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We present a study of manipulating and improving the multiphoton blockade phenomenon in a single-mode
cavity with two cascade three-level atoms. Using an external control field, we show that the two-photon blockade
can be changed to the three-photon blockade by just increasing the control field Rabi frequency when two atoms
radiate in-phase. In the case of out-of-phase radiations, we show that the three-photon blockade phenomenon
can be significantly improved with an increased mean photon number when the control field is present. We also
show that the optical switching from the three-photon blockade [g(2)(0)>1 and g(3)(0)<1] to the super-Poissonian
field [g(2)(0)>1 and g(3)(0)>1] can be accomplished by increasing the control field Rabi frequency. The results
presented in this work provide potential applications in quantum communication and quantum networking.
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I. INTRODUCTION

In an atom-cavity QED system driven by a coherent field, a
single photon can suppress the transmission of other photons
due to the strong coupling between the atom and cavity, which
is well known as the two-photon blockade. This phenomenon
is a close analogy to the phenomenon of Coulomb blockade
[1]. Beyond this, Birnbaum et al. demonstrate the photon
blockade phenomenon experimentally in a single atom-cavity
QED system with strong coupling strength, where the quan-
tum statistic property of the incident photon stream is changed
from a Poissonian distribution to sub-Poissonian distribution
if the frequency of photons is tuned to one of the states of the
lowest doublet dressed states [2].

Due to its potential applications in quantum communica-
tion and quantum networking, the study of the two-photon
blockade has received extensive attention in the past few
decades. Many experimental and theoretical works on photon
blockade have been reported in various systems with strong
coupling interaction, including the circuit QED systems [3–6],
artificial atoms on a chip [7,8], optomechanical systems
[9–14], and atom-cavity QED systems [15–23]. Recently, the
unconventional photon blockade based on quantum destruc-
tive interference also has received a great deal of attention
[24] since the two-photon blockade effect can be significantly
improved [25–28]. Corresponding experimental works have
been reported on the quantum dot cavity QED system [29]
and superconducting circuit QED system [30].

Although the two-photon blockade has been studied ex-
tensively, the accomplishment of the multiphoton blockade is
challenging in experiments. A direct method to realize three-
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photon blockade is by increasing the incident field intensity
so that two-photon excitations can be measured. However,
the strong field intensity will result in the broadening of
the dressed states, which compensates the inharmonic energy
splitting and prohibits the observation of the three-photon
blockade behavior. These characteristics have been observed
by Hamsen et al. [15]. Another method to realize three-photon
blockade is based on the collective decay of two atoms trapped
in a single-mode cavity with different coupling strengths [19].
If two atoms have out-of-phase radiations, the three-photon
blockade can be achieved since the two-photon excitations are
dominant and one-photon excitations are forbidden.

In this paper, we consider that two cascade three-level
atoms are strongly coupled in a cavity, where two identical
atoms interact with a pump field and a control field simulta-
neously. The motivation of adding a strong control field is to
manipulate the dressed states of the system. We show that the
photon blockade behavior can be changed and improved by
adjusting the control field intensity. When two atoms radiate
in-phase, the two-photon blockade can be changed to the
three-photon blockade by increasing the control field Rabi
frequency. In the case of out-of-phase radiations, we show that
the three-photon blockade can be remarkably improved in the
presence of the control field. We also show that it is possible to
achieve an optical switching from the three-photon blockade
to the super-Poissonian field by increasing the control field
Rabi frequency.

