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Quantum model of decoherence in the polarization domain for the fiber channel
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In this work we consider the Liouville equation; it describes the dynamics of the photon density matrix
in the Schrödinger representation based on the Markov approximation in the channel without dispersion. The
equation contains a relaxation superoperator dependent on the phenomenological parameters of the optical fiber.
These parameters allow one to take into account the phenomena of birefringence and optical activity, isotropic
absorption, and dichroism. We also present in our work that these parameters affect not only the polarization of
the states but the length of the Stokes vector. Hence the developed technique describes the decoherence process
in the polarization domain in the quantum case and allows one to analyze the dynamics of single-photon states
in the quantum (depolarizing) channel more properly. We also present a visual illustration of polarization states’
evolution in the polarization-coded quantum key distribution BB84 protocol as an example. We estimate quantum
bit error rates’ dependence on channel length. Also we examine maximal allowed channel length, dependent on
various configurations of channel parameters.
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I. INTRODUCTION

Any quantum state is subject to decoherence. According to
one of the definitions, decoherence is nonunitary dynamics,
which is a consequence of the connection of the quantum
system with the external environment [1–3]. External influ-
ences on an optical fiber, such as temperature fluctuations,
vibrations, bends, torsions, as well as light scattering on
random inhomogeneities of the refractive index of the optical
fiber and impurities inside it, lead to a change of dielectric
permittivity tensor in the optical fiber. The dielectric per-
mittivity tensor in the general case has real and imaginary
parts and is anisotropic [4–7]. The real part of the tensor
determines the birefringence phenomenon; the imaginary part
of the tensor is responsible for dichroism in the optical fiber.
Both birefringence and dichroism depend on the frequency
of the signal. In optical fibers polarization mode dispersion
and polarization dependent losses [8–13] are well studied. We
would like to stress that polarization effects can be studied
both in linear and nonlinear regimes [14–16]. In this work we
focus on the polarization effects in the linear regime for weak
(quantum) fields.

It should be noted that methods of dealing with the deco-
herence of quantum states are constantly being improved. In
[17,18], the authors propose to fight decoherence using error
correction and error rejection quantum codes. A protocol for
suppressing decoherence in the polarization domain is pro-
posed in [19,20]. The authors note that birefringence fluctu-
ates due to the changing environment, temperature, vibrations.
In practice, birefringence remains constant for sufficiently
long sequences of pulses. In such sequences each pulse is
subject to the same polarization perturbation. This channel
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noise is called collective noise. In these works it was shown
that, under the action of collective noise, polarization and
time-bin degrees of freedom are not influenced by decoher-
ence and form decoherence-free subspaces [20]. Based on
the general theory of relaxation phenomena [21], a photon
propagating through an optical fiber should be considered
a quantum dynamical system interacting with the external
environment. Correlation times of environmental variables
can be very short. As a consequence, the dynamics of the
photon density matrix in an optical fiber should be described
by the Liouville equation containing the relaxation operator
in the Markov approximation. A model of decoherence in
the polarization domain was proposed in [22]. In this paper,
the dynamics of a single photon in a dispersing medium are
considered. The length of the Stokes vector may decrease
due to nonuniform broadening and dispersion phenomena. In
[19], the proposed relaxation operator describes a nonunitary
transformation of the photon density matrix in the quantum
channel in the Markov approximation.

Nevertheless, for description of quantum channels (espe-
cially in the case of quantum key distribution) the trivial
model of the depolarizing quantum channel is still commonly
used [23–25].

In our work we pursue two main goals. The first goal is
to study the dynamics of a single-photon state in a single-
mode fiber, whose dielectric constant tensor has anisotropy
and dichroism. The Liouville equation is proposed, describ-
ing the development of the photon density matrix in the
Schrödinger picture considering the Markov approximation.
The equation contains a relaxation operator dependent on
the phenomenological parameters. These parameters make it
possible to take into account the phenomena of birefringence,
isotropic absorption, and dichroism. The second goal of our
work is to analyze the effect of decoherence in the polarization
domain, described by the model Liouville equation, on errors
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(caused by depolarization) produced by optical fiber quantum
channels.

The paper organized as follows. In Sec. II we propose the
Liouville equation for the photon density matrix propagating
along the optical fiber. The decoherence process in the polar-
ization domain is described using the relaxation superopera-
tor. The exact solution of the equation for the photon density
matrix in the Schrödinger representation is also obtained. In
Sec. III we consider the polarization-coded BB84 quantum
key distribution protocol in terms of the developed approach
as an example. Section IV concludes the article.

