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Spin-Orbit Coupling of Light in Photonic Crystal Waveguides
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We investigate the effect of breaking the parity of a photonic crystal waveguide designed to have odd and
even modes intersecting inside the photonic bandgap. The complete study on the wave field properties of the
resulting bonding modes uncovers that the transverse spin and orbital parts of the angular momentum couple in
the very slow-light regime by means of their local currents. This leads to a subbandgap opening between bands
characterized by distinct organizations of this spin-orbit coupling at the nanoscale.
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I. INTRODUCTION

Photonic crystals (PhCs) are the optical analogs of atomic
crystal lattices in which dielectric compounds are periodically
arranged to shape the propagation of photons [1,2]. In cases
where the periodicity and the dielectric contrast are suitably
set, complete energy gaps emerge and transform the PhC into
a photonic insulator [3–5]. Albeit the amazing confinement
properties shown by such a photonic bandgap in itself have
important implications for light circuitry on-chip, like the
slow-light regime [6–9] and the Purcell effect [10–12], which
have been investigated for three decades now, the strong
confinement of light provided by PhCs has even more to
offer. Cleverly designed structured photonic networks can
trigger angular momentum (AM) degrees of freedom like their
electronic counterparts: the spin angular momentum (SAM)
and the orbital angular momentum (OAM). The SAM is
intrinsic and corresponds to circular polarization with left- or
right-handedness, while the OAM in its intrinsic form appears
as an optical vortex characterized by its topological charge
[13–15]. Two-dimensional (2D) PhC hole slabs are well
known to support a transverse electric (TE) photonic bandgap,
thus photonic crystal waveguide (PCW) modes guided by
this bandgap mechanism have a nonparaxial propagation. In
other words, the electric field �E of the confined mode has
both transverse and longitudinal components, Ey and Ex,
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respectively. In the case where these two components have
the same magnitude and phase difference δxy = ±π/2, the
electric field is circularly polarized in a plane containing the
propagation direction [16,17]. Accordingly, such circularly
polarized points (C points) are labeled as transverse SAM and
are sometimes referred to in the literature as photonic wheels
[18–22], which starkly contrasts with the familiar case of an
electric field spinning around the propagation axis. The orbital
degree of freedom can a f ort iori be transverse because it
is derived from the phase structure of the light. In order to
be considered photonic wheels, the optical vortices holding
the OAM must wind around an axis perpendicular to the
propagation [15,23]. Due to the spatial confinement of light in
nanophotonic devices and its evanescent nature in the vicinity
of interfaces, numerous on-chip applications are promising
for both transverse OAM and SAM ranging from plasmonics
to atomtronics as well as silicon (Si) photonics. Topological
action is expected to be enabled by the spin-momentum lock-
ing, which associates clockwise and anticlockwise rotations
with opposite directions of propagation. It has already been
demonstrated that photonic wheels are able to directionally
excite surface plasmon polaritons at a metal-dielectric inter-
face [24], waveguide modes at the output of a subwavelength
microdisk resonator [25], Zeeman sub-levels of a single ul-
tracold atom [26], and even PCW modes through dipolar
transitions of quantum dots [27,28]. In all the examples listed,
the chiral behavior is derived from a broken symmetry in the
system, which limits directional routing in standard PCWs
belonging to the symmorphic space group. Locally, angular
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momenta are extremely sensitive to the symmetries, especially
in inhomogeneous media [29,30] like PhCs. Thus the break
of important symmetries like rotational [31,32] and inversion
[33,34] symmetry opens a nontrivial gap between bands char-
acterized by different Chern numbers [35,36]. Symmorphic
PCWs confine pairwise modes with both odd and even sym-
metries that can intersect without interacting with each other
due to their different parities [9,37]. Breaking the parity by
substituting the mirror symmetry with a glide-plane symmetry
allows a branch exchange between these modes raising the
degeneracy [38–40], which is somehow reminiscent of the
spin-orbit coupling effect on energy bands in atomic crystals
[41]. Inducing spin and orbital fluxes in photonic systems
is a crucial step towards the realization of directional rout-
ing for light circuitry on-chip and hence architect scalable
photonic networks with logic gates able to deliver different
outputs distinct in their directionality. It is the purpose of this
work to understand the nature of spin and orbital currents
in the anomalous slow-light regime of a photonic bandgap
and highlight the interplay between OAM and SAM at the
nanoscale as well as study how these wave field properties can
be engineered through modification of the planar structure in
order to possibly functionalize them for the next generation of
optical communication protocols.