II. MODEL AND DRESSED-STATE PICTURE

As depicted in Fig. 1, this two-atom cavity QED system
consists of a single-mode cavity and two identical cascade
three-level atoms directly driven by a pump field η and a
control field �c simultaneously. We assume that the pump
(control) field drives the |g〉 ↔ |m〉 (|m〉 ↔ |e〉) transition,
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FIG. 1. Schematic of the two-atom cavity QED system. The
wavelength of this single-mode cavity is λcav, and the corresponding
angular frequency is ωcav = 2πc/λcav. Each atom has three energy
levels labeled as |g〉, |m〉, and |e〉, respectively. A coherent pump
field with Rabi frequency η (angular frequency is ωp) drives the
|g〉 ↔ |m〉 transition, and a strong control field with Rabi frequency
�c (angular frequency is ωc) drives the |m〉 ↔ |e〉 transition. The
one-photon detunings are defined as �m = ωm − ωg − ωp and �c =
ωe − ωm − ωc. Here, the distance between two atoms is �z. The
spontaneous emission rate of state |α〉 (α = m, e) is γα , and the cavity
decay rate is κ .

while the cavity mode only couples the |g〉 ↔ |m〉 transition.
Clearly, the system is the same as that proposed in Ref. [19]
when the control field is turned off (i.e., setting �c = 0).

In general, the dynamical behavior of this cavity-QED
system can be described by using the master equation, i.e.,

dρ

dt
= − i

h̄
[H, ρ] + Lκρ + Lγ ρ, (1)

where ρ is the density-matrix operator of the atom-cavity
QED system. Under the rotating-wave and electric-dipole
approximations, the system Hamiltonian can be written as
H = H0 + HI + HL with

H0 = h̄
∑
i=1,2

(
�eσ

i
ee + �mσ i

mm + �cava†a
)
,

HI = h̄
∑
i=1,2

gi
(
aσ i

mg + a†σ i
gm

)
,

HL = h̄

[
η

∑
i=1,2

(
σ i

mg + σ i
gm

) + �c

∑
i=1,2

(
σ i

me + σ i
em

)]
,

where H0 is the energy of atoms and the cavity field, HI

represents the interaction between atoms and the cavity field,
and HL is the coherent driving term involving the pump
field and control field. The coupling strength between the
ith atom and cavity gi = gcos(2πzi/λcav) depends on the
position of the ith atom zi, where λcav is the wavelength
of the cavity mode (the corresponding angular frequency is
ωcav = 2πc/λcav). Here, a and a† are the annihilation and
creation operators of the cavity mode, respectively. σ i

jk =
| j〉i〈k| ( j, k = {g, m, e}) denotes the atomic operator of the ith
atom. The detunings are defined as �cav = ωcav − ωp, �m =
ωm − ωg − ωp, �e = ωe − ωg − (ωp + ωc) = �m + �c with
�c = ωe − ωm − ωc and h̄ω j ( j = {g, m, e}) being the energy
of state | j〉.

The last two terms in Eq. (1) denote the decay of the atoms
and cavity, which are given by

Lκρ =κ (2aρa† − a†aρ − ρa†a), (2)

Lγ ρ =
∑
i=1,2

[
γe

(
2σ i

meρσ i
em − σ i

emσ i
meρ − ρσ i

emσ i
me

)
+ γm

(
2σ i

gmρσ i
mg − σ i

mgσ
i
gmρ − ρσ i

mgσ
i
gm

)]
, (3)

respectively. Here, κ is the cavity decay rate, and γα (α =
m, e) is the spontaneous emission rate of the state |α〉.

To understand the physical mechanism clearly, we rewrite
the Hamiltonian of the system in the dressed-state picture by
using |GG, n〉, |MG±, n − 1〉, |EG±, n − 1〉, |MM, n − 2〉,
|EM±, n − 2〉, and |EE , n − 2〉 as the bases in n-photon
space (the definitions of these bases are given in the Ap-
pendix). Assuming �c = 0 and ωcav = ωm − ωg for mathe-
matical simplicity, we have �m = �e = �cav ≡ �p. Under
the weak-pumping approximation, the effects of the pump
field can be treated as a perturbation to the system. Then, the
Hamiltonian in one-photon space is expressed as

H1ph =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 g+/
√

2 g−/
√

2 0 0

g+/
√

2 0 0 �c 0

g−/
√

2 0 0 0 �c

0 �c 0 0 0

0 0 �c 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4)

and, in two-photon space, the matrix of the Hamiltonian is
given by

H2ph =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 g+ g− 0 0 0 0 0 0
g+ 0 0 �c 0 0 0 g+√

