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Inversion-symmetry breaking in spin patterns by a weak magnetic field
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Laser-driven cold atoms near a plane retroreflecting mirror exhibit self-organization above a pump threshold.
We analyze the properties of self-organized spin patterns in the ground state of cold rubidium atoms.
Antiferromagnetic patterns in zero magnetic field give way to ferrimagnetic patterns if a small longitudinal
field is applied. We demonstrate how the experimental system can be modeled as spin-1 atoms diffractively
coupled by the light reflected by the mirror. The roles of both dipolar and quadrupolar magnetization components
in determining the threshold and symmetry variations with a weak longitudinal magnetic field are examined.
Although the magnetic structures correspond dominantly to a lattice of magnetic dipoles, the symmetry breaking
to ferrimagnetic structures in a finite field is mediated by the coupling to a homogenous quadrupole (alignment),
which is not possible in a spin-1/2 system. Our study provides a basis for further exploration of instabilities in
driven multilevel systems with feedback.
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I. INTRODUCTION

Light-mediated cold-atom self-organization is an emerging
research avenue with potential applications in metrology and
condensed matter simulation [1–19]. In this paper, we study
the phenomenon of self-organization arising in an optically
nonlinear sample due to diffractive coupling via single mirror
feedback [20,21]. While initial observations of these struc-
tures were performed in liquid crystals and warm atomic
vapors [22,23], the scheme was recently extended to thermal
cold gases, where the nonlinearity can be of optomechanical,
electronic saturable, or magnetic origin, with corresponding
structuring of atomic density, optical coherence, and mag-
netization, respectively [5,6,24–26]. These systems are in-
teresting as they have a single pump axis and hence allow
for spontaneous symmetry breaking of the translational and
rotational degrees of freedom in the plane transverse to this
axis, whereas in systems with multiple distinguished axes
(e.g., a cavity axis and a pump axis), the potential symmetries
and realizations are constrained.

As in Refs. [25,26], in this article the relevant degrees of
freedom are populations and coherences in the ground-state
Zeeman sublevels and the optical nonlinearity is provided by
optical pumping, i.e., is magnetic optical in origin. The result-
ing instability creates both transverse spatial modulations of
the atomic spins and the polarization profile of the laser beam.

The magnetic phase space of the instabilities was explored
in Ref. [26]. In zero magnetic field, complementary intensity
patterns with square symmetry are found in the σ± compo-
nents of the transmitted beam. These are optical spin patterns
arising from spontaneous symmetry breaking of the zero net
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optical spin state in the linearly polarized pump field. The
optical patterns indicate the spontaneous emergence of a spin
pattern in the atoms, i.e., a spontaneous magnetic ordering
of dipoles, in this case antiferromagnetic. In Ref. [25], an
analogy was established between this system and the Ising
model. Diffractive ripples in the feedback field caused by a
local perturbation of the atomic magnetization lead to optical
pumping in the same direction one lattice period away and
opposite direction half a lattice period away, leading to the
antiferromagnetic coupling. If the up-down symmetry is bro-
ken by a small longitudinal field, the antiferromagnetic spin
phase gives way to ferrimagnetic phases with hexagonal order.
These became more irregular at higher absolute values of
the magnetic field. In Refs. [25,26], it was hypothesized that
the symmetry breaking at large |Bz| is due to the linear and the
incoherent nonlinear Faraday effect, but that at small |Bz| the
coupling of the dipole states to higher multipoles via coherent
effects is important. In this article, we provide a systematic
study of the variation of pattern properties with the longitu-
dinal magnetic field Bz, outlined in Ref. [25]. The threshold
and symmetry properties are studied both experimentally and
theoretically, with one of the main goals being the elucidation
of the pattern selection and symmetry-breaking mechanism.

Previous modeling of transverse nonlinear polarization
instabilities in laser-driven atomic media focused either on
spin-1/2 ground states [27–31] or solely on the electric field
evolution, eliminating the medium dynamics [32–34]. We
model the experimental transition by F = 1 → F ′ = 2, which
is a minimal model for F → F + 1 transitions, allowing for
atomic quadrupoles, where F � 1 is an integer [35]. We
show that the modeling of spin pumping processes by an
effective spin-1/2 ground state, including only rate equations
for the spin dipoles, is insufficient to describe the variation of
pattern properties with an applied longitudinal magnetic field
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Bz and how this is amended by using instead the optical Bloch
equations, including both populations and coherences in the
ground states of a spin-1 model. We calculate analytically
the expressions for the threshold and the pattern symmetry
parameter at a given Bz, by using the experimentally motivated
approximation that the instability is driven by optical pumping
of atomic spins due to an intensity difference in the two σ

components of the feedback field. Moreover, another result
of this analysis is the discovery that the inversion, i.e., up-
down, symmetry of the system is broken at small |Bz| by a
coherent nonlinear Faraday effect, governed by light-induced
|�m| = 2 ground-state coherences [36]. We demonstrate that
the threshold dynamics of the spin perturbation amplitudes
in the simplified model is determined by a set of complex
Ginzburg-Landau equations [37], describing wave mixing of
spin modes on a Talbot circle. The symmetry breaking is pro-
vided in these equations by a term quadratic in the spin modes.

II. EXPERIMENTAL SETUP

Most of the experimental data presented in this paper were
obtained with a setup located at the University of Strathclyde.
A cloud of N = 9 × 108 87Rb atoms at T = 125 μK is loaded
into a magneto-optical trap (MOT), which is then released by
turning off the cooling laser beams and the gradient magnetic
field, after which an external homogeneous magnetic field is
applied to facilitate the study of pattern properties. After a
waiting time of 3.5 ms needed for stray magnetic fields to
decay, a cloud with on-resonance optical thickness of about
b0 = 27 and FWHM ≈3 mm is prepared for pattern formation
experiments. A linearly polarized pump beam with a FWHM
of 0.8 mm, intensities in the range I = 1 − 30 mW/cm2, and
a typical detuning of � = −7�1 = −14�2, where �1 is the
population and �2 is the optical coherence decay rate, is then
turned on to irradiate the center of the cloud for a typical
duration of �t = 250 μs. This pattern-inducing pump beam
is retroreflected from a feedback mirror with reflectivity R =
0.95. The mirror is put (i.e., imaged) at an effective distance
d of a few millimeters from the center of the cloud by using a
pair of lenses with focal lengths f = 12.5 cm placed between
the cloud and mirror in the 4 f configuration [38]. The small
part of the light transmitted through the mirror is used for
pattern imaging of the σ -polarization components. Both real
space or near-field (NF) images of the reentrant beam intensity
distributions and Fourier space or far-field (FF) data are used
in the results presented in this paper. A simplified schematics
of the setup is presented in Fig. 1.

Additional observations were done in a setup at the Uni-
versité Côte d’Azur, described in Refs. [25,26]. The main
difference to the setup described above is that a higher optical
density of up to 110 can be obtained.