Here, we present a comprehensive study of the anticrossing
taking place when the parity of a symmorphic PCW is broken
and its impact on both the spin and the orbital AM local
currents in the particular context of zero group velocity (ZGV)
[15,42,43]. A clear picture of the wave fields is obtained
by using the three-dimensional finite-difference time-domain
(3D-FDTD) method and leads to the main result: a gap opens
between bands that encapsulate different organizations of the
spin-orbit coupling at the nanoscale. In Sec. II, we emphasize
the consequence of breaking the parity on the photonic band
structure and point out how it gives rise to the formation
of hybrid modes neither odd nor even accompanied by the
emergence of the slow-light regime at an anomalous position
in the Brillouin zone. Section III presents the properties
of the cycle-averaged electromagnetic fields in the plane of
symmetry (z = 0) of the PCW. The transverse SAM and
OAM are clearly identified by means of the Stokes parameters
and analysis of the modal phase structure, respectively. The
analysis of the electromagnetic fields reveals that photonic
wheels do not necessarily vanish as the light slows down in a
PCW. Furthermore, the influence of the optical vortices on the
state of polarization is highlighted by examining its evolution
on the Poincaré sphere and reveals that the OAM acts as an
effective polarization for the envelope streamlines. Finally,
in Sec. IV we move from the previously used 2D description
of the modal properties to a 3D analysis of the SAM and
OAM densities with the appropriate Minkowski formalism
[29,30,44]. These quantities, representing the local fluxes of
the respective angular momenta, provide deeper insight into
the structure of the light and allow one to understand how
the nonparaxial guidance and the slowdown effect, induced
by the photonic bandgap, organize the SAM (OAM) by
means of the OAM (SAM) density. These features repre-
sent a clear manifestation of the spin-orbit coupling in this
PCW occurring at subwavelength dimensions. Outlooks on
the potential applications of controlling the SAM and OAM

FIG. 1. The PhC is a hexagonal lattice of period a = 0.415 nm
patterned with holes of radii r = 0.3a in a Si slab of thickness t =
220 nm. The waveguide has a width W = 1.3

√
3a and the first rows

of holes have a modified radius of r1 = 0.35a. One side of the PhC is
shifted along the propagation direction by an offset m with respect to
the other, as the mirror symmetry is replaced by the glide-plane axis
�Gm and �Gm−a.

of light at the nanoscale are given in Sec. IV to conclude the
paper.

II. BAND STRUCTURE: EFFECT OF BREAKING
THE PARITY SYMMETRY

Recently, the tight confinement offered by 2D PhCs and the
resulting nonparaxial guidance of light enabled manipulation
of the directional emission of an embedded quantum emitter
by engineering the density of photonic states at C points [27].
This effect is salient in nonsymmorphic PCWs [39], where
the mirror symmetry of the structure is replaced by glide-
plane symmetries. To qualitatively explain why, we propose to
express the field intensity at the center of a symmorphic PCW,
in terms of left circularly polarized (LCP) and right circularly
polarized (RCP) vectors [�E�/�E� = (Ex�x ± iEy�y)/

√
2]. The

longitudinal and transverse electric components of a TE-
guided mode have opposite parities given by the relations

Ex(x, y, z) = ±Ex(x,−y, z),

Ey(x, y, z) = ∓Ey(x,−y, z), (1)

where the mode parity is classified with respect to the trans-
verse component. It follows that the RCP and LCP compo-
nents have the same norm and a phase difference δ�� = 0 or
±π at y = 0. Therefore, the degree of ellipticity is null where
the electric field is maximum.

On the contrary, breaking the PCW parity makes the parity
classification of Eq. (1) obsolete [39], thus allowing chiral and
high-field-intensity regions to overlap. The design parameters
used to form such hybrid bands are represented in Fig. 1.
The 1.3

√
3a wide PCWs (y component of the center-to-center

distance between two holes bordering the waveguide) are
formed in a hexagonal lattice of period a = 415 nm patterned
with holes of radii r = 0.3a in a 220-nm-thick Si slab, and
the radii of the first rows of holes are extended to r1 = 0.35a.
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FIG. 2. Band structures of the PCW for different offset m’s
between the two sides of the PhC. PhC bulk modes are represented
in green, and the light cone in orange. The dispersion relation for the
symmorphic structure (m = 0) is represented by dashed and solid
black lines for the odd and even modes, respectively. The offset
couples the odd and even modes, which gives rise to the TE+

1 and
TE−

1 modes, in shades of red and blue, respectively. These modes are
represented in red and blue for the maximum offset m = 0.5a and
their anomalous ZGV points are represented by red and blue circles,
respectively.

One side of the PhC is shifted, with respect to the other, by
an offset m along the propagation direction. In this instance,
the mirror symmetry operations, Eq. (1), are replaced by the
glide-plane transformations as

Ĝm�E(x, y, z) = eimk�E(x,−y, z),

Ĝm−a�E(x,−y, z) = ei(m−a)k�E(x, y, z), (2)

where Ĝm is the glide-plane operator and y > 0.
The transformation of the band structure, calculated by the

3D-FDTD method, as m is scanned from 0 to a/2 is shown
in Fig. 2. Modes originally crossing, due to their different
parities under mirror symmetry, bond together and exchange
their branches in such a way that ZGV points appear far
from the edge of the Brillouin zone. At such wave vectors
(ka �= ±π, 0), which represent anomalous positions for the
slow-light regime of a PCW [42,43], geometrical phases are
not inhibited and the energy flux represented by the Poynting
vector,

�P = 1
2 Re(�E × �H∗

), (3)

cannot simply vanish everywhere as is the case at the band
edge [15]. On the other hand, the total energy flow passing
through the PCW unit cell must be null in order to also satisfy
its scalability with the group velocity.