2
0

g− 0 0 0 �c 0 0 − g−√
2

0
0 �c 0 0 0 g+

2 − g−
2 0 0

0 0 �c 0 0 − g−
2

g+
2 0 0

0 0 0 g+
2 − g−

2 0 0
√

2�c

√
2�c

0 0 0 − g−
2

g+
2 0 0 0 0

0 g+√
2

− g−√
2

0 0
√

2�c 0 0 0

0 0 0 0 0
√

2�c 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

where g± = g1 ± g2 = g(1 ± cos φz ) with φz = 2π�z/λcav.
Diagonalizing Eqs. (4) and (5), we can obtain the cor-

responding eigenvalues and eigenstates forming the dressed
states in one- and two-photon space (see Appendix). Further-
more, we can also obtain the transition strength by calculating
the operator η

∑
i=1,2(σ i

mg + σ i
gm). These dressed states along

with some of the important transitions are shown in Fig. 2,
and the physical mechanism of the photon blockade can be
understood easily. For example, in the case of φz = 0 [i.e.,
panel (a)], the system can only absorb a single photon to
be excited to the one-photon states such as �

(1)
±2 . However,

the second photon cannot be absorbed due to the inharmonic
energy splittings. This phenomenon is widely known as the
two-photon blockade. In the case of φz = π [i.e., panel (b)],
the states in the one-photon space (i.e., n = 1) are not allowed
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FIG. 2. The dressed-state energy structures for φz = 0 [panel (a)]
and φz = π [panel (b)]. The red arrows represent the one-photon
transitions, and the blue ones represent the two-photon transitions.
Here, we only show several main pathways of two-photon transi-
tions. The black arrows with red crosses denote that the transitions
are forbidden.

to be excited because of the destructive interference [19].
Thus, the system can only be excited to the states in the
two-photon space (i.e., n = 2) via two-photon processes (e.g.,
� (0) → �

(1)
−1 → �

(2)
−2(−3)). Likewise, the third photon cannot

be absorbed by the system due to the energy difference. This
phenomenon is recognized as the three-photon blockade [19].
In the following, we will show how the control field affects
the photon blockade phenomena.

III. THE MANIPULATION OF PHOTON BLOCKADE

Now we focus on the case that the two atoms have the
same coupling strengths, i.e., g1 = g2 = g leading to φz = 0.
To show the differences between this three-level atom cavity
QED system and the typical two-level atom cavity QED
system, we numerically solve Eq. (1) under the condition of a
weak pump field.

As shown in Fig. 3, the mean photon number 〈a†a〉 [panel
(a)] and the equal-time second-order field correlation function
g(2)(0) = 〈a†a†aa〉/〈a†a〉2 in logarithmic units [panel (b)] are
plotted as a function of the normalized detuning �p/κ . Here
we choose the control field Rabi frequency as �c/κ = 0
(i.e., two-level system, blue dashed curves) and �c/κ = 20
(red solid curves), respectively. Other system parameters are
chosen as η/κ = 0.2, g/κ = 20, γm/κ = 1, and γe/κ = 0.01.
For �c = 0, one can observe two peaks in the cavity excitation
spectrum at �p = ±√

2g, corresponding to the frequencies of
one-photon excitations [i.e., � (0) → �

(1)
±2 transitions; see the

blued dashed curve in panel (a)]. Since the pump field is very
weak and one-photon excitations are dominant, the quantum
features of the cavity field can be characterized by the second-
order correlation function g(2)(0). As shown in Fig. 3(b), the
values of g(2)(0) near the one-photon excitation frequencies

FIG. 3. Panels (a) and (b) display the mean photon number
〈a†a〉 and the equal-time second-order field correlation function
log10[g(2)(0)] as a function of the normalized detuning �p/κ , re-
spectively. The Rabi frequency of the control field is chosen as
�c/κ = 0 (blue dashed curves) and 20 (red solid curves). Other
system parameters are given by η/κ = 0.2, g/κ = 20, γm/κ = 1,
and γe/κ = 0.01. The black dash-dotted line in panel (b) indicates
log10[g(2)(0)] = 0.

are smaller than unity (i.e., log10[g(2)(0)]<0), which implies
that the two-photon blockade behavior and the nonclassical
cavity field with sub-Poissonian distribution can be achieved.