III. EXPERIMENTAL OBSERVATIONS

A. Pattern symmetries

In Fig. 2, we present NF images of experimental real-
izations of patterns characteristic for the three ranges of the
applied longitudinal magnetic field, Bz. Near Bz = 0, patterns
with square and rectangular symmetries were observed. In the
Strathclyde setup, these patterns contained defects, deforma-
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FIG. 1. Simplified schematics of the experimental setup, adapted
from Ref. [25]. A linearly polarized pump beam is reflected from
a feedback mirror to drive the spin self-organization in the atomic
cloud. A small transmitted part of the beam is used for polarization
selective NF and FF (not shown) imaging. Inversion symmetry is
broken by applying a small longitudinal magnetic field (B field),
resulting in formation of hexagons and honeycombs in the σ po-
larization channels (inset: NF data). Rb, cold cloud of 87Rb; M,
feedback mirror; λ/4, quarter-wave plate; PBS, polarizing beam-
splitter cube; CCD, charge-coupled device camera.

tions, and irregularities of amplitudes [see center column of
Fig. 2(a)], the analysis of which, although in itself interesting,
is beyond the scope of this article. For the Nice setup, a clear
long-range order with square symmetry was observed.

Increasing the |Bz| to values larger than ≈0.05 G (de-
pending on pump intensity, see below), the pattern symme-
try changes to hexagonal, with σ+ light forming hexagons
(honeycombs) and σ− light forming honeycombs (hexagons),
for positive (negative) Bz values. The modulation depths of
the channels are now unequal, with positive (negative) σ

being more modulated for positive (negative) Bz. For all three
symmetries, the regions of excess σ light are complementary,
which leads to the conclusion that the main driver of insta-
bility is the intensity difference of the σ components. This is
seen in the subtracted NF images shown in the lowest row of
Fig. 2(a) and will motivate the approximations used in Sec. VI.
The inversion symmetry of σ± modulation amplitudes is
present within experimental uncertainties for |Bz| < 0.05 G
and absent for higher |Bz|. To first order in spin modulation,
the difference in these modulation amplitudes gives an indi-
cation of the atomic spin modulation [see Eq. (3) and the
corresponding discussion in Sec. V below]. The last row of
Fig. 2(a) shows antiferromagnetic states around Bz = 0 and
ferromagnetic states at Bz = −0.09, 0.12 G, with the sign of
the dominant magnetization depending on the sign of Bz. The
origin of this symmetry breaking is one of the subjects of this
paper. Similar symmetry breaking by an external magnetic
field is known to occur in the Ising model [39–42].

The NF images at large positive Bz are shown in Fig. 2(b).
The complementarity of the σ light distributions is still
present, but the patterns become disordered. For b0 = 110,
a residual hexagonal symmetry is observed, along with a
flipping of the σ channels, giving honeycombs for σ+ and
hexagons for σ− at positive Bz. At b0 = 27, the patterns
are highly disordered and a residual symmetry is not clearly
discernible.
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FIG. 2. Near-field images of the transmitted part of the reentrant beam intensities (see text) in the self-organized magnetization phases,
for varying Bz. (a) Columns (left to right): Bz = −0.09 G, Bz = 0, Bz = 0.12 G. Rows (top to bottom): σ+, σ− and σ+ − σ− (Strathclyde).
The difference images are normalized to their respective maximum absolute values. The situations for Bz �= 0 correspond to ferrimagnetic
spin lattices, whereas the situation for Bz = 0 corresponds to an antiferromagnetic spin lattice. (b) Top rows: σ+, σ− images for Bz = 1.4
G (Strathclyde). Bottom rows: σ+, σ− images for Bz = 0.54 G (Nice). Experimental parameters (Strathclyde): b0 = 27, � = −14�2,
I = 10 mW/cm2, d = −2.9 mm, R = 0.95, field of view 0.36 × 0.36 mm2. Experimental parameters (Nice): b0 = 110, � = −24�2,
I = 22 mW/cm2, d = −20 mm, R = 0.99, field of view 3.15 × 3.15 mm2.

B. Diffracted power

Figure 3 shows scans of diffracted power Pd in the σ

polarization channels against Bz for three values of pump

FIG. 3. Diffracted power at small longitudinal magnetic fields
(Strathclyde). (a) I = 14 mW/cm2. (b) I = 19 mW/cm2. (c) I =
24 mW/cm2. Dots, σ+ light; circles, σ− light. Experimental param-
eters: � = −14�2, b0 = 27, d = −2.9 mm.

beam intensity. The Pd was extracted from the FF data as the
diffracted power in the first Talbot ring, since the power in
higher rings was zero at the experimental parameters used
[43]. The diffracted power in the two circular polarization
channels is approximately equal near zero Bz. When we in-
crease the Bz magnitude above ≈0.03 G, the relative diffracted
power in the two channels starts to differ; namely, for Bz > 0
there is an increase in σ+ and for Bz < 0 an increase in
σ− diffracted power. This indicates that the σ+ (σ−) lattice
becomes stronger for positive (negative) Bz, which is seen in
NF images of Fig. 2(b).

The feature in Bz has a subnatural linewidth; i.e., it is
narrow even if it does not appear to be on the displayed span
which corresponds to maximum Larmor frequencies �z ≈
6 × 105 s−1 ≈ 0.03�2. Its width increases with the beam in-
tensity, reminiscent of power broadening in the nonlinear
Faraday rotation for an F = 3 → F ′ = 4 transition reported
in Refs. [36,44]. We have observed this narrow feature in
independent measurements of the rotation angle in a single-
pass configuration at the same experimental parameters [45].
The total diffracted power has a similar qualitative behavior
as the dominant polarization component and is analyzed in
the next section.

C. Threshold intensities

The pump threshold for the magnetic transition was mea-
sured in dependence on the longitudinal field. Figure 4(a)
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FIG. 4. Diffracted power and threshold intensity for positive
Bz (Strathclyde). (a) Threshold pump intensity. (b) Total diffracted
power for varying input beam intensity. Triangles (black): I =
3.1 mW/cm2. Diamonds (red): I = 5.5 mW/cm2. Squares (blue):
I = 7.1 mW/cm2. Experimental parameters: � = −14�2, b0 = 27,
d = 1.3 mm.

shows threshold beam intensity Ith against Bz. The threshold
is minimal in zero field. For small Bz, Ith increases with Bz and
peaks at ≈0.25 G. On further increasing Bz, Ith begins to drop
and levels off to a constant value. It will be shown in Secs. V
and VI that this dependence on Bz can be accounted for in a
theoretical model describing the atoms as a spin-1 medium.