III. ELECTROMAGNETIC WAVE PROPERTIES

Here, the properties of the electromagnetic fields are pre-
sented. Henceforth, the even and odd (TE+

1 and TE−
1 ) modes

are referred to as the crossing points (their respective anoma-
lous ZGV points) without any ambiguity. The electric and
magnetic field profiles are distinctively described in the plane
of symmetry to emphasize that they hold separate parts of
the AM. Nevertheless, the first indication of the interplay

FIG. 3. The Poincaré sphere can be represented by the Stokes
parameters S1, S2, and S3 in the Cartesian coordinate system or in the
spherical coordinate system with angles α and ω, parametrizing the
polarization ellipse (inset), times a factor of 2.

between the spin and the orbital AM in both bonding modes
is presented through the energy streamlines.

A. Electric field properties: Stokes parameters,
Poincaré sphere, and SAM

In a PCW slab, the light is completely polarized in the
plane of symmetry (z = 0) [45], as the guided modes there
have orthogonal electric and magnetic fields. For instance, the
field components of a TE mode are expressed by

�E(x, y, z = 0) = (Ex, Ey, 0),

�H(x, y, z = 0) = (0, 0, Hz ). (4)

Therefore, the polarization can be characterized in this plane
by using the Stokes parameters,

S0 = |Ex|2 + |Ey|2,
S1 = |Ex|2 − |Ey|2 = S0cos(2ω)cos(2α),

S2 = 2Re(E∗
xEy) = S0cos(2ω)sin(2α),

S3 = 2Im(E∗
xEy) = S0sin(2ω), (5)

which respect the full polarization condition [46],∑
i=1,2,3

S2
i (x, y, 0) = S2

0 (x, y, 0). (6)

The Stokes parameters S1, S2, and S3 refer to the description
of the polarization in the linear (Ex, Ey), diagonal (Ex +
Ey, Ex − Ey)/

√
2, and circular (E�, E�) polarization bases,

respectively. Their complementarity allows the state of po-
larization to be represented as a point on the surface of
the Poincaré sphere [13,14,46] as shown in Fig. 3, which
is also defined by the azimuthal and polar angles 2α and
2ω introduced in the third set of Eq. (5). These angles also
characterize the polarization ellipse times a factor of 1/2 (see
Fig. 3 inset). This factor comes from the fact that the rotation
of the polarization state on the surface of the Poincaré sphere
has an SO(3) representation, while the polarization ellipse can
be transformed through the Jones calculus equivalent to SU(2)
transformations and typical of a spin-half system.
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FIG. 4. Polarization characteristics (a) of the pairwise modes in the symmorphic structure and (b) of the TE+
1 and TE−

1 modes for different
m’s. Top panels represent the Stokes parameter S0, which is normalized with respect to the highest field intensity in each graph. Middle and
bottom panels describe the angles 2ω and 2α within the PCW unit cell, respectively.

Figure 4 displays the spatial profiles of S0, 2α, and 2ω in
the PCW unit cell for odd and even modes at the crossing
points as well as for TE+

1 and TE−
1 modes with different

m’s. The RCP (LCP) locations are depicted by 2ω = ±π/2
but have an undefined 2α. It can be noted in the relevant
figures that at these particular points, all the 2α values are
merging towards the C points. Since the electric fields of the
even and odd modes are mostly linearly polarized along the
transverse and longitudinal direction, respectively, C points do
not coincide with high-intensity regions in the symmorphic
configuration, as shown in Fig. 4(a). The difference in their
polarization arises from their distinct guidance mechanisms.
The even mode is index guided and experiences the PhC
as a periodic corrugation; its confinement relies only on the
total internal reflection. On the other hand, the odd mode is
guided by the photonic bandgap and penetrates into the PhC
bulks. The Bragg mechanism enforces this mode to have its
dominant electric field component parallel to the direction of
propagation.

Nevertheless, the situation is rather different once the par-
ity symmetry is broken, as shown in Fig. 4(b). The branch
exchange between these modes with orthogonal dominant
polarizations results in bonding modes not only supporting
C points in high-field-intensity regions but also providing a
degree of ellipticity to the electric field maxima. Here, the
interest comes from the fact that the SAM arises despite the
ZGV, while in standard PCWs, if the band edge is generally
the region of the slow-light effect, the matching of the wave
vector with the periodicity annihilates the chirality because
the associated fields become purely real:

lim
k→ π

a

Im(�E) → �0. (7)

Conversely, modes guided by wave vectors different from
high-symmetry points of the Brillouin zone must be asso-
ciated with fields having a nonzero imaginary part because
the translation of a period induces a phase shift of �= 0
or ±π . In our case, it can be concluded that breaking the
parity symmetry is beneficial to form hybrid modes holding
enhanced transverse SAM at anomalous ZGV points, showing
that photonic wheels do not always stop turning when the light
slows down in a PCW.

B. Magnetic field properties: Vortices, topological
charge, and OAM

In the former part, it has been shown that the electric fields
of the bonding modes carry the transverse SAM degree of
freedom, which is conserved by the periodicity (translation
by a period) and reversed by the glide-plane axes �Gm and
�Gm−a. Therefore, it is natural to examine the properties of the
magnetic field in the plane of symmetry and seek the presence
of another AM: the orbital degree of freedom.

