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Figure of merit for single-photon generation based on cavity quantum electrodynamics
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We investigate a tradeoff relation between the internal generation efficiency and the escape efficiency
for single-photon generation based on cavity quantum electrodynamics, where cavity internal loss is treated
explicitly. Consequently, we analytically derive an upper bound on the overall efficiency. The bound is expressed
only with an internal cooperativity, introduced here as the cooperativity parameter with respect to the cavity
internal loss rate. This result means that the internal cooperativity is a figure of merit for single-photon
generation based on cavity QED. The bound is derived by optimizing the cavity external loss rate, which can
be experimentally controlled by designing or tuning the transmissivity of the output coupler. The model here is
general enough to treat various cavity-QED effects, such as the Purcell effect, on-resonant or off-resonant cavity-
enhanced Raman scattering, and vacuum-stimulated Raman adiabatic passage. For typical optical systems, we
additionally take into account a “reexcitation” process, where the atom is reexcited after its decay to the initial
ground state.
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I. INTRODUCTION

Single-photon sources are a key component for photonic
quantum information processing and quantum networking
[1]. Single-photon sources based on cavity quantum elec-
trodynamics [2–10] are particularly promising, because they
enable deterministic emission into a single mode, which is
desirable for low-loss and scalable implementations. Many
single-photon generation schemes have been proposed and
studied using various cavity-QED effects, such as the Purcell
effect [2–4], on-resonant [4–6] or off-resonant [7,8] cavity-
enhanced Raman scattering, and vacuum-stimulated Raman
adiabatic passage (vSTIRAP) [2–4,6,8–10].

The overall efficiency of single-photon generation based
on cavity QED is composed of two factors: the internal gen-
eration efficiency ηin (probability that a photon is generated
inside the cavity) and the escape efficiency ηesc (probability
that a generated photon is extracted to the desired external
mode). The upper bounds on ηin have been derived for some
of the above schemes [3–6], where the upper bound is ex-
pressed with the cooperativity parameter C [3]. C is inversely
proportional to the total cavity loss rate, κ = κex + κin (κex and
κin are the external and internal loss rates, respectively [11]).
Note that κex can be experimentally controlled by designing
or tuning the transmissivity of the output coupler [12]. Thus,
ηin is maximized by setting κex to a small value so that
κ ≈ κin. However, a low κex results in a low escape efficiency
ηesc = κex/κ , which limits the channelling of the generated
photons into the desired mode. There is therefore a tradeoff
relation between ηin and ηesc with respect to κex, and κex

should be optimized to maximize the overall efficiency. This
tradeoff relation has not been examined in previous studies,
where the internal loss rate κin has not been treated explicitly.

By treating the cavity internal loss explicitly for the above
tradeoff relation and using a general cavity-QED model

shown in Fig. 1, here we analytically derive the following
lower bound on the failure probability, PF , of single-photon
generation based on cavity QED:

PF � 2

1 +
√

1 + 2Cin

≈
√

2

Cin
, (1)

where we have introduced an internal cooperativity,
Cin = g2/(2κinγ ), as the cooperativity parameter with respect
to κin instead of κ for the standard definition, C = g2/(2κγ )
[3]. The approximation in Eq. (1) holds when Cin � 1. This
result suggests that Cin, instead of C, is a figure of merit
for single-photon generation based on cavity QED. Here it
is notable that similar lower bounds on failure probabili-
ties, inversely proportional to

√
Cin, have been derived for

quantum gate operations based on cavity QED [13–15]. This
fact suggests that Cin may be a figure of merit for quantum
applications of cavity-QED systems in a more general sense.

The lower bound on PF in Eq. (1) is obtained when κex is
set to its optimal value,

κopt
ex ≡ κin

√
1 + 2Cin, (2)

and is simply expressed as 2κin/κ
opt, where κopt ≡ κin + κ

opt
ex .

Remarkably, this optimal value of κex is exactly the same as
that for a quantum gate operation in Ref. [14].

Note that the experimental values of (g, γ , κin ) determine
which regime the system should be in: the Purcell regime
(κ � g2/κ � γ ), the strong-coupling regime [g � (κ, γ )],
or the intermediate regime (κ ≈ g2/κ � γ ).