II. PHENOMENOLOGICAL MODEL

It is assumed that the ideal single-mode optical fiber is
isotropic and uniform. But it is obvious that various imper-
fections, such as torsion, stretching, bending, and temperature
and density fluctuations, distort the dielectric permittivity ten-
sor. As a result, the orthogonal quantum states of the photon
transform into each other, i.e., “interact.” We parametrize the
Hamiltonian of interaction V̂ with real vector ξ = ξn [26,27].
We span our space on the three basis vectors {|0〉, |H〉, |V 〉},
where |0〉, |H〉, |V 〉 are the vacuum state and the horizontally
and vertically polarized states of the photon respectively.

In this basis, the interaction operator matrix has the form

V̂ = ξ

2

⎛
⎝

0 0 0
0 nz nx − iny

0 nx + iny −nz

⎞
⎠, (1)

where n = ξ

|ξ| is the direction vector in the Stokes-Poincaré
coordinate system. The Liouville equation for the density ma-
trix of the mixed state (channel density operator) of a photon
in a quantum channel affected by anisotropic decoherence in
the polarization domain is written as

∂

∂t
ρ(t ) = −i[V̂ , ρ(t )] + �̂ρ(t ), (2)

where �̂ is the superoperator of relaxation in the Markov
approximation and it describes the decoherence phenomena.
The equations for the matrix elements ρ01(t ) and ρ02(t ) (here
we assume that indexes 0, 1, 2 corresponded to |0〉, |H〉, |V 〉
accordingly) can be expressed as

i
d

dt
ρ01(t ) = −ρ01(t )V11 − ρ02(t )V21 − iγ01ρ01(t ), (3)

i
d

dt
ρ02(t ) = −ρ02(t )V22 − ρ01(t )V21 − iγ02ρ02(t ), (4)

where γ01 and γ02 determine the decay rate of off-diagonal
elements. Choosing nullified initial conditions, we obtain

ρ01(t ) = ρ02(t ) = 0. (5)

The equations for matrix diagonal elements are

d

dt
ρ00(t ) = γ δ(t ), (6)

d

dt
δ(t ) = −γ δ(t ), (7)

where γ denotes the rate of photon absorption in the optical
fiber and δ(t ) = ρ11 + ρ22. The exact solution of the equation
has the form

δ(t ) = exp(−γ t )δ(0), (8)

where t denotes the time of the photon propagation in the
channel. Let us assume vgr = 1, where vgr is the group ve-
locity of the signal in the optical fiber. Thus we match the
length of the channel with the propagation time as L = t . We
will represent the photon density matrix in the optical fiber
channel using the Schrödinger representation as follows:

ρ(t ) = [1 − δ(t )]|0〉〈0| + δ(t )

2
[|H〉〈H |

+ |V 〉〈V | + (P(t ), σ̂ )], (9)

where vector operator components of σ̂ have the form

σx = |H〉〈V | + |V 〉〈H |,
σy = i(|V 〉〈H | − |H〉〈V |), (10)

σz = |H〉〈H | − |V 〉〈V |.
The vector operator σ̂ is the Stokes operator, whose mean
values are the Stokes parameters according to [28,29]. So let
P(t ) be the Stokes vector, and it is denoted as

P(t ) = Tr(σ̂ρ(t )). (11)

Due to the noncommutativity of the projections of the vec-
tor σ̂, there is no quantum state of the photon where the
components of the vector P(t ) would not have dispersion
(with respect to its mean value). Let us define the action of
the relaxation operator �̂ by introducing two nonparallel unit
vectors μ(1),μ(2) and writing the equation for the operator
(P(t ), σ̂ ) as follows:

d

dt
(P(t ), σ̂ ) = −i

ξ

2
[(n, σ̂ ), (P(t ), σ̂ )] − ε(P(t ), σ̂ )

+
2∑

j=1

β j

4
[(μ( j), σ̂ ), [(μ( j), σ̂ ), (P(t ), σ̂ )]].