The intensity as well as the phase,

θ = arg(Hz ), (8)

profiles are reported in Figs. 5(a) and 5(b) for the even and
odd modes in the top and middle panels, respectively. In
order to study the impact of the guidance mechanism on the
field properties, �P is superimposed onto the phase pattern
of the modes. As seen previously, the even mode does not
differ fundamentally from a single mode in a normal ridge
Si waveguide, except by its backward propagation due to the
periodicity. All the energy flows are confined within the core
of the waveguide, a region that was previously characterized
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FIG. 5. Magnetic field properties of the (a) even, (b) odd, (c) TE+
1 , and (d) TE−

1 modes in the plane of symmetry of the PCWs. Top panels
represent the magnetic field intensity of the modes |H |2. In the middle panels, the phase patterns θ of the modes are represented by contour
plots on which black arrows, corresponding to the Poynting vector �P , have been superimposed. White lines are the major energy streamlines.
The polarization along these streamlines has been plotted on the Poincaré sphere in the bottom panels. The opacity of the polarization vector
increases along the propagation. For simplicity, only the streamline in the upper part of the PCW (y > 0) is represented for the odd mode (b).

as being polarized along �y [Fig. 4(a)]. The polarization along
the major streamline of �P is reported in the bottom panel
in Fig. 5(a) and clearly shows that the light flows without
changing its polarization. On the contrary, the odd mode,
shown in Fig. 5(b), is guided by the photonic bandgap and
presents a group index an order of magnitude higher than the
even-mode group index due to the presence of a folded K point
in the band structure [37]. The intensity pattern shows that the
magnetic field not only is confined in the central region but
also extends into the PhC bulks. Due to the higher order of
this mode, one can distinguish a few lobes with nodes between
them. Its phase pattern has a strong modulation with a patchy
structure and emphasizes that the aforementioned nodes are
the centers of optical vortices. The phase is undetermined at
the center of the vortices and jumps by ±2π around them
such that

l = 1

2π

∫
L

�∇(θ ) · d�s = ±1 (9)

is the topological charge of these vortices, where L is
a closed clockwise contour around a vortex. The energy
flow is circulating around the phase singularities and prop-
agates by undulating between vortices with opposite topo-
logical charges, which reflects the slowdown factor of this
mode in the real space. However, the polarization along the

propagation of the major energy streamline describes a com-
plex evolution, as shown in the bottom panel in Fig. 5(b). The
a

80 × a
√

3
160 × t

10 mesh used for the simulation is not accurate
enough to represent the evolution of the state of polarization as
continuous on the Poincaré sphere. It should be further noted
that the streamlines are guided by optical vortices without
symmetry operations linking them. Altogether, it reflects that
abrupt changes of both 2α and 2ω occur along the path. This
is supported by comparison with Fig. 4(b), which displays a
strong modulation of both parameters in the vicinity of the
streamline.

The situation is rather different for the bonding modes. For
simplicity, only the maximum offset m/a = 1/2 is explored
henceforth. It can be noted in the middle panels of Figs. 5(c)
and 5(d) that the optical vortices organize the local currents
of energy so that the total flow is null with respect to the
ZGV. The energy fluxes in the PhC bulks and inside the
waveguide propagate in opposite directions and spiral energy
currents appear between them. If the major streamlines are
also circulating between optical vortices with opposite topo-
logical charges for both modes, the optical vortices are not
located near the PhC parts but rather inside the waveguide.
It is immediately apparent that the phase structure of the
TE+

1 mode has a strong phase modulation extending all over
the structure, with phase gradients forcing one vortex to
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bond with three vortices characterized by opposite topological
charges. The phase pattern of this mode takes the form of
shrunken hexagons reminiscent of the structural arrangement
of graphene. On the other hand, the phase modulation of the
TE−

1 mode is constrained within the core of the waveguide so
that the vortices only bond through the glide-plane symmetry
and thereby form a chain similar to polyacetylene. These
similarities to organic chemistry come from the triangular
lattice, suggesting that other arrangements of singularities
may be formed by choosing another crystal lattice.

The optical vortices present in the field pattern of these
modes play a completely different role with regards to the evo-
lution of the polarization along the major streamline. It is well
known that vortex beams in free space like Laguerre-Gaussian
beams of higher order possess a longitudinal OAM around
which the polarization rotates in the S1S2 plane [13,14].
This means that the parameter 2α is periodically evolving
over 2πc/λ in these beams. In our case, if the net orbital
momentum of the PCW modes is null, the transverse aspect of
the optical vortices seems to contribute in a different way to
the motion of the polarization state on the Poincaré sphere. For
both the TE+

1 and the TE−
1 modes, their polarization vectors

rotate in the S2S3 plane around a constant S1 value, as shown
in the bottom panels in Figs. 5(c) and 5(d). The difference
in their S1 values can be associated with the spanning of the
vortices in the y direction. In the case of the TE+

1 mode, their
proximity limits the swinging amplitude of the energy flow.
Simultaneously, the degree of ellipticity decreases shortly
outside the C points, while for the TE−

1 mode, the ellipticity
remains important in the transverse direction outside the SAM
locations, as the major energy streamline smoothly turns
around the vortices. Nevertheless, their polarization vectors
turn in the anticlockwise direction in both cases, but with a
π -shift difference: the polarization of the TE+

1 (TE−
1 ) mode

is described by 2α = π/2 (2α = −π/2) at the border of
the unit cell [cf. bottom panel in Fig. 4(b)]. Depending on
the nature of the system and the variable relevant to its
dynamic, the evolution of the state of polarization may be
described by a type equation similar to a famous classical,
relativistic, or quantum law like the Lorentz pseudoforce [47],
the Schrödinger equation [48], and the Larmor precession
equation [49]. In the case of such a nonsymmorphic PCW
(m �= 0), the glide-plane symmetry guarantees that the global
chirality is null:

∫ ∞

−∞

∫ a

0
S3(x, y)dxdy = 0,

S3(x, y) = −S3(x + m,−y) = −S3(x + m − a,−y). (10)

By referring to the correspondence between the spin of light
and the electronic spin, the complete rotation of the polar-
ization along the energy flux is analogous to spin waves in
antiferromagnetic materials [50] and thus can be described
by a modified Landau-Lifshitz equation of motion without
damping [51]:

d

dt

⎛
⎝S1

S2

S3

⎞
⎠ 1

S0
= −2πc

λ

⎛
⎝S1

S2

S3

⎞
⎠ 1

S0
× �Peff , (11)

where �Peff is an effective polarization driving the precession
of the polarization state. As the analysis is conducted on
streamlines guided by the optical vortices, the polarization
state at the center of the vortices would be the natural choice
for this parameter. Indeed, Eq. (10) links the polarization of
two opposed topological charges related by the glide-plane
symmetry and therefore makes the S1 component the relevant
Stokes parameter to consider. Surprisingly, the projected elec-
tric field is oriented there along the y axis for both the TE+

1
and TE−

1 modes (2α = π ) and thus makes Eq. (11) absolutely
valid by setting �Peff = (−1, 0, 0). This dynamic reveals that
the alternative transverse OAM progressively inverts the SAM
through the glide-plane symmetry and makes the evolution of
the periodic chirality pattern similar to the fundamental state
of an ordered Haldane spin chain with Bloch walls [50,52].
The other energy streamlines trapped between the optical
vortices also form circular contours on the Poincaré sphere
surface but their effective polarizations have a nonzero 2ω

value. Being an affair of polarization, a qualitative description
of these streamlines by Eq. (11) remains true as the ellip-
ticity of the effective polarization vector is in line with the
proximity of one or another vortex. However, an appropriate
charge potential-like, decaying with the relative distance of
the streamlines with l = 1 and l = −1 topological charges,
must be taken into account to quantitatively picture the evolu-
tion of the polarization along these streamlines.

IV. AM DENSITIES AND SPIN-ORBIT COUPLING

If the properties of the electromagnetic fields have been
synthesized in the plane of symmetry, it is because the PCW
modes are confined in a dielectric slab as thick as λ

2nSi
and

hence are fundamental in the z direction. This allows �E and
�H to be reduced to 2D scalar distributions of their phase and
intensity. However, this simplification cannot be made for
other wave fields that characterize the PCW modes and re-
quire a 3D analysis to completely depict their properties. This
is especially true for the SAM and the OAM densities, which
retain their significance even where the light is partially polar-
ized [1,45,46]. Recent interest in optical momenta, including
photonic wheels, leads towards a deeper understanding of the
dynamics of such wave fields in inhomogeneous media. The
main interest in studying these characteristics lies in their
canonical aspects; they enable the description of the structured
field beyond its kinetic picture. For example, the study of these
quantities has yielded theoretical results that demonstrate the
conservation and the quantization of the total AM number for
modes confined in cylindrical fibers and metallic wires [30],
as well as the transverse character of the spin of a surface
plasmon polariton at a metal-vacuum interface [53,54], which
has been proven to be equal to the electron spin contribution
per plasmon at its maximum frequency [29].

Nevertheless, to the best of our knowledge, the local cur-
rents of spin and orbital angular momenta have not been ex-
plored in PhCs yet. Only the SAM density has been described
in the plane of symmetry to explore the nonzero chirality of
a PCW mode trapped between different PhCs with trivial and
nontrivial photonic bandgaps [55], thus ignoring its vectorial
nature. Defining both the SAM and the OAM densities across
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FIG. 6. SAM density of the (a) TE+
1 and (b) TE−

1 modes along the propagation direction at different x positions in the unit cell. Arrows
describe the components Sy and Sz transverse to the propagation, while the colored plot represents the longitudinal component Sx . The vortex
centers with topological charges l = ±1 are represented by white and black circles, respectively.

the PhC slab reveals interesting properties of the optical AM
brought by both the photonic bandgap and the total internal
reflection. According to the developed formalism based on
the Minkowski description of the light [29,30,44], the linear
(canonical) momentum, the SAM, and the OAM densities can
be expressed in our system as

�P = λ

8πc
Im(ε �E∗.�∇(�E) + μ �H∗.�∇(�H)),

�S = λ

8πc
Im(ε �E∗ × �E + μ �H∗ × �H),

�L = �r × P, (12)

respectively, where ε is the permittivity and μ is the perme-
ability of the dielectrics. As the dimensions of the PCW set
the frequencies of the modes in the telecom bandwidth, any
dispersion corrections from both air and Si are neglected. As
mentioned before, any geometrical phases must vanish at the
band edge and the same applies to the AM densities. There-
fore, the anomalous ZGV points represent the appropriate
framework to analyze the coaction between slow light and
AM and can provide deeper insight into the nature of photonic
wheels in the slow-light regime.