Scans of the total diffracted power for Bz > 0 are shown in
Fig. 4(b). Depending on the pump beam intensity with respect
to the threshold [see Fig. 4(a)], different behaviors are ob-
served. At low beam intensities above threshold, the Pd drops
at small Bz and remains zero for higher field magnitudes.
As we increase the beam intensity, the Pd feature in Bz gets
broader and exhibits a revival after an initial strong decrease.
This is related to the results of Fig. 4(a), as the increase
(decrease) of the pattern threshold corresponds to a decrease
(increase) of diffracted power at a fixed pump intensity.
Input intensities below 4 mW/cm2 are below the minimum
threshold for the revival at high-Bz fields and the magnetic
ordering occurs only in the central lobe. The width of the
lobe increases with intensity, indicating power broadening
of a magneto-optical resonance. The total diffractive power
and the dominant polarization component show qualitatively
similar behavior.

IV. THEORETICAL MODEL

A. Atom dynamics

We now outline the theoretical model for the internal
degrees of freedom of the atomic medium interacting with the
pump laser. The large pump beam detuning in our experiments
allows for the use of the low saturation approximation, where
atom-light interaction is modeled by considering only the
ground-state populations and coherences of the density matrix
ρ; see, e.g., Refs. [27,35]. In addition to this, for simplicity we
also approximate the experimentally excited F = 2 → F ′ =
3 transition of the D2 line of 87Rb with an F = 1 → F ′ = 2
transition as it contains the relevant multipoles. It should be
also noted that the multipoles of rank higher than 2 do not pro-
vide a feedback to the light field. Choosing the quantization
axis parallel to the pump propagation direction z′ and setting
the transverse magnetic fields to zero, we identify the relevant

FIG. 5. Model atomic system. (a) Zeeman sublevel structure of
the F = 1 → F ′ = 2 transition with the corresponding Clebsch-
Gordan coefficients. (b) Illustration of symmetries of the tensors
related to the magnetic moments w, x, u, v, from left to right.

atomic variables to be u = 2Re(ρ1−1), v = 2Im(ρ1−1), w =
ρ11 − ρ−1−1, and x = ρ11 + ρ−1−1 − 2ρ00 (where ρi, j are the
density matrix elements of the ith and jth Zeeman sublevels
of the spin-1 ground state), given respectively by the expecta-
tion values: 〈F 2

x − F 2
y 〉, 〈FxFy + FyFx〉, 〈Fz〉, and 〈3F 2

z − F 2〉,
where F 2 and Fx,y,z are hyperfine angular momentum opera-
tors [46]. Each of the above variables is also proportional to
a coefficient of the irreducible tensor expansion of the density
matrix, known as a polarization moment, the knowledge of
which is sufficient to describe the angular momentum state
of an atomic ensemble [46]. The characteristic spatial sym-
metry of each tensor is given by the corresponding spherical
harmonic function, as shown in Fig. 5. The w variable is
also called orientation (spin) and corresponds to a dipole,
whereas the alignment x and coherences u and v correspond
to quadrupoles.

Temporal dynamics of the atomic variables is described by
a set of optical Bloch equations. After adiabatic elimination
of the optical coherences and the excited state variables (up to
the order of �±/� [35], where �± are Rabi frequencies of the
σ light components), one is left with a set of four equations
for the ground-state variables [25,26,45]

u̇ = −�cu +
(

2�z + 5

6
D�̄

)
v + 1

6
P�−�̄w

− 1

9
P�+x + 5

18
P�+,

v̇ = −�cv −
(

2�z + 5

6
D�̄

)
u + 1

6
P�+�̄w

+ 1

9
P�−x − 5

18
P�−,

ẇ = −�ww − 1

6
P�−�̄u − 1

6
P�+�̄v − 1

9
Dx + 5

18
D,

ẋ = −�xx − 1

3
P�+u + 1

3
P�−v + 1

3
Dw + 5

18
S, (1)
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where the pump rates are

S = 1

�2

[ |�+|2
1 + (�̄ − �̄z )2

+ |�−|2
1 + (�̄ + �̄z )2

]
,

D = 1

�2

[ |�+|2
1 + (�̄ − �̄z )2

− |�−|2
1 + (�̄ + �̄z )2

]
, (2)

P�+ = 2

�2

Re(�∗
+�−)

1 + �̄2
, P�− = −2

�2

Im(�∗
+�−)

1 + �̄2
,

and the decay rates are �w = γ + 1
6S, �x = γ +

11
18S, and �c = γ + 5

6S . Here, γ is an effective decay
rate of the Zeeman ground-state populations and coherences,
detuning is normalized as �̄ = �/�2, and �z is the Larmor
precession frequency in a longitudinal magnetic field. Rabi
frequencies �± are related to the electric fields E± as
�± = μd E±/h̄, where μd is the dipole matrix element of the
stretched state optical transitions. In the following, we use
the expression �± = �1

√
I±/2Is, with Is = 1.669 mW/cm2.

Equations (1) are valid in the case when no transverse
magnetic fields are present, and the |�m| = 1 ground-state
coherences vanish. When we neglect the coupling to other
multipoles, Eqs. (1) show that the orientation w is driven
by an intensity difference in the two circular polarization
components, the x variable is driven by light polarized along
any direction, whereas u and v couple most strongly to light
polarized along x′ or y′ and at 45◦ to x′ or y′, respectively. The
pumping of w and x is related to incoherent processes (i.e.,
insensitive to the phase between the σ+ and σ− components),
whereas u and v are pumped in a coherent way (i.e., sensitive
to the relative light phase of the circular components).

B. Field evolution

We will consider the propagation of the slowly varying
electric field envelopes Ẽ± = F̃± + B̃±, where F̃± are the
forward- and B̃± the backward-propagating σ electric field
components. In the next two subsections, we normalize the
electric fields as E0 = �0/

√
�2(1 + �̄2), where �0 = �+ =

�− since we use a beam polarized along the y′ direction,
and we write I0 = |E0|2 for the intensity of each circular
component.

The pump terms in Eqs. (1) are all quadratic in the op-
tical fields and will include terms ≈e±2ikz due to the in-
terference of the counterpropagating beams. As the ground-
state dynamics is rather slow, the atoms will traverse several
optical wavelengths on the timescale of the state dynam-
ics (�10 μs), and so these grating terms will be averaged
out and will not contribute to the response of the atomic
variables. We will therefore ignore these “longitudinal grat-
ing” terms, replacing the pump terms S , D, P�+, and P�−
with their spatial averages κ+(|F̃+|2 + |B̃+|2) + κ−(|F̃−|2 +
|B̃−|2), κ+(|F̃+|2 + |B̃+|2) − κ−(|F̃−|2 + |B̃−|2), 2Re(F̃ ∗

+F̃− +
B̃∗

+B̃−), and −2Im(F̃ ∗
+F̃− + B̃∗

+B̃−), respectively, where
κ± = (1 + �̄2)/[1 + (�̄ ∓ �̄z )2], and �̄z = �z/�2 = 0.23 ×
Bz/G, where we have used gF = 0.5 (taken from the F = 2
experimental ground state) for the Landé g factor. The coeffi-
cients κ± take into account the influence of Zeeman detuning
on pumping by σ light components. This dependence in the
D pump rate gives rise to the incoherent part of the nonlinear

Faraday effect. The coherent pump terms P�± do not contain
the dependence on Bz as the coherences vanish at small �z �
�, and the approximation is justified in more detail in the
supplementary material of Ref. [26].