For �c �= 0, the energies of the states �
(1)
±2 shift as the

control field intensity increases [see Fig. 2(a) and formulas
in the Appendix]. As a result, the width between two peaks
in the cavity excitation spectrum �w = 2

√
2g2 + �2

c becomes
larger than that in the absence of the control field [see the red
solid curve in panel (a)]. Compared with the case of �c = 0,
the minimum value of g(2)(0) will decrease, corresponding
to a slight improvement of the two-photon blockade. The
physical mechanism of this improvement attributes to two
factors: the energy shifting of the dressed states and the
transition strengths. The former causes an increase of the
energy difference between states �

(1)
±2 and �

(2)
±3 (the explicit

expression is given in the Appendix). Therefore, the second
photon becomes much harder to be absorbed by the system.
Obviously, adjusting the control field Rabi frequency, one can
control the frequency for realizing the two-photon blockade.

Next, we consider the strong-pumping case (e.g., η/κ =
1.5), where the two-photon excitations are as strong as the
one-photon excitations. In the absence of the control field,
there are four peaks in the cavity excitation spectrum [see
Fig. 4(a)], corresponding to the frequencies �p = ±√

2g
(one-photon excitations) and �p = ±√

6g/2 (two-photon ex-
citations), respectively [19]. At frequencies of one-photon
excitations, one can obtain g(2)(0)≈0.2, i.e., the two-photon
blockade. Here, the system parameters are chosen as the same
as those used in Fig. 3. Near the two-photon excitation fre-
quencies, it is possible to observe the three-photon blockade
[i.e., g(2)(0)>1 and g(3)(0)<1] in a narrow regime [see the
inserted plot in panel (a)]. It is noted that the observation
of the three-photon blockade is challenging in experiments
and technique noise becomes a fatal problem because the
frequency of the pump field must be controlled precisely.
In the presence of the control field (e.g., �c/κ = 35), the
frequencies for realizing the two- and three-photon blockade
phenomena are changed because of the energy shiftings of the
dressed states [see Fig. 4(b) and the Appendix].
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(a) (b)

(c) (d)

FIG. 4. Plots of the mean photon number (blue dashed curves),
equal-time second-order field correlation function g(2)(0) (green
solid curves), and third-order field correlation function g(3)(0) (red
dashed curves). In panels (a) and (b), the control field Rabi frequency
is chosen as �c/κ = 0 and �c/κ = 35, respectively. The inserted
plot in panel (a) shows the frequency regime near the two-photon ex-
citation, and the black dash-dotted lines indicate g(2)(0) = g(3)(0) =
1. Here, we choose η/κ = 1.5, φz = 0, and the other system param-
eters are the same as those used in Fig. 3. In panels (c) and (d), we
demonstrate an optical switching from the two-photon blockade to
the three-photon blockade. The detuning is fixed as �p/κ = 40, and
the coupling strength g/κ = 20 in panel (c) and 25 in panel (d).

This feature leads to an optical switching from the two-
photon blockade to the three-photon blockade by just increas-
ing the control field Rabi frequency. To show this switching
operation, we plot the mean photon number (blue dashed
curve) and second-order and third-order field correlation func-
tions (green solid and red dashed curves) as a function of
the normalized control field Rabi frequency �c/κ in Fig. 4(c)
by fixing the detuning �p/κ = 40 and the coupling strength
g/κ = 20. Obviously, the pump field is detuned far away
from the one- and two-photon excitation frequencies for weak
control field. Increasing the control field intensity, the dressed
states are shifted and then the pump field is tuned to be
resonant with the state in the one-photon space, leading to the
two-photon blockade (see the first peak in the mean photon
number). Further increasing the control field intensity, the
pump field induces the two-photon excitations. Then, the
three-photon blockade can be observed (see the second peak
in the mean photon number). In addition, the switch interval,
i.e., the interval of the Rabi frequencies of the control field for
realizing two- and three-photon blockade, can be enhanced if
the coupling strength g increases [see Fig. 4(d)].