A. SAM density

Since the SAM density is, by definition, normal to the po-
larization ellipse, it is limited to the electric field contribution
only in the plane of symmetry. Furthermore, restricting the
analysis of the SAM density to this plane conceals the local
currents in the x and y directions. For instance, if it has been
shown in the previous section that the PCW modes are locally
chiral, their helicity density [∝ Im(�E · �H∗)] is identically 0 in
the plane of symmetry [see Eq. (4)] and remains weak inside
the slab due to the TE-like polarization [1]. As the helicity
measures the alignment of the spinning axis with the linear

momentum, the polarization conditions substantiate not only
that the SAM at z = 0 has a pure transverse character, but
also that the SAM density propagation is exclusively normal
to the xy plane there. Still, the PCW has a one-dimensional
periodicity and the modes are guided by global wave vectors
parallel to the x axis; it is therefore natural to examine the
behavior of the SAM density along the propagation.

Figures 6(a) and 6(b) depict the SAM density in the yz
plane at different x positions in the unit cell, for both the
TE+

1 and the TE−
1 modes, respectively. The arrows represent

the projection of the SAM density in the yz plane, while the
colored contour plot represents the longitudinal component.
The striking feature of the transverse components is the emer-
gence of circular and spiral flows of the transverse component
of the SAM inside the PCW slab. Moreover, it can be noted
that the SAM density is exclusively oriented along the z
axis in the plane of symmetry because only the electric field
contributes to the SAM there. If it is mandatory to analyze the
3D structure of the AM densities in order to fully characterize
these wave fields, the fact remains that the glide-plane axis
is a pure 2D concept. Therefore, the relevant symmetry to
characterize the AM density needs to be reconsidered. As
the system also has a mirror symmetry in the z direction,
the combination of both symmetries is nothing but a twofold
screw axis. Figure 6 illustrates that the sense of circulation
of the SAM density in the xy plane seems to be conserved
by the screw rotation. Indeed, the longitudinal component is
even while the transverse component is odd with respect to
this symmetry:⎛

⎝Sx

Sy

Sz

⎞
⎠(x, y, z) =

⎛
⎝ Sx

−Sy

−Sz

⎞
⎠(x + a/2,−y,−z). (13)

In addition to that, the longitudinal component of the SAM
density is odd with respect to the mirror symmetry along the
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z direction,

Sx(x, y, z) = −Sx(x, y,−z), (14)

which ensures that the total SAM does not possess a net total
momentum along the direction of propagation. This organiza-
tion of the SAM density flows translates to a closed circulation
trapping nonvanishing fluxes inside the dielectric that inverse
the sign of the transverse spin in the plane of symmetry. This
inversion is inherent to the conservation of the permittivity by
glide-plane symmetry as well as its isotropy. Although this
is beyond the scope of this work, an inhomogenous PCW
system made of anisotropic materials, filled with liquid crystal
[56,57], for example, may perhaps be able to present a pure
transverse spin with unique handedness [58]. Nevertheless,
the nonsymmorphic PCW studied here possesses other sym-
metry operations [39], namely, the convolution of the transla-
tion by a/2 and the mirror reflection σx at x = a/4 and 3a/4.
Interestingly, the longitudinal component of the SAM density
is null at these positions that coincide with the topological
charges. In order to examine the structure of the local currents
from another perspective, the SAM density is represented by
arrows in the xy plane at different heights (z = ±t/4) for
both the TE+

1 and the TE−
1 modes in Figs. 7(a) and 7(b),

respectively, and superimposed on the θ pattern of the modes
at z = 0. The calculation shows that the topological charges
l generate SAM density fluxes which lead towards vortices
with opposite topological charges. One aspect of the spin-orbit
coupling of the PCW modes studied is revealed here: the
organization of the relevant spin current shows that the optical
vortices, holding the OAM, play the role of waypoints for the
SAM density in such a way that, through the SAM density
fluxes, an optical vortex bonds with its neighboring vortices
that have an opposite topological charge. This arrangement of
the SAM wave field, with respect to the topological charges, is
similar to the magnetic field streamlines established between
two magnetic dipoles in an antiparallel configuration and
qualitatively explains why the sign of the topological charge
determines the direction of the SAM density, along the z axis.
Furthermore, Fig. 7 also discloses that the streamlines of �S
follow constant θ values such that the circulation of the SAM
density cannot be established between optical vortices with
the same topological charge. Pieced together, these charac-
teristics draw a clear picture of the SAM density circulation
that can be summarized as follows: the bonding modes can
be compared at different arrangements of spins oriented in
the opposite direction of their first neighbors, confirming the
antiferromagnet analogy developed in the former section. It is
also in agreement with the Ising picture of antiferromagnetic
materials [59] (i.e., a negative exchange constant between the
first-neighbor spins). For the TE+

1 mode, topological charges
bond with three opposite topological charges, while with only
two for the TE−

1 mode, thus qualitatively explaining why they
are the lower and upper energy levels, respectively.