We take no further account of atomic motion and assume
that the atomic variables respond only to the local optical
fields. This is justified as the cold atoms traverse only a
fraction of the transverse pattern period during the onset
of pattern formation. The field evolution equations for the
forward-propagating fields are now

∂

∂z′ F̃± = i
φ0

±
L

[(
1 ± 3

4
w + 1

20
x

)
F̃± + 3

20
(u ∓ iv)F̃∓

]
,

(3)

where L is the longitudinal length of the atomic cloud, φ0
± =

b0
2

(�̄∓�̄z )
1+(�̄∓�̄z )2 is the linear phase shift, including the linear

Faraday effect, and in analytical calculations we neglect the
imaginary part of the dielectric susceptibility (i.e., absorption)
as we are in a regime where |�| � �2. Equations (3) elucidate
the optical nonlinearities at work in the atomic medium. The
constant term is linear refraction. The w and x terms are due to
stronger light coupling to atoms pumped into stretched states.
The w term describes the action of an orientation, i.e., of
a dipole state with unequal occupation in the opposite spin
states, and acts oppositely on the two circular polarization
components. It provides circular birefringence, leading to a
self-focusing nonlinearity similar to the one occurring in the
spin-1/2 system [29,30], with the difference here being that
pumping drives populations into bright instead of dark states.
The alignment term x is a consequence of stronger coupling
of both σ light components to populations in either of the
two stretched states and is not polarization selective. The u, v

terms are due to coherent cross coupling between the two
circular light polarization modes via a shared excited state
in a � subsystem and allow for generation of circular light
components of opposite polarizations than the input [47].

The transverse coupling of the atoms is provided by free
space diffraction during propagation from the end of the
medium and back, which is governed by

∂

∂z′ F̃± = − i

2k
�⊥F̃±, (4)

where �⊥ is the transverse Laplacian. Integration of this
equation yields the backward fields B̃±.

V. NUMERICAL RESULTS

We have solved numerically equations (1) in both 1D and
2D geometries. The incident linearly polarized beam propa-
gates through the medium with the optical response given by
(3) with both absorption and dispersion included. The atomic
cloud is modeled as a thin slab with 128 (in 2D: 128 × 128)
grid points with dynamics described by Eqs. (1). The spatial
coupling of the atoms is provided by free space diffraction
between the end of the medium and the mirror. For this,
Eq. (4) is solved in Fourier space.

The threshold of pattern formation is characterized by
an exponential growth of the laser beam profile modulation,
caused by a corresponding growth in the modulation of the
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FIG. 6. Growth rate of the patterns for a one-dimensional
(1D) numerical simulations (see text). (a) Growth rate λ at I0 =
10 mW/cm2 against the diffractive phase shift θ (see text) for
Bz = 0 (black, top circles), Bz = 20 mG (blue, middle circles), and
Bz = 1.5 G (red, bottom circles). The values for Bz = 1.5 G were
multiplied by 10 for visibility. (b) Scan of the fastest growth rate
λm against Bz for three input intensities I0: 10Is (red, solid), 15Is

(blue, dot-dashed), and 20Is (black, dashed). Parameters: b0 = 30,
� = −10�2, R = 0.95, γ = 10−4�2.

medium variable driving the self-organization. In our case,
this is mainly the spin w variable (see Sec. VI). The initial
spontaneously appearing seed perturbation with the largest
growth rate λ will evolve into a steady-state solution seen
in the experiment [37]. The analysis of scans of λ against
diffractive phase shift θ = q2d/k (where q is the transverse
wave number) at three different Bz’s shown in Fig. 6(a)
leads to the conclusion that the fastest growing patterns have
a diffractive phase shift of approximately π/2. A critical
diffractive phase shift of π/2 appears for instabilities in a
spin-1/2 system and a Kerr slab [20,29]. At b0 = 30 and for
input intensities used in Fig. 6(b), the maximal growth rate
λm initially drops to zero, and then exhibits a recurrence for
larger |Bz|, as shown in Fig. 6(b). The width of the central
features increases for a larger pump intensity, due to power
broadening, visible also in experimental measurements of
diffracted power.

The NF images of simulated 2D patterns at three different
Bz values are plotted in Fig. 7. At zero Bz, the patterns exhibit
a square symmetry with stripelike defects. This is similar to
the experimental pattern realizations, where stripelike defects
are also observed. The modulation depths of the σ beam
profiles are equal, with their difference giving a lattice with
neighboring sites of equal magnitude and opposite helicities.
The corresponding profile of the spin w variable mimics this
behavior, with neighboring atomic spins alternating between
up and down directions with equal maximal magnitudes. This
constitutes an antiferromagnetic spin state. Observing the
NF profiles of the σ polarization channels can thus reveal
the underlying spin structure inside the atomic medium and
justifies the approach taken in Fig. 2 to infer the magnetic
distribution in the medium from the difference of the NF
images of the circular components. For small Bz’s, the in-
version symmetry of the system is broken and patterns with
hexagonal symmetry appear. For negative (positive) Bz, the
σ+ patterns are honeycombs (hexagons) and the σ− patterns
are hexagons (honeycombs), as in the experiment. The sub-
tracted σ intensity profiles and the w variable both show

FIG. 7. Near-field steady-state data (depicting intensity of the
reentrant feedback field B± = B̃±(z = L) and atomic orientation
w), taken from two-dimensional (2D) simulations. Columns (left to
right): Bz = −140 mG, Bz = 0, Bz = 140 mG. Rows (top to bottom):
|B+|2, |B−|2, |B+|2 − |B−|2 and the w variable. Simulation parame-
ters: b0 = 60, I0 = 15Is, � = −10�2, R = 0.95, γ = 10−4�2, simu-
lation time: 2 × 104/�2. The size of the numerical grid was adjusted
to contain seven periods of the lattice. Periodic boundary conditions
are used in the simulations.

positive (negative) hexagons for positive (negative) Bz. The
modulation depth of the positive (negative) spin sublattice is
greater at positive (negative) Bz, resulting in a net positive
(negative) magnetization. This constitutes a ferromagnetic
spin state.