The remainder of this paper is organized as follows. In
Sec. II, we show that the present model is applicable to various
cavity-QED single-photon generation schemes. In Sec. III, we
provide the basic equations for the present analysis. Using
these equations, we analytically derive an upper bound on
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FIG. 1. Cavity-QED system for single-photon generation. The
atom is initially prepared in |u〉. κin and κex: cavity internal and
external loss rates, respectively. g: atom-cavity coupling rate via
the |g〉 − |e〉 transition. �: Rabi frequency of the external field for
the |u〉 − |e〉 transition. �e and �u: one-photon and two-photon
detunings, respectively. γ : atomic decay rate due to spontaneous
emission.

the success probability, PS = 1 − PF , of single-photon gen-
eration in Sec. IV. Using the bound, we optimize κex and
derive Eq. (1). In Sec. V, we briefly discuss the condition for
typical optical cavity-QED systems, where the effect of a “re-
excitation” process is also discussed. Finally, the conclusion
and outlook are presented in Sec. VI.

II. MODEL

As shown in Fig. 1, we consider a cavity-QED system with
a �-type three-level atom in a one-sided cavity. The atom
is initially prepared in |u〉. The |u〉 – |e〉 transition is driven
with an external classical field, while the |g〉 – |e〉 transition
is coupled to the cavity. This system is general enough to
describe most of the cavity-QED single-photon generation
schemes.

For instance, by first exciting the atom to |e〉 with a
resonant π pulse (with time-dependent �), or fast adiabatic
passage (with time-dependent �u), the atom is able to decay to
|g〉 with a decay rate enhanced by the Purcell effect [16], gen-
erating a single photon. Here, the Purcell regime is assumed
[2–4].

Another example is where the atom is weakly excited with
small � and a cavity photon is generated by cavity-enhanced
Raman scattering. Here, κ � g is assumed in the on-resonant
case (�e = �u = 0) [4–6], while �e � g is assumed in the
off-resonant case (�u = 0) [7,8].

A third example is based on vSTIRAP [2–4,6,8–10], where
� is gradually increased, and where the strong-coupling
regime [g � (κ, γ )] and small detunings (|�e|, |�u| � g) are
assumed.

III. BASIC EQUATIONS

The starting point of our study is the following master
equation describing the cavity-QED system (here we use the
natural units, c = h̄ = 1):

ρ̇ =Lρ,L = LH + Ju + Jg + Jo + Jin, (3)

LHρ = − i(Hρ − ρH†),H = H − i(γ σe,e + κina†a),

FIG. 2. Transitions in Eqs. (3) and (4).

H = �eσe,e + �uσu,u +
∫

kb†(k)b(k)dk

+ i�(σe,u − σu,e) + ig(aσe,g − a†σg,e)

+ i

√
κex

π

∫ ∞

−∞
[b†(k)a − a†b(k)]dk,

Juρ = 2γ ruσu,eρσe,u,Jgρ = 2γ rgσg,eρσe,g,

Joρ = 2γ roσo,eρσe,o,Jinρ = 2κinaρa†, (4)

where ρ is the density operator describing the state of the
system; the dot denotes differentiation with respect to time
t ; H is the Hamiltonian for the cavity-QED system including
the terms for the output mode; a and a† are respectively the
annihilation and creation operators for cavity photons; b(k)
and b†(k) are respectively the annihilation and creation opera-
tors for output-mode photons with wave number, or frequency,
of k; |o〉 is, if it exists, a ground state other than |u〉 and
|g〉; ru, rg, and ro = 1 − ru − rg are respectively the branching
ratios for spontaneous emission from |e〉 to |u〉, |g〉, and |o〉;
and σ j,l = | j〉〈l| ( j, l = u, g, e, o) are atomic operators. In the
present work, we assume no pure dephasing [17].

The transitions corresponding to the terms in Eqs. (3) and
(4) are depicted in Fig. 2, where the second and third ket
vectors denote cavity photon number states and output-mode
states, respectively, and |k〉 = b†(k)|0〉. Once the state of the
system becomes |g〉|0〉c|0〉 or |o〉|0〉c|0〉 by a quantum jump,
Jg, Jo, or Jin, the time evolution stops, and the single-photon
generation ends up in failure. On the other hand, the quantum
jump Ju initializes the state to |u〉, and the single-photon
generation restarts. However, a photon generated by the “re-
excitation” process will have a different envelope from that
of a photon generated without Ju, and therefore such photons
may be not useful for some applications. Thus, we consider
that the single-photon generation ends up in failure if the
quantum jump Ju occurs. That is, the success probability PS

for the single-photon generation is given by the probability
that all the quantum jumps do not occur. (We will discuss the
reexcitation process later.)