B. Linear momentum and OAM densities

The linear momentum density is an interesting property
quantifying the propagation direction of the electric and mag-
netic fields. It can be interpreted as a local wave vector of the
modes. As the modes are considered in the special framework

FIG. 7. SAM density projected on the xy plane at z = ±t/4 for
the (a) TE+

1 and (b) TE−
1 modes. The projection is represented by

black arrows; the phase pattern of the magnetic fields θ , by the
colored plot; and topological charges l = ±1, by white and black
circles, respectively.

of the ZGV, the overall linear momentum flow along the
propagation direction must cancel because the fields carry the
electromagnetic energy. Nevertheless, the inhomogeneity at
the subwavelength scale of any PhC system goes hand in hand
with the fact that the electromagnetic field is not dual symmet-
ric, as is the case for waves propagating in an isotropic and
homogeneous medium. This lack of dual symmetry comes
along with the fact that the spin is not aligned with the
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FIG. 8. Linear AM density components of the (a) TE+
1 and (b) TE−

1 modes represented by black arrows and superimposed on the energy
density profiles from left to right: LCP contributions, RCP contributions of the electric field, total electric fields, magnetic fields, and total
electromagnetic fields.

helicity. If this constitutes a strong basis for seeking evidence
of the spin-orbit coupling in these systems [60], it also implies
that both �E and �H contributions have to be accounted for in
order to properly define any momentum densities. The linear
momentum density can be split into electric and magnetic
parts. Similarly, the electric field part of the linear momentum
density can be decomposed into an LCP, an RCP, and an
out-of-plane contribution for each component, which allows
for a separate representation

ε �E∗ · �∇(�E) = ε

⎛
⎜⎜⎝

E∗
x

∂Ex
∂x + E∗

y
∂Ey

∂x + E∗
z

∂Ez

∂x

E∗
x

∂Ex
∂y + E∗

y
∂Ey

∂y + E∗
z

∂Ez

∂y

E∗
x

∂Ex
∂z + E∗

y
∂Ey

∂z + E∗
z

∂Ez

∂z

⎞
⎟⎟⎠

= ε

⎛
⎜⎜⎝

E∗
�

∂E�
∂x + E∗

�
∂E�
∂x + E∗

z
∂Ez

∂x

E∗
�

∂E�
∂y + E∗

�
∂E�
∂y + E∗

z
∂Ez

∂y

E∗
�

∂E�
∂z + E∗

�
∂E�
∂z + E∗

z
∂Ez

∂z

⎞
⎟⎟⎠. (15)

Nevertheless, the mode confinement in a slab much thinner
than the wavelength, as is the case here, implies that the fields

remain mostly TE by continuity [1]. It implies not only that
�Pz is null in the plane of symmetry and negligible everywhere
else, but also that the out-of-plane (in-plane) contribution of
the electric (magnetic) field part is null. It allows for �P to be
represented there without losing clarity, as in Figs. 8(a) and
8(b) for the TE+

1 and TE−
1 modes, respectively, the relevant

energy densities have been superimposed. It can be noted that
if the energy densities of the LCP and RCP components do
not significantly overlap, they are also linked by the glide-
plane symmetry as well as their associated linear momentum
densities,

ε|�E�|2(x, y, 0) = ε|�E�|2(x + a/2,−y, 0),(
E∗
�

∂E�
∂x

E∗
�

∂E�
∂y

)
(x, y, 0) =

(−E∗
�

∂E�
∂x

E∗
�

∂E�
∂y

)
(x + a/2,−y, 0), (16)

which establish the circular polarization as an appropriate
basis to characterize the electric fields of these PCW modes
with enhanced chirality. Similar conditions also apply to the
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magnetic field part, such that

μ0|�Hz|2(x, y, 0) = μ0|�Hz|2(x + a/2, y, 0),(
H∗

z
∂Hz

∂x

H∗
z

∂Hz

∂y

)
(x, y, 0) =

(−H∗
z

∂Hz

∂x

H∗
z

∂Hz

∂y

)
(x + a/2, y, 0). (17)

Over and above the fact that Eq. (16) and Eq. (17) imply that
the linear momentum densities do not have a net momentum
along the propagation direction, it is clear that the longitudinal
component of each contribution cancels at x = a/4 and 3a/4.
This means that the electromagnetic field flows are normal
to the direction of propagation at both the C points and the
vortex center locations. As regards the global momentum of
the fields, two distinct manners of satisfying the ZGV and
the resulting zero total energy flow are observable in the
linear momentum densities of the bonding modes. The linear
momentum density of the TE+

1 mode does not propagate
due to clear drifts of the fields in the y direction. On the
contrary, for the TE−

1 mode, the longitudinal component of
the linear momentum density is dominant and the zero overall
field displacement is achieved by opposite local currents that
emerge from x = a/4 and merge to x = 3a/4 in each unit cell.

The OAM density is a vector field that represents the or-
bital motion of the wave through its intensity and its direction;
it is therefore normal to the orbital plane of the fields. In order
to determine the orbital characteristic of the mode at the local
level, the linear momentum density is needed in conjunction
with the appropriate centroid of the wave, where the structured
field can be considered balanced with respect to the rotation.
Nevertheless, due to the periodicity and the lack of mirror
symmetry, defining here the origin �r0 = (x, y0, z0) to calculate
the OAM density, and so the frame of reference, is nontrivial,
in contrast with waves propagating in continuous media that
have a front wave with a constant intensity. As the modes are
associated with a global wave vector pointing along �x, it is
appropriate to define the OAM density in the yz plane along
the x axis. The suitable position to calculate this torque is the
energy barycenter, whose y coordinate is defined by

y0(x) =
∫ ∞
−∞ y(μ0|�H(x, y, z)|2 + ε|�E(x, y, z)|2)dzdy∫ ∞
−∞(μ0|�H(x, y, z)|2 + ε|�E(x, y, z)|2)dzdy