VI. ANALYTICAL CALCULATIONS

The state of the spin-1 system analyzed is determined
by four coupled dynamical equations (1) for the variables
u, v, w, x, evolving on similar timescales. This situation is
quite unlike most previous work in the single feedback mir-
ror (SFM) configuration, where time-dependent perturbation
analysis is done by considering the perturbation evolution of
a single (slow) degree of freedom of the optically nonlinear
medium, e.g., atomic density [5,6] or spin [29,30] in atomic
media, charge carrier density in direct band-gap semicon-
ductors [48], or the phase difference between ordinary and
extraordinary waves in liquid crystal valves [49]. In contrast
to the numerical results of Sec. V, in this section we present
analytical results for a simplified model, taking into account
only the perturbations and feedback to the spin-w variable.
This is motivated by the numerical simulations indicating
the dominance of the orientation in the magnetic ordering.
Although only approximate, this model is illustrative as it
provides physical explanations for the variation of thresholds
and symmetries at small Bz, consistent with both experimental
and numerical results. We will compare the results of this
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model with those for a further simplified w-only model, which
is effectively a spin-1/2 model, derived by putting u = v =
x = 0 in (1) and (3), and demonstrate the inadequacy of the
latter for describing the pattern properties.

A. Linear stability analysis

We now calculate the threshold intensity of the pattern
formation in the spin-1 model. In writing Eqs. (3), we have
made use of the thin-medium approximation, in which the
cloud is diffractively thin and the patterns form due to inter-
ference of the fields F± + B± at the end of the medium, where
F± = F 0

± = E0 and B± = B̃±(z = L) [50]. This is justified as
the medium is sufficiently optically thin, and we use mirror
positions just outside the end of the medium, so that the
diffraction and the nonlinear phase shift within the medium
are not the dominant effects but not so far from it to observe
competition with the higher order Talbot modes [43].

The backward-propagating field re-entering the medium is
of the form

B± = B0
±(1 + b±), (5)

where B0
± = √

RE0 is the homogeneous part of the backward-
propagating field, R is the mirror reflectivity, and b± are small
perturbations in the field caused by a transverse perturbation
in the atomic spin of the form δw cos(qx′). We relate the
spin perturbation with b± by using w = wh + δw cos(qx′) in
Eq. (3) (with u = v = x = 0), where wh is the homogeneous
part of the spin, and integrating Eq. (4) to the mirror and back:

b± = ±i
3

4
φ0

±eiθ δw cos(qx′), (6)

where d is the mirror distance from the end of the medium.
Homogeneous values of the atomic variables are calculated
from (1) using F 0

± + B0
± for the electric fields. In writing the

relation (6), we have neglected the influence of the perturba-
tions in the higher order magnetic multipoles, as motivated by
experimental and numerical results of the full model which
indicate that the w variable is the main driver of instability.

Equations (5) and (6) illustrate how the pattern formation
occurs. The plane wave enters the cloud and acquires a
transverse phase modulation from the atomic spins inside the
medium. As we work in the thin medium approximation,
we neglect the phase modulation in the forward-propagating
beam at the end of the cloud, since the structured feedback
by the backward-propagating beam is expected to dominate
the pattern formation. In linear stability analysis (LSA), we
look at the growth of an initial cosine spin perturbation with a
given transverse wave number q. The diffraction of the phase
modulated beam from the end of the cloud and back causes the
transverse profile to continually vary along z′, interchanging
planes of phase and amplitude modulation, due to the Talbot
effect [51], parametrized in our model via θ . Since θ depends
on q, for a given transverse perturbation there is a certain b±
at a given mirror position d . As is shown in Fig. 6(a), the
fastest growing perturbations will occur for a certain critical
θ , and this is in general the θ value seen in the steady-
state patterns observed experimentally [37]. We will here use
the critical phase shift of θ = π/2, meaning the instability
maximizes modulation in the difference pump rate D, as is

consistent with both experimental and numerical data of the
full model. The patterns thus grow from initial noise due to
the feedback provided by b±, via the birefringent nonlinearity
given by the δw term, effectively inducing interatomic inter-
actions mediated by the light field in this out-of-equilibrium
system.

We are now interested in solutions corresponding to trans-
verse patterns, the dynamics of which is characterized by
exponential growth δw ∼ eλt (where λ ∈ IR) near threshold.
Inserting this form of δw into the dynamical equation for w,
we get for λ:

λ = −
[
γ + I0κ̄

6
(1 + R)

]
+ I0whR

4
(κ+φ0

+ − κ−φ0
−)

+ �̄vhI0R

4
(φ0

+ − φ0
−) + I0R

12
(2xh − 5)(κ+φ0

+ + κ−φ0
−),

(7)

where uh, vh,wh, xh are the homogeneous parts of the
u, v,w, x variables and κ̄ = κ+ + κ−. Setting now λ = 0, we
obtain the expression for total threshold intensity Ith of the
linearly polarized input pump beam:

Ith = 2γ

[
− κ̄

6
(1 + R) + wth

h R

4
(κ+φ0

+ − κ−φ0
−)

+ �̄vth
h R

4
(φ0

+−φ0
−) + R

12

(
2xth

h −5
)
(κ+φ0

+ + κ−φ0
−)

]−1

,

(8)

where the subscript “h” and superscript “th” denominate the
homogeneous and threshold parameter values, respectively.
The solution (8) is inserted into Eqs. (1) to get the threshold
values of the homogeneous atomic variables, which allows us
to calculate the Ith.

The scan of Ith (in mW/cm2) against Bz is plotted in
Fig. 8 for three different solutions: the full solution using
(8), the spin-1/2 model introduced before (i.e., keeping x =
u = v = 0 throughout and not only in the feedback terms, but
keeping the incoherent linear and nonlinear Faraday effect),
and a simplified solution keeping x, u, v in the homogeneous
terms but neglecting both the linear and incoherent nonlinear
Faraday effects [25], i.e., setting κ± = 1, φ0 = φ0

±:

Ith ≈ 2γ

− 1
3 (1 + R) + Rφ0

6

(
2xth

h − 5
) . (9)

It should be noted that φ0 < 0 for the red detuning condition
under study. The full solution (red line) has a minimum
threshold for Bz = 0. It increases with incresing |Bz|. This
qualitatively mimics the small |Bz| experimental results at
b0 = 27. We note that we have used b0 = 30 in our cal-
culations, as the experimental values have an estimated un-
certainty of �5, and the chosen value gives a more robust
agreement with experiment. At small |Bz|, the behavior is well
reproduced by Eq. (9) (see dash-dotted green line), where the
Bz dependence arises solely due to xth

h (see Fig. 9). The origin
of this dependence is explained below. At larger |Bz|, the full
solution and the solution (9) start to deviate with the threshold
of the full solution rising, whereas the solution (9) saturates to
a finite value.
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FIG. 8. Variation of threshold intensity with Bz. Red solid curve:
full solution using (8). Green dot-dashed curve: solution for the
model neglecting both linear and nonlinear Faraday effects [using
(9)]. Blue dashed curve: solution of w-only model (see text). Param-
eters: � = −14�2, R = 0.95, b0 = 30, γ = 3 × 10−4�2.