Under the condition of no quantum jumps, the time evo-
lution is given by the non-Hermitian Schrödinger equation:
i|ψ̇〉 = H|ψ〉 [18,19]. Expressing |ψ〉 as

|ψ〉 = αu|u〉|0〉c|0〉 + αe|e〉|0〉c|0〉 + αg|g〉|1〉c|0〉

+
∫ ∞

−∞
αk|g〉|0〉c|k〉dk, (5)
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the Schrödinger equation becomes

α̇u = −i�uαu − �αe, (6)

α̇e = −(γ + i�e)αe + �αu + gαg, (7)

α̇g = −καg − gαe, (8)

αk (t ) =
√

κex

π

∫ t

0
αg(t ′)e−ik(t−t ′ )dt ′. (9)

The norm of |ψ〉 decreases from unity. This decrease corre-
sponds to the quantum-jump probability [18,19].

Note that the output-mode amplitude αk is determined by
the atom-cavity amplitude αg satisfying Eqs. (6)–(8). Intro-
ducing the position operator, state vector, and amplitude for
the output mode as

b̃(z) = 1√
2π

∫ ∞

−∞
b(k)eikzdk, (10)

|z〉 = b̃†(z)|0〉, (11)∫ ∞

−∞
α̃z|z〉dz =

∫ ∞

−∞
αk|k〉dk, (12)

the position amplitude is determined by αg as follows:

α̃z =
{√

2κexαg(t − z) · · · 0 < z < t,

0 · · · otherwise.
(13)

The pulse shape of the generated photon is proportional to
the atom-cavity amplitude αg. Thus, we can control the pulse
shape by controlling the atom-cavity state using, e.g., the
vSTIRAP technique [6].

IV. UPPER BOUND FOR THE SINGLE-PHOTON
GENERATION EFFICIENCY

First, from Eqs. (6)–(8), we obtain

dN

dt
= −2γ |αe|2 − 2κ|αg|2 ⇒ 2γ Ie + 2κIg ≈ 1, (14)

where we have introduced N = |αu|2 + |αg|2 + |αe|2,
Ig = ∫ T

0 |αg(t )|2dt , and Ie = ∫ T
0 |αe(t )|2dt , and also assumed

N (0) = 1 and N (T ) ≈ 0 for a sufficiently long time T . Thus
the success probability PS is given by

PS =
∫ ∞

−∞
|α̃z(T )|2dz = 2κexIg = κex

κ
(1 − 2γ Ie). (15)

The last expression has a simple physical meaning: the first
factor is the escape efficiency ηesc and the second term in the
second factor comes from the excited-state decay. Ig and Ie are
evaluated as follows. From Eq. (8),

Ie =
∫ T

0

|α̇g(t ) + καg(t )|2
g2

dt ≈ I ′
g

g2
+ κ2

g2
Ig, (16)
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FIG. 3. Success probability PS in Eq. (19). This holds when
I ′
g is negligible. The dimensionless parameter κ̄ex is defined by
κ̄ex = κex/κin. Five curves correspond to the cases where Cin = 1, 10,
102, 103, and 104 from the bottom.

where we have used |αg(0)|2 = 0 and |αg(T )|2 ≈ 0, and also
set I ′

g = ∫ T
0 |α̇g(t )|2dt . Equations (14) and (16) lead to

Ig = C

κ (1 + 2C)

(
1 − I ′

g

κC

)
, (17)

Ie = 1

2γ

[
1 − 2C

1 + 2C

(
1 − I ′

g

κC

)]
. (18)

Thus, PS is upper bounded as follows:

PS = κex

κ

2C

1 + 2C

(
1 − I ′

g

κC

)
�

(
1 − κin

κ

)(
1 − 1

1 + 2C

)
,

where we have used I ′
g � 0 by its definition. The equality

approximately holds when I ′
g � κC. This can actually be

achieved in some cases [5,20]. Notably, it is known that
photon storage with cavity-QED systems without internal
loss also has a similar upper bound, 2C/(2C + 1), on the
success probability [21,22]. This, together with the results for
quantum gate operations [13,14], implies the universality of
the upper bound.