. (18)

Finally, the symmetry along the slab thickness involves that
the z coordinate of the energy barycenter is simply z0 = 0, so
the OAM density can be rewritten as

�L(x, y, z) =
⎛
⎝ 0

y − y0

z

⎞
⎠ × �P(x, y, z). (19)

To compare the behavior of the OAM density with respect
to the spin of light, the former is plotted in the xz plane at
y positions containing the C points in Figs. 9(a) and 9(b) for
the TE+

1 and TE−
1 modes, respectively, and are superimposed

onto the Stokes parameter S3. If the OAM density profiles
also present a spiral structure in the yz plane, as previously
seen for the SAM density, its sense of circulation changes
along the propagation because the transverse component of
the OAM density is even with respect to the twofold screw
axis symmetry. In addition, the longitudinal component is odd

FIG. 9. OAM density of the (a) TE+
1 and (b) TE−

1 modes in the xz
plane represented by black arrows and superimposed on the Stokes
parameter S3(x, y, 0) plotted in red for y = ±a

√
3/16. The structure

is outlined by blue lines.

with respect to the same symmetry:⎛
⎝Lx

Ly

Lz

⎞
⎠(x, y, z) =

⎛
⎝−Lx

Ly

Lz

⎞
⎠(x + a/2,−y,−z). (20)

As Eq. (19) implies, the orbital motion of the modes is derived
from the orientation of the linear momentum density, and the
first consequence of �P pointing in the xy plane is that the OAM
density is exclusively pointing in the z direction in the plane
of symmetry. If it once again confirms the photonic wheels
character of the AM in the studied structure, another effect
arises from the fact that Px(a/4, y, z) = Px(3a/4, y, z) = 0. It
constrains the transverse components of the OAM density to
cancel at these locations. In addition to that, other symmetry
relations emphasize how the OAM density allows the mode
to exhibit local fluxes with opposite orbital motion, while
maintaining a zero net OAM in the unit cell, namely, the
mirror reflection symmetries σx at x = a/4, 3a/4 and σz at
z = 0. As shown in Fig. 9, these particular symmetries leads
to inverse the longitudinal and the transverse component of
the OAM density, respectively, as

Lyz(a/4 + δx, y,−z) = −Lyz(a/4 − δx, y, z),

Lyz(3a/4 + δx, y,−z) = −Lyz(3a/4 − δx, y, z),

Lx(x, y, z) = −Lx(x, y,−z). (21)

where δx is a displacement along �x. Moreover, the landscapes
of this field bring into view another aspect of the spin-orbit
coupling in the studied PCW, specifically that the opposite
OAM circulating fluxes are both merging and emerging from
the C points. Despite the close proximity of the C points
with opposite handedness in the y direction, the structure of
the OAM density abruptly changes to confine spiral flows
accordingly. Altogether, it leads to the inversion of the orbital
motion exactly at the C-point locations. It is also in agree-
ment with the modified Landau-Lifshitz equation developed
in Sec. III, as right- and left-handed orbits gather and scatter
exactly where the electric field is fully circularly polarized,
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indicating the influence of opposite orbitals on the degree of
polarization.

V. CONCLUSION

In summary, it has been shown that breaking the PCW
parity can lead to the formation of hybrid modes supporting
both enhanced transverse SAM and OAM at anomalous ZGV
points. Clear interplays between these two degrees of freedom
are noted throughout the paper. Along the major energy
streamlines, the motion of polarization on the Poincaré sphere
is analogous to helical spin waves and can be described by a
modified Landau-Lifshitz equation where the optical vortices
play the role of an effective polarization vector. Moreover,
the AM densities have been investigated all across the PCW
structure in the particular context of the very slow-light regime
and reveal a peculiar behavior between the spin and the
orbital parts of the AM. The SAM density has been found
to be generated by the optical vortices bonding them like
an antiferromagnetic material, while the OAM density forms
spiral flows that cancel exactly at C points.

Moreover, the detailed study of the AM flows in three
dimensions allows one to understand how the spin-orbit
coupling can be engineered in subwavelength-based devices
like PhCs by means of structural modifications with pos-
sible applications such as single nanoparticle sensors with
the potential to identify their chirality [25], optical tweezers
[61,62], and unidirectional emission of embedded quantum
emitters [27,28]. In addition, this coupling between spin and
orbital parts of the AM also opens the perspective for con-

trolling one degree of freedom with the other and inducing
spin-to-orbital conversion of light and, vice versa [34,63,64],
engineering directional routing of light on-chip as well as
the spin-Hall effect of light in cleverly tailored nanophotonic
components [31]. Moreover, the break of other symmetries
can lead to the emergence of a net AM that can be transmitted
through the PCW, for example, a waveguide at the interface
between two PhCs with different topologies [55]. There is
also the potential to engineer the rotation of the OAM, i.e.,
from longitudinal to transverse or vice versa, by adiabatically
interfacing such a PCW holding photonic wheels with a trench
waveguide supporting longitudinal OAM [65] modes. Last
but not least, other numerous applications can take advantage
of the slow-light regime such as nonlinear photonics [6,7]
with the benefit of combining it with spin or orbital selection
rules.

The data from the paper can be obtained from the Univer-
sity of Southampton ePrint research repository [66].
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