The onset of pattern formation happens at the intensity for
which modulation depumping [first term in Eq. (7) stemming
from the sum pump rate S term in the relaxation terms of
Eqs. (1)] is equal to pumping due to the intensity modulated
pump rate [last term of Eq. (7) stemming from the differ-
ence pump rate D term]. The xh dependence arises from the
term ∝ −Dx in the third equation of (1). Writing x as x =

FIG. 9. Homogeneous solutions of (1) at threshold, against Bz.
Coherences (a) u and (b) v, (c) alignment x and (d) orientation w. The
narrow features for small Bz are caused by magnetic field coupling
to the coherences u and v (i.e., coherent nonlinear Faraday rotation),
whereas the features at large Bz are caused by linear and nonlinear
Faraday rotation due to detuning via Zeeman shifts (see text). This
is confirmed by the solution of the w-only model, represented by the
blue dash-dotted curve of panel (d). The scan is representative of the
single-pass behavior for the F = 1 → F ′ = 2 transition at low pump
saturation. Parameter values are as in Fig. 8.

1 − 3ρ00 (using ρ−1−1 + ρ00 + ρ11 = 1), this term becomes
−Dx = D(3ρ00 − 1). Thus, for D > 0 (D < 0) an increase
of population in the m = 0 state will increase the effective
pumping rate of the spin into the m = 1 (m = −1) state. The
origin of the variation of xth

h at small |Bz| is in the coupling
term − 1

3 P�+u of the fourth equation in (1), the details of
which will be explained at the end of this section. In short,
Fig. 9 shows that the coherent nonlinear Faraday effect creates
a magneto-optical resonance for the coherences u, v. The
resonance in u couples to x, which reduces (increases) the
spin modulation pump rate and thus increases (reduces) the
threshold, for larger (smaller) x [see Eq. (9)]. The resonance
in v couples to the w and causes it to rotate in Bz, which leads
to the deviation of the full and w-only solutions in Fig. 9(d),
as explained at the end of this section.

The dashed curve in Fig. 8 is for the spin-1/2, w-only,
model, which includes both linear and incoherent nonlinear
Faraday effects. It does not show a Bz dependence. The large
difference between this and the solid threshold curve at all
Bz shows that the w-only model cannot account for the Bz

dependence of the experimental threshold intensity presented
in Fig. 4(b). This demonstrates that the system at hand is
more complex and potentially more rich than the previously
studied spin-1/2 model of Refs. [29,30]. Threshold curves of
the instability versus Bz for a spin-1/2 system presented in
Ref. [52] were all obtained in small transverse magnetic fields
and their extrapolation to zero transverse field is compatible
with a flat threshold curve versus Bz.

The decrease of threshold with large Bz seen in experiments
is not reproduced by any of these models at these parameter
values, which leads us to the conclusion that the perturbations
in the higher order magnetic multipoles are responsible for
a threshold decrease at large Bz, implied by the results in
Fig. 6(b).

B. Inversion symmetry breaking

To calculate the symmetries of patterns at threshold, we
employ the method of nonlinear analysis (NLA) used by
D’Alessandro and Firth for SFM patterns in a Kerr medium
[48]. We will reformulate our problem as a single partial
differential equation of infinite order, describing the temporal
evolution of spin perturbation δw̃, and end up with a set
of Ginzburg-Landau equations for the roll state amplitudes,
from which we calculate the variation of the allowed pattern
symmetries with Bz.

The backward-propagating fields B± reflected from the
mirror and re-entering the medium can be related to the fields
exiting the medium by formally integrating the free space
diffraction equation to the mirror and back, giving

B± =
√

RE0e−iσ�⊥e±i
3φ0±

4 δw̃, (10)

where σ = d/k and we use an ansatz for the modulation δw̃:

δw̃ = ε(A1(t )eiq1·r + A2(t )eiq2·r + A3(t )eiq3·r + c.c.)/2, (11)

where ε is a bookkeeping parameter. This solution corre-
sponds to a superposition of three roll states with wave vectors
qi (with i = 1, 2, 3) and is a reasonable assumption for pump
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intensities near threshold. For the input pump intensities of the
σ components, we will thus use |F+|2 = |F−|2 = I0 = pIth/2,
where the parameter p is close to 1.

Inserting the field (10) into the dynamical equation for w

yields an infinite order equation for temporal evolution of the
perturbation δw̃

δ ˙̃w +
{
γ + I0

6

[
κ̄ + R

(
κ+

∣∣e−iσ�⊥ei
3φ0+

4 δw̃
∣∣2 + κ−

∣∣e−iσ�⊥e−i
3φ0−

4 δw̃
∣∣2)]}

δw̃

= − I0whR

6

(
κ+

∣∣e−iσ�⊥ei
3φ0+

4 δw̃
∣∣2 + κ−

∣∣e−iσ�⊥e−i
3φ0−

4 δw̃
∣∣2 − κ̄

)

+ �̄I0uhR

3
Im

(
eiσ�⊥e−i

3φ0+
4 δw̃e−iσ�⊥e−i

3φ0−
4 δw̃ − 1

) − �̄I0vhR

3
Re

(
eiσ�⊥e−i

3φ0+
4 δw̃e−iσ�⊥e−i

3φ0−
4 δw̃ − 1

)

+ I0R

9

(
5

2
− xh

)(
κ+

∣∣e−iσ�⊥ei
3φ0+

4 δw̃
∣∣2 − κ−

∣∣e−iσ�⊥e−i
3φ0−

4 δw̃
∣∣2 − �κ

)
, (12)

where κ̄ = κ+ + κ− and �κ = κ+ − κ−. From Eq. (12), we
derive the dynamical equations for the perturbation am-

plitudes in the following way. First, we expand e±i
3φ0±

4 δw̃,
using (11), to second order in ε. After this, we evaluate

e−iσ�⊥e±i
3φ0±

4 δw̃ and eiσ�⊥e±i
3φ0±

4 δw̃ by noting the propagation
operator e−iσ�⊥ is eiθ in Fourier space. This means we can
multiply the uniform (q = 0) terms by 1, terms with wave
vectors of length q by eiθ , terms with wave vectors of length√

3q by e3iθ , etc.; i.e., each term is an eigenfunction of the

propagation operator. After this, the terms |e−iσ�⊥e±i
3φ0±

4 δw̃|2
and eiσ�⊥e−i

3φ0+
4 δw̃e−iσ�⊥e−i

3φ0−
4 δw̃ are calculated, again by tak-

ing into account only expansion up to second order in ε. The
calculation is simplified by our assumption that only terms
resonant with qc are non-negligible, implicit in writing the
ansatz (11) for δw̃. As we are here primarily interested in
the existence of hexagonal solutions, we use the condition
q1 + q2 + q3 = 0.