IV. SIGNIFICANT IMPROVEMENT OF THE
THREE-PHOTON BLOCKADE

Finally, we consider that two atoms have different cou-
pling strengths (i.e., g1 = −g2 = g leading to φz = π ). In this
case, the two-photon excitations become dominant because
�0 → �

(1)
±2 transitions are not allowed [19]. As a result, two

(a) (b)

(c) (d)

FIG. 5. Panels (a) and (b): Plots of the mean photon number (blue
dashed curves) and equal-time second-order (green solid curves)
and third-order (red dashed curve) field correlation functions for
�c/κ = 0 and �c/κ = 20, respectively. Here, we choose η/κ = 2,
φz = π , and the other system parameters are the same as those used
in Fig. 3. The black dash-dotted line indicates g(2)(0) = g(3)(0) =
1. Panels (c) and (d): The demonstration of an optical switching
from the three-photon blockade to the super-Poissonian field with
fixed detuning �p/κ = √

6g/2. The coupling strengths are chosen
as g/κ = 20 in panel (c) and g/κ = 25 in panel (d).

side peaks [see Fig. 5(a)], corresponding to the two-photon
excitations �0 → �

(1)
±1 → �

(2)
±3 with �p = ±√

6g/2, can be
observed in the cavity excitation spectrum when the control
field is absent (i.e., �c = 0). Correspondingly, the three-
photon blockade [i.e., g(2)(0)≈9.48>1 and g(3)(0)≈0.14<1]
occurs at the two-photon excitation frequencies. We also note
that the central peak in the cavity excitation spectrum arises
from the multiphoton excitation processes [19], which results
in g(2)(0)>1 and g(3)(0)>1. In the presence of the control
field (e.g., �c/κ = 20), there exist four peaks in the cavity
excitation spectrum as shown in Fig. 5(b). Examining the
dressed states [see Fig. 2(b) and the Appendix], all of them
are attributed to the two-photon excitations: �0 → �

(1)
±1 →

�
(2)
±2 with �p = ±

√
α − √

β/(2
√

2) and �0 → �
(1)
±1 → �

(2)
±3

with �p = ±
√

α + √
β/(2

√
2). Here, the variables α and β

are functions of the control field Rabi frequency �c (see
Appendix). Compared with the case of �c/κ = 0, it is clear
that the mean photon number is enhanced and the three-
photon blockade phenomenon can be significantly improved.
At the detuning �p/κ = ±

√
α + √

β/(2
√

2), one can obtain
g(2)(0)≈2.37 and g(3)(0)≈1.5 × 10−2 with the mean photon
number n≈0.1. We must point out that the value of g(3)(0) is
about 10 times smaller than that in the case of �c = 0. The
physical mechanism can also be explained by examining the
energy difference between the dressed states, where the states
in the three-photon space must be considered because of the
three-photon processes. In this case, the energy differences
for the three-photon absorption �E±

3ph and �E
′±
3ph gradually

increase as the control field intensity increases (see Fig. 6
in the Appendix), which prohibits the absorption of the third
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FIG. 6. The energy differences for the two-photon process [panel
(a)] and three-photon process [panel (b)]. Here, the coupling strength
is g/κ = 20 and other system parameters are the same as those used
in Fig. 3.

photons and leads to a significant improvement of the three-
photon blockade.

