration runs
over the resonance lines defined by Eq. (22). Note that for an
isotropic waveguide and without the acoustic modulation,

Ai j = g2kr

2vg(kr )
[J0(kr |Ri j |) + iH0(kr |Ri j |)], (B7)

where J0(x) and H0(x) denote the zeroth-order Bessel and
Struve functions, respectively. From the asymptotic expansion
of these functions one obtains the characteristic decay, Ai j ∼
1/

√|Ri j |, for photon-mediated interactions in 2D.
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