The first and second factors of the upper bound are ηesc

and ηin, respectively. There is a tradeoff relation between ηesc

and ηin with respect to κex. To see this, it is notable that PS

in the case where I ′
g is negligible is expressed only with two

dimensionless parameters, κ̄ex = κex/κin and Cin, as follows:

PS =
(

1 + 1

κ̄ex

)−1(
1 + 1 + κ̄ex

2Cin

)−1

. (19)

Examples for various values of Cin are shown in Fig. 3.
The above tradeoff relation results in the maxima of PS . By
maximizing PS in Eq. (19) with respect to κ̄ex analytically,
we obtain Eqs. (1) and (2). From Fig. 3, it is also found
that the maximization with respect to κex is robust against the
deviation of κex from κ

opt
ex .

The approximate lower bound in Eq. (1) can be derived
more directly using the arithmetic-geometric mean inequality
as follows:

PF � κin

κ
+ 1

2C + 1
− κin

κ

1

2C + 1
≈ κin

κ
+ κγ

g2
�

√
2

Cin
,
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where C � 1 have been assumed. Note that κ is canceled out
by multiplying the two terms. A similar technique has been
applied to the derivation of an upper bound on the success
probability of a quantum gate operation based on cavity
QED [13].

V. TYPICAL OPTICAL CAVITY-QED SYSTEMS

For optical cavity-QED systems where a single atom or ion
is coupled to a single cavity mode [5–10], the cavity-QED
parameters are expressed as follows [3]:

g =
√

μ2
g,eωg,e

2ε0 h̄AeffL
, (20)

κin = c

2L
αloss, (21)

rgγ = μ2
g,eω

3
g,e

6πε0 h̄c3
, (22)

where ε0 is the permittivity of vacuum, μg,e and ωg,e are
the dipole moment and frequency of the |g〉 − |e〉 transition,
respectively, L is the cavity length, Aeff is the effective cross-
section area of the cavity mode at the atomic position, and αloss

is the one-round-trip cavity internal loss. Substituting them
into the definition of Cin, we obtain

2Cin = rg
1

αloss

1

Ãeff
, (23)

where Ãeff = Aeff/σ is the effective cavity-mode area normal-
ized by the atomic absorption cross section σ = 3λ2/(2π )
(λ = 2πc/ωg,e). Note that L and μg,e are canceled out. Thus,
the single-photon generation efficiency is limited by the three
dimensionless quantities: the one-round-trip internal loss αloss,
the normalized cavity-mode area Ãeff , and a branching ratio rg.

So far, we have not counted photons generated by the
“reexcitation” process, where the atom is reexcited after its
decay to |u〉 via spontaneous emission. If we count such
photons, as in the ion-trap experiment in Ref. [7], the success
probability will become higher. In the following, however, we
show that even in this case, the success probability is upper
bounded in a similar manner.

Taking the quantum jump Ju into account, we obtain the
formal solution of the master equation (3) [18]:

ρc(t ) = Vc(t, 0)ρ0 (24)

= VH(t, 0)ρ0 +
∫ t

0
Vc(t, t ′)JuVH(t ′, 0)ρ0dt ′, (25)

where ρc denotes the density operator conditioned on no quan-
tum jumps of Jg, Jo, and Jin, ρ0 is the initial density operator,
and VH and Vc are the quantum dynamical semigroups defined
as follows:

d

dt
VH(t, t ′) = LH(t )VH(t, t ′),

d

dt
Vc(t, t ′) = Lc(t )Vc(t, t ′),

where Lc = LH + Ju is the Liouville operator for the con-
ditioned time evolution. The decrease of the trace of ρc

corresponds to the failure probability due to Jg, Jo, and Jin

[18,19].

Note that ρH(t ) = VH(t, 0)ρ0 can be expressed as ρH =
|ψ〉〈ψ | with |ψ〉 given by Eqs. (5)–(9). Thus,

ρc(t ) = |ψ (t )〉〈ψ (t )| + 2γ ru

∫ t

0
|αe(t ′)|2Vc(t, t ′)ρ0dt ′.