Based on the above characteristics of the cavity field in-
duced by the control field, we show in Figs. 5(c) and 5(d)
that an optical switching from the three-photon blockade to
the super-Poissonian field can be accomplished by increasing
the control field Rabi frequency. Here, we take the detuning
�p/κ = √

6g/2 and the coupling strengths g/κ = 20 in panel
(c) and g/κ = 25 in panel (d). Other system parameters are the
same as those in Fig. 3. For weak control field, the two-photon
transitions are effectively excited so that the three-photon
blockade can be observed with g(2)(0)>1 and g(3)(0)<1 [see
left peaks in panels (c) and (d)]. Increasing the control field
intensity, multiphoton transitions take place so that the super-
Poissonian cavity field [g(2)(0), g(3)(0)>1] can be achieved.
We also show that the Rabi frequency interval for achiev-
ing this optical switching from the three-photon blockade to
super-Poissonian cavity field can be enlarged by increasing
the coupling strength.

V. CONCLUSION

In summary, we have studied the quantum properties of
the cavity field in the atom-cavity QED system with two
cascade three-level atoms driven by a pump field and a control
field simultaneously. We show that the quantum fluctuations
of the cavity field can be controlled by tuning the control
field intensity. When two atoms are in-phase radiations, for
example, we show that the frequency to realize the two-
photon blockade can be actively controlled by adjusting the
control field intensity since the dressed states are shifted by
the control field. We also show that by increasing the pump
field Rabi frequency, not only two-photon blockade but also
three-photon blockade can be observed. Fixing the pump field
frequency, it is possible to realize an optical switching from
the two-photon blockade to the three-photon blockade by just
increasing the control field Rabi frequency. In the case of out-
of-phase radiations, we show that the three-photon blockade
phenomenon can be significantly improved with the enhanced
photon number. Furthermore, another optical switching from
the three-photon blockade to the super-Poissonian cavity field
can be accomplished by increasing the control field Rabi
frequency. These results can be realized not only in the atom-
cavity QED system but also in the circuit QED system, and
may result in potential applications in quantum communica-
tion and quantum networking.
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APPENDIX: THE EIGENVALUES AND EIGENSTATES OF EQS. (4) AND (5)

The Hamiltonian of the system in the dressed-state picture can be rewritten by using |GG, n〉, |MG±, n − 1〉, |EG±, n − 1〉,
|MM, n − 2〉, |EM±, n − 2〉, and |EE , n − 2〉 as bases in n-photon space, which are defined as

|GG, n〉 = |gg, n〉, |MG±, n − 1〉 = 1√
2

(|mg, n − 1〉 ± |gm, n − 1〉),

|EG±, n − 1〉 = 1√
2

(|eg, n − 1〉 ± |ge, n − 1〉), |MM, n − 2〉 = |mm, n − 2〉,

|EM±, n − 2〉 = 1√
2

(|em, n − 2〉 ± |me, n − 2〉), |EE , n − 2〉 = |ee, n − 2〉.

Case 1: φz = 0. Diagonalizing Eq. (4), we can obtain the eigenvalues of the dressed states in one-photon space, i.e., λ
(1)
0 = 0,

λ
(1)
1± = ±�c, and λ

(1)
2± = ±√

2g2 + �2
c , respectively. The corresponding eigenstates are given by

�
(1)
0 = −�c√

2g
|GG, 1〉 + |EG+, 0〉, �

(1)
1± = ±|MG−, 0〉 + |EG−, 0〉,

�
(1)
2± =

√
2g

�c
|GG, 1〉 ±

√
2g2 + �2

c

�c
|MG+, 0〉 + |EG+, 0〉.

In the two-photon space, the eigenvalues can be obtained by solving Eq. (5), yielding λ
(2)
0 = λ

(2)
0± = 0, λ

(2)
1± = ±√

g2 + �2
c ,

λ
(2)
2± = ±

√
α − √

β/
√

2, and λ
(2)
3± = ±

√
α + √

β/
√

2 with α = 7g2 + 5�2
c and β = 25g4 + 6g2�2

c + 9�4
c . Correspondingly, the
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eigenstates are given by