After equating the two sides of (12) and putting ε = 1, we
get the equations of the form

d

dt
Ai = λAi + ηA∗

j A
∗
k + · · · (13)

for the amplitudes A1(t ), A2(t ), A3(t ). Equations (13) de-
scribe mixing of modes on the same Talbot circle, to low-
est orders in amplitude. They have the form of complex
Ginzburg-Landau equations, common in many nonlinear sys-
tems [37,48,53]. The first term gives an exponential decrease
or increase in amplitude of the transverse wave, with its
vanishing determining the onset of instability. We regain here
the threshold intensity of (8). The second (quadratic) term
describes mixing of the three modes of a hexagon. It can
easily be shown that positive (negative) hexagons are stable
at threshold for η > 0 (η < 0), whereas stripes, squares, or
rectangles are stable at threshold for η = 0 [37,48]. For the
current purpose, it is sufficient to look for a single mode (i.e.,
stripes) as a representative for the inversion-symmetric, i.e.,
antiferromagnetic, state. In a more complete analysis, one
could include an additional set of modes with wave vectors
rotated by 90◦ to include the square state, but this does not
add any insight into the mechanism of the symmetry breaking
from the antiferromagnetic to the ferrimagnetic states.

Upon inserting the critical diffractive phase shift of θc = π
2 ,

the coefficient λ is given by relation (7) and η is

η =
(

3

4

)2 RIth p

2

{
8

9
[κ+φ0

+ − κ−φ0
−]

− wh

3
[κ+(φ0

+)2 + κ−(φ0
−)2]

+ �̄uh

3
[(φ0

+)2 − (φ0
−)2] + 2�̄vh

3
φ0

+φ0
−

+ 2

9

[
5

2
− xh

]
[κ+(φ0

+)2 − κ−(φ0
−)2]

}
. (14)

We now concentrate on the scan of threshold η against
Bz. In Fig. 10, we plot ηth against Bz for two different b0

values, corresponding to Strathclyde [Fig. 10(a)] and Nice
[Fig. 10(b)] parameters. For Bz = 0, we have ηth = 0, and
the system is inversion symmetric, as also witnessed in the
fact that wth

h = 0 [see Fig. 9(d)]. For small |Bz|, there is a
strong increase (decrease) in ηth for Bz > 0 (Bz < 0). This
agrees with the results of both experiments and simulations
for a spin-1 model. The behavior of ηth at small |Bz| is
determined by wth

h and vth
h , giving a dispersive feature due to

their coefficients in (14) being an even function in Bz [and
wth

h , vth
h being odd in Bz; see Figs. 9(b) and 9(c)]. We note that

simulations of the spin-1/2 model failed to produce hexagons
at small |Bz|, indicating that the coupling to higher multipoles
is indeed responsible for the symmetry breaking.

FIG. 10. Dependence of the threshold η coefficient on Bz. (a) Pa-
rameters as in Fig. 8. (b) Parameters: � = −24�2, R = 0.99, b0 =
110, γ = 1 × 10−4�2. Red solid line: calculated from (14) for p = 1.
Blue dash-dotted line: calculated from the w-only model (see text).
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In zero B field, the linearly polarized pump beam induces
a �m = 2 coherence between the m = 1 and m = −1 states
via the m′ = 0 excited state with the real part u being pumped
and the imaginary part v being zero [see Figs. 9(a) and 9(b)].
The atomic coherence rotates in Bz due to Larmor precession.
This gives rise to the steady-state curves in Figs. 9(a) and 9(b)
with an even shape for uth and a dispersive (odd) shape for
vth. This is the dominant origin of symmetry breaking. The
variation of wth

h at small |Bz| is due to coupling with vth
h [see

Fig. 9(b)], given by the − 1
6 P�+�̄v term of the third equation

of (1), whereas in a spin-1/2 model a symmetry breaking due
to the incoherent Faraday effect is present (see dashed blue
line) but much smaller than the effect due to the coupling to
v. This coupling is a signature of coherent nonlinear Faraday
rotation, and its physical origin will be explained at the end of
this section.

At higher |Bz|, the magnitude of the η coefficient starts
to decrease, as both coherences u, v are destroyed by the
precession. For even higher fields, it starts to slowly increase
again (for small b0) or flips its sign (for large b0). This qual-
itatively agrees with the experimental data, where a flipping
of the direction of the hexagons was observed for large b0.
The sign reversal at high b0 is present also in the spin-1/2
model. Its origin is in the competition of the three terms of
the spin-1/2 model, where the last term [originating from the
D(5/18 − x/9) term in the third Eq. of (1)] has a negative
slope at large Bz (and large negative �̄) and is responsible for
the flipping. These slopes are determined by the incoherent
linear and nonlinear Faraday effects, i.e., the variation of
κ± and φ0

± with Bz. The physical interpretation of the said
competition is still under investigation.

We note that in previous experiments in spin-1/2 sodium
vapors a change of inversion symmetry was not observed with
varying a longitudinal magnetic field alone [50,52,54], in line
with the theoretical treatment given here, as the incoherent
Faraday effect is very small for the pressure broadened transi-
tion under study in Refs. [50,52,54]. A symmetry-breaking
transition was only obtained in a transverse magnetic field
[50,54] or by perturbing the input polarization to be elliptical
[29,30]. In the former case, the interplay of dark state pumping
of wh and spin flips in the transverse field is influenced by
not only the Zeeman shifts but also the light shift changing
the ground-state degeneracy, and the effect was accompanied
by a large asymmetry in the absorption of the two circular
light components. Such large absorption asymmetry was not
observed for our system parameters at small Bz, either in
experiments or simulations. In the case of elliptical input
polarization, the symmetry of optical pumping is obviously
broken. We expect a similar effect in the cold-atom system
but did not investigate it further as the analogy between mag-
netic ordering via light-induced interactions and in condensed
matter systems, respectively, simple models for magnetism,
is better worked out by changing the magnetic field than the
input polarization.

C. Coupling of magnetic multipoles

We now explain the physical mechanisms for breaking of
inversion symmetry and increase of threshold at small |Bz|
in the simplified model used throughout this section. It is

well known that quantum interference effects can influence
the steady state of a laser-driven system in a �(-like) configu-
ration, depending on the phase of the ground-state coherence
density matrix element [55]. It is thus natural to expect that the
change of the values of uh and vh should influence our results
at small |Bz|.