(26)

The success probability PS is formulated as

PS =
∫ ∞

−∞
〈g|c〈0|〈z|ρc(T )|g〉|0〉c|z〉dz. (27)

Using Eqs. (24)–(27) and Eq. (15), PS is expressed as

PS =
∫ ∞

−∞
dz〈g|c〈0|〈z|Vc(t, 0)ρ0|g〉|0〉c|z〉 (28)

= 2κex

∫ T

0
dt |αg(t )|2 + 2γ ru

∫ T

0
dt |αe(t )|2

×
∫ ∞

−∞
dz〈g|c〈0|〈z|Vc(T, t )ρ0|g〉|0〉c|z〉. (29)

The second term, which is denoted by Prep, is the contribution
of the reexcitation.

Here we assume the following inequality:∫ ∞

−∞
dz〈g|c〈0|〈z|Vc(T, t )ρ0|g〉|0〉c|z〉

�
∫ ∞

−∞
dz〈g|c〈0|〈z|Vc(T, 0)ρ0|g〉|0〉c|z〉 = PS. (30)

This assumption is natural because Vc(T, t ) should be
designed to maximize PS at t = 0. Then, Eqs. (29) and (30)
result in

PS � 2κexIg

1 − 2γ ruIe
. (31)

Substituting Eqs. (17) and (18) into Eq. (31), we obtain the
upper bound on PS in the case of the reexcitation:

PS � κex

κ

2C

1 + 2C

1 − I ′
g

κC

1 − ru + ru
2C

1+2C

(
1 − I ′

g

κC

) (32)

�
(

1 − κin

κ

)(
1 − 1

1 + 2C

) ∞∑
n=0

(
ru

1 + 2C

)n

, (33)

where we have used 0 � 1 − I ′
g/(κC) � 1 [23].

In a similar manner to deriving Eq. (1), we obtain

PF � 2

1 + √
1 + 2Cin/(1 − ru)

, (34)

where κex is set to κin
√

1 + 2Cin/(1 − ru). Thus in the case
of the reexcitation, Cin in Eqs. (1) and (2) is replaced with
Cin/(1 − ru). From Eq. (34), it seems that the lower bound
on PF becomes zero by ru → 1. However, this is not the case
because ru and Cin are not independent. Instead of Eq. (23),
we should examine the following quantity:

2Cin

1 − ru
= 1 − ru − ro

1 − ru

1

αloss

1

Ãeff
� 1

αloss

1

Ãeff
, (35)

where we have used rg = 1 − ru − ro. The equality in Eq. (35)
holds when ro = 0. Thus, it turns out that even if we count
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photons generated by the reexcitation process, the single-
photon generation efficiency is limited by the one-round-trip
internal loss αloss and the normalized cavity-mode area Ãeff .

Using Eqs. (30) and (18), the contribution of the reexcita-
tion Prep is upper bounded as

Prep � 2γ ruIePS � 1

1 + 2C
+ 2C

1 + 2C

I ′
g

κC
. (36)

Thus, the contribution of the reexcitation is negligible when
C � 1 and I ′

g � κC.

VI. CONCLUSION AND OUTLOOK

By analytically solving the master equation for a general
cavity-QED model, we have derived an upper bound on the
efficiency of single-photon generation based on cavity QED
in a unified way. We have treated cavity internal loss explic-
itly, which results in a tradeoff relation between the internal
generation efficiency and the escape efficiency with respect
to the cavity external loss rate κex. By optimizing κex, we
have derived a lower bound on the failure probability. The
lower bound is inversely proportional to the square root of
the internal cooperativity Cin. This means that Cin is a suitable

figure of merit for cavity-QED systems used for single-photon
generation. The optimal value of κex has also been given
explicitly.

For typical optical cavity-QED systems, the lower bound
is given by the one-round-trip internal loss, the cavity-mode
area normalized by the atomic absorption cross section, and
a branching ratio. The reexcitation process, where the atom
is reexcited after its decay to the initial ground state via
spontaneous emission, has also been examined. As a result, it
has turned out that the single-photon generation efficiency is
limited in a similar manner, even including photons generated
by the reexcitation. Its bound is expressed with the one-round-
trip internal loss and the normalized cavity-mode area.

The lower bound is achieved in the limit that the variation
of the system is sufficiently slow. When the short generation
time is desirable, optimization of the control parameters will
be necessary. This problem is left for future work.
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