�
(2)
0+ = �2

c√
2g2

|GG, 2〉 −
√

2�c

g
|EG+, 1〉 + |EE , 0〉, �

(2)
0− = �2

c − g2

√
2g2

|GG, 2〉 −
√

2�c

g
|EG+, 1〉 + |MM, 0〉,

�
(2)
0 = −g

�c
|MG−, 1〉 + |EM−, 0〉, �

(2)
1± = �c

g
|MG−, 1〉 ±

√
g2 + �2

c

g
|EG−, 1〉 + |EM−, o〉,

�
(2)
2± = ± γ + √

β

3
√

2�2
c

|GG, 2〉 ∓
√

α − √
β(γ + √

β )

12g�2
c

|MG+, 1〉 − (γ − 6g2) + √
β

6
√

2g�c

|EG+, 1〉 ±
√

α − √
β

2�c
|EM+, 0〉

+ −γ + 6�2
c − √

β

6�2
c

|MM, 0〉 + |EE , 0〉,

�
(2)
3± = −γ + √

β

3
√

2�2
c

|GG, 2〉 ±
√

α + √
β(−γ + √

β )

12g�2
c

|MG+, 1〉 + (−γ + 6g2) + √
β

6
√

2g�c

|EG+, 1〉 ±
√

α + √
β

2�c
|EM+, 0〉

+ −γ + 6�2
c + √

β

6�2
c

|MM, 0〉 + |EE , 0〉,

with γ = −5g2 + 3�2
c .

We note that the second pump field photon cannot be absorbed at the detuning �p = λ
(1)
2± due to the energy difference between

the states �
(1)
2± and �

(2)
3± , which is given by �E±

2ph = λ
(2)
3± − 2λ

(1)
2±. As shown in Fig. 6(a), the energy differences increase slightly

at the beginning, but drop quickly as the control field Rabi frequency increases. Thus, the improvement of the two-photon
blockade is very weak as shown in Figs. 4(a) and 4(b).

Case 2: φz = π . In the one-photon space, the eigenvalues are given by λ
(1)
0 = 0, λ

(1)
1± = ±�c, and λ

(1)
2± = ±√

2g2 + �2
c with

the corresponding eigenstates

�
(1)
0 = − �c√

2g
|GG, 1〉 + |EG−, 0〉, �

(1)
1± = ±|MG+, 0〉 + |EG+, 0〉,

�
(1)
2± =

√
2g

�c
|GG, 1〉 ±

√
2g2 + �2

c

�c
|MG−, 0〉 + |EG−, 0〉.

In the two-photon space, we can obtain λ
(2)
0 = λ

(2)
0± = 0, λ

(2)
1± = ±√

g2 + �2
c , λ

(2)
2± = ±

√
α−√

β√
2

, and λ
(2)
3± = ±

√
α+√

β√
2

. The
corresponding eigenstates are given by

�
(2)
0+ = − �2

c√
2g

|GG, 2〉 +
√

2�c

g
|EG−, 1〉 + |EE , 0〉, �

(2)
0− = g2 − �2

c√
2g

|GG, 2〉 +
√

2�c

g
|EG−, 1〉 + |MM, 0〉,

�
(2)
0 = g

�c
|MG+, 1〉 + |EM−, 0〉, �

(2)
1± = −�c

g
|MG+, 1〉 ∓ g2 + �2

c

g
|EG+, 1〉 + |EM−, 0〉,

�
(2)
2± = γ + √

α

3
√

2�2
c

|GG, 2〉 ±
√

α − √
β(γ + √

β )

12g�2
c

|MG−, 1〉 + γ − 6g2 + √
β

6
√

2g�c

|EG−, 1〉 ±
√

α − √
β

2�c
|EM+, 0〉

+ −γ + 6�2
c − √

β

6�2
c

|MM, 0〉 + |EE , 0〉,

�
(2)
3± = − −γ + √

β

3
√

2�2
c

|GG, 2〉 ∓
√

α + √
β(−γ + √

β )