The change of symmetry at small |Bz| was already seen to
occur due to coupling of wh and vh. To see the origin of this
coupling, we will switch to the usual representation of density
matrix elements in the Zeeman sublevel basis. For simplicity,
we put �+ = �− = �0, �0 ∈ IR (i.e., beam is linearly po-
larized along y′). We are interested in coupling of the optical
coherence ρ10′ (where the apostrophe denotes a sublevel of
the excited state) to the population ρ11 and atomic coherence
ρ1−1. After adiabatic elimination, the optical coherence is
given by

ρ10′ = �0

6

ρ11 + ρ1−1

i�2 − �
, (15)

where we have here neglected �z with respect to � in the
denominator (as for small Bz, |�| � |�z|) and we note that
the same expression appears in a � system (as given, e.g.,
in [56], apart from the sign convention and with excited-state
population here being neglected). We also note that for putting
�+ = 0 and keeping �− = �0, the ρ1−1 term in (15) van-
ishes. The relevant term in the dynamical equation for ρ11 is

ρ̇11 ∝ 2�0Im(ρ10′ ). (16)

The ρ11 term in (15) is due to population leaving the state
with m = 1 and is contained in the decay rate �w of (1).
Keeping only the ρ1−1 term, (16) is now

ρ̇11 ∝ − I0

3
�̄Im(ρ1−1), (17)

where we have neglected the �2 term with respect to the
� term as it cancels out in the w equation (but not for x;
see below). The dynamical equation for ρ−1−1 has the same
dependence on Im(ρ1−1) but with a positive sign, which gives
the − 1

6�̄P�+v term in the w equation of (1). For a finite v,
an optical coherence in the � configuration can thus give
rise to optical pumping of a stretched state with m = ±1,
depending on the sign of v. We interpret this process as
coherent two-photon Raman pumping.

The importance of light-induced |�m| = 2 Zeeman coher-
ences for nonlinear Faraday rotation in an F → F + 1 (with
F � 1) transition was noted in Refs. [36,44], where amplitude
modulation of light [57] was used to detect narrow resonances
in the demodulated in-phase rotation signals. Resonances at
twice the Larmor frequencies equal to intensity modulation
frequencies were interpreted to arise due to beating of the
oscillating light-induced Zeeman coherences and Larmor pre-
cession caused by a longitudinal magnetic field. By writing
and solving Eqs. (1), the experimental results of these papers
are corroborated and their theoretical analysis made more
concrete, albeit in a simpler level structure, expected to exhibit
equivalent behavior.

Increase of threshold intensity with increasing |Bz| at small
|Bz| is a consequence of the reduction of population in the m =
0 state, in (1) caused by the coupling of xh and uh. The origin
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of this coupling is the excited-state population ρ0′0′ , which
is in our derivation of (1) adiabatically eliminated but still
“feeds” the ground-state populations. Using the assumptions
made above, one gets for the coupling of the excited-state pop-
ulation in m′ = 0 and the ground state |�m| = 2 coherence

ρ0′0′ ∝ I0

3�1
Re(ρ1−1), (18)

as is apparent also from the equations of Ref. [56] for a �

system. The above expression indicates that a large (small)
value of u leads to large (small) population of the excited state
with m′ = 0. The optical coherences ρ10′ and ρ−10′ are also
affected by Re(ρ1−1), which leads to the following terms in
the dynamical equations for ρ11 and ρ−1−1,

ρ̇11, ρ̇−1−1 ∝ − I0

3
Re(ρ1−1), (19)

which together with (18) leads to the − 1
3 P�+u term in the

fourth equation of (1). Since u decreases with increasing
|Bz| at small |Bz|, the ρ0′0′ will also decrease. The m = 0
population relative to the total stretched state populations will
likewise decrease, since the probability of decay of ρ0′0′ into
m = 0 is two times greater than for decay into m = 1 and
m = −1 together [see Fig. 5(a)]. This decrease of relative
population in m = 0 as |Bz| grows from zero to a small
value leads hence to an increase in x. This then leads to an
increase in the threshold intensity, as explained in Sec. VI A
[see Eq. (9)].

VII. CONCLUSION

We have studied the properties of transverse spin patterns
in a cold atomic cloud of 87Rb subject to laser driving with
mirror feedback. Experimental scans of pattern properties
against longitudinal magnetic field were compared to the
mostly analytical results of our spin-1 theoretical model.
Inversion-symmetric antiferromagnetic spin patterns give way
to ferrimagnetic patterns in a weak longitudinal magnetic
field. It was worked out that the inversion symmetry of
the system, governing the pattern symmetries, is broken for
small magnetic fields by coupling of the dipole magnetic
polarization of the atoms to the |�m| = 2 ground state co-
herence precessing in the Bz field. This is consistent with the
conclusion of Faraday rotation studies performed in a cold
atomic cloud with similar level structure [36]. The increase of
threshold intensity for pattern formation with small magnetic
field is in our model a result of reduced pump rates into the
stretched states caused by the coupling of the quadrupolar
polarization components, whereas perturbations in the higher
order magnetic moments are responsible for threshold reduc-
tion at larger magnetic fields. The spin-1 model thus accounts
for the experimental dependence of pattern properties on the
longitudinal magnetic field, exhibiting dependence on both
dipole and quadrupole magnetic components of the density
matrix expansion. This constitutes a step beyond previous
work on spin-1/2 models [8,27,29,30,50,54]. Optical interfer-
ence in Rb vapors with multilevel structure has recently been
employed to observe interesting linear [58] and nonlinear [59]
optical effects.

Our cold-atom setup has some analogy with the Ising
model, where interactions are light mediated over a range
determined by diffractive dephasing, and the lattice emerges
spontaneously as opposed to it being set externally [25].
The work is part of a relatively recent research effort of
using laser light as an atomic interaction vector, due to its
easy controllability and extremely weak decoherence of its
states during propagation. In recent years various setups, from
cavities to nanoscopic solid state devices, have been employed
to engineer photon-mediated interactions between atoms for
a wide range of quantum technological purposes [60–62].
Self-organization phenomena in driven systems have for a
long time played an important technological role, from the
invention of the laser [63] to recent promising applications
in frequency combs [64] and chemical engineering [65]. It is
thus interesting to ask whether and how self-organization will
find its application in next-generation quantum technologies.
The SFM setup may offer some advantages in this respect,
and we will continue to explore its quantum technological
potential with both thermal and degenerate cold atoms. For
example, Ref. [25] reports indication of a hysteretic first-
order phase transition between the unstructured and the fer-
rimagnetic state, opening the exciting possibility to study
nucleation phenomena and localized magnetic states. Also, by
incorporating different geometries in the feedback part of the
setup, e.g., by using a spatial light modulator, we expect to be
able to engineer different forms of light-mediated interactions,
which is a very attractive feature for quantum simulation.

Although the pattern length scale is here set by the mirror
distance and the allowed symmetry at threshold is set by Bz,
the transverse pattern spin modes are degenerate in the sense
that a pattern realization with any orientation and center posi-
tion is equally probable. This multimode situation is inherent
in the SFM setup and arises due to transverse rotational and
translational symmetries of the initial system. Light-mediated
self-organization of atomic degrees of freedom in multimode
configurations is currently generating some interest, with pos-
sible broader implications for the field of condensed-matter
physics [4–13]. In addition to the optomechanical effects,
spinor effects have sparked interest in this community as well
[15,18].
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