12g�2
c

|MG−, 1〉 − −γ + 6g2 + √
β

6
√

2g�c

|EG−, 1〉 ±
√

α + √
β

2�c
|EM+, 0〉

+ −γ + 6�2
c + √

β

6�2
c

|MM, 0〉 + |EE , 0〉.
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To discuss the three-photon blockade, the dressed states in the three-photon space must be considered. In the three-photon
space, the Hamiltonian is written as

H3ph =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

6g+
2

√
6g−
2 0 0 0 0 0 0

√
6g+
2 0 0 �c 0 0 0 g+ 0

√
6g−
2 0 0 0 �c 0 0 −g− 0

0 �c 0 0 0
√

2g+
2 −

√
2g−
2 0 0

0 0 �c 0 0 −
√

2g−
2

√
2g+
2 0 0

0 0 0
√

2g+
2 −

√
2g−
2 0 0

√
2�c

√
2�c

0 0 0 −
√

2g−
2

√
2g+
2 0 0 0 0

0 g+ −g− 0 0
√

2�c 0 0 0

0 0 0 0 0
√

2�c 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of the above matrix are λ
(3)
0 = λ

(3)
0± = 0, λ

(3)
1± = ±√

2g2 + �2
c , λ

(3)
2± = ±

√
X − √

Y /
√

2, and λ
(3)
3± =

±
√

X + √
Y /

√
2 with X = 12g2 + 5�2

c and Y = 64g4 + 24g2�2
c + 9�4

c . Correspondingly, the eigenstates are given by

�
(3)
0+ = −�2

c√
6g2

|GG, 3〉 + �c

g
|EG−, 2〉 + |EE , 1〉, �

(3)
0− = 2g2 − �2

c√
6g2

|GG, 3〉 + �c

g
|EG−, 2〉 + |MM, 1〉,

�
(3)
0 =

√
2g

�c
|MG+, 2〉 + |EM−, 1〉, �

(3)
1± = �c√

2g
|MG+, 2〉 ±

√
2g2 + �2

c√
2g

|EG+, 2〉 − |EM−, 1〉,

�
(3)
2± = ±Z + √

Y

2
√

6�2
c

|GG, 3〉 ±
√

X − √
Y (Z + √

Y )

12
√

2g�2
c

|MG−, 2〉 + (Z − 12g2) + √
Y

12g�c
|EG−, 2〉 ±

√
X − √

Y

2�c
|EM+, 1〉

+ −Z + 6�2
c − √

Y

6�2
c

|MM, 1〉 + |EE , 1〉,

�
(3)
3± = Z − √

Y

2
√

6�2
c

|GG, 3〉 ±
√

X + √
Y (Z − √

Y )

12
√

2g�2
c

|MG−, 2〉 + (Z − 12g2) − √
Y

12g�c
|EG−, 2〉 ±

√
X + √

Y

2�c
|EM+, 1〉

+ −Z + 6�2
c + √

Y

6�2
c

|MM, 1〉 + |EE , 1〉

with Z = −8g2 + 3�2
c .

The absorption of the third photon depends on the energy differences �E±
3ph = λ

(3)
3± − 3λ

(2)
3±/2 at the detuning �p = λ

(2)
3±/2

and �E
′±
3ph = λ

(3)
2± − 3λ

(2)
2±/2 at the detuning �p = λ

(2)
2±/2. As shown in Fig. 6(b), the energy differences become larger as the

control light increases. Thus, it is possible to prevent the system from absorbing the third photon by increasing the control field
intensity, resulting in a significant improvement of the three-photon blockade.
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[21] S. Rebić, A. S. Parkins, and S. M. Tan, Phys. Rev. A 65, 063804
(2002).

[22] J.-Q. Liao and C. K. Law, Phys. Rev. A 82, 053836 (2010).
[23] A. Miranowicz, M. Paprzycka, Y.-x. Liu, J. Bajer, and F. Nori,

Phys. Rev. A 87, 023809 (2013).
[24] T. C. H. Liew and V. Savona, Phys. Rev. Lett. 104, 183601

(2010).
[25] A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, Phys.
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