(12)

We denote this operator the double-axis relaxation operator,
referring to the similar term in crystal optics. For the sake
of simplicity further we consider the single-axis relaxation
operator assuming μ(1) = μ(1) = μ. Using properties of the
operator σ̂, we obtain the expression

d

dt
P(t ) = ξ [n × P(t )] − εP(t ) + β[μ × [μ × P(t )]]. (13)

We will use this phenomenological equation (analogous to
the modified Bloch equation [30]) to describe photon state
evolution, for instance, in nonideal optical fiber (or other
optical media in general). The first term of the equation
is parametrized by vector ξ and describes the polarization
evolution without changes in length of the Stokes vector P(t ).
The second term describes isotropic decoherence rates ε; the
length of Stokes vector P(t ) decreases without changes in
direction. The third term is parametrized by unit vector μ and
rates β; it describes anisotropic polarization decoherence. The
third term nullifies the Stokes vector’s component codirected
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with μ. The length of the Stokes vector satisfies the inequality
0 � |P(t )| � 1. The photon is fully polarized if |P(t )| = 1
and fully depolarized if |P(t )| = 0. The latter means that the
photon does not contain any polarization-coded information.
The contribution of the first term might be compensated with
a standard feedback polarization controller unit. However, the
decoherence process cannot be compensated in any way. Thus
we are more interested in further investigation neglecting the
first term (neglecting unitary evolution and assuming one may
compensate for corresponding effects, hence focusing only on
the relaxation process), i.e., assuming ξ = 0, and obtaining
the expression

d

dt
P(t ) = MP(t ), (14)

where the solution is

P(t ) = exp (Mt )P(0), (15)

where matrix M is derived as

M = −β

⎛
⎜⎜⎝

μ2
z + μ2

y + ε
β

−μxμy −μzμx

−μxμy μ2
z + μ2

x + ε
β

−μzμy

−μzμx −μzμy μ2
y + μ2

x + ε
β

⎞
⎟⎟⎠.

(16)

Eigenvalues and eigenvectors of the matrix M are

λ1 = −ε, φ1 = μ =
⎛
⎝

μx

μy

μz

⎞
⎠,

λ2 = −ε − β, φ2 = 1√
μ2

z + μ2
x

⎛
⎝

μz

0
−μx

⎞
⎠, (17)

λ3 = −ε − β, φ3 = 1√
μ2

z + μ2
x

⎛
⎝

−μyμx

μ2
z + μ2

x
−μzμy

⎞
⎠.

In order to experimentally observe the polarization trans-
formations induced by the considered relaxation process, one
may implement standard quantum measurements of Stoke’s
operators for single photons, e.g., as in [31,32], implying that
all the polarization transformation related to unitary evolution
is to be compensated.

III. EXAMPLE OF PRACTICAL IMPLEMENTATION

Let us consider the case of the famous BB84 quantum key
distribution protocol, where one uses four polarization states
|χn〉 as follows:

|χ1〉 = |H〉, |χ2〉 = |V 〉,

|χ3〉 = |S〉 = |H〉 + |V 〉√
2

, (18)

|χ4〉 = |F 〉 = |H〉 − |V 〉√
2

,

hence the unconditioned channel density operator is

ρ = 1

4

4∑
n=1

ρ (n), (19)

ρ (n) = [1 − δ(0)]|0〉〈0| + δ(0)|χn〉〈χn|, (20)

where δ(0) defines the contribution of the vacuum states.
Initial Stokes vectors P(n)(0) have the following form:

P(1)(0) = −P(3)(0) =
⎛
⎝

0
0
1

⎞
⎠, (21)

P(2)(0) = −P(4)(0) =
⎛
⎝

1
0
0

⎞
⎠. (22)

Let us express initial states in terms of basis (17) and utilize
solutions (8) and (15) in order to derive vectors P(n)(t ) as
follows:

P(1)(t ) = −P(3)(t ) = e(−εt )

⎛
⎜⎝

μxμz[1 − exp(−βt )]

μyμz[1 − exp(−βt )]

μ2
z + exp(−βt )

(
1 − μ2

z

)

⎞
⎟⎠,

(23)

P(2)(t ) = −P(4)(t ) = e(−εt )

⎛
⎜⎝

μ2
x + exp(−βt )

(
1 − μ2

x

)

μyμx[1 − exp(−βt )]

μxμz[1 − exp(−βt )]

⎞
⎟⎠.

(24)

Vectors P(n)(t ) are conveniently described in a spherical
Stokes-Poincaré coordinate system with an axis directed along
the y axis with a zenith angle 2
 and azimuth angle 2�:

Pz(t ) = |P(t )| cos[2�(t )] cos[2
(t )],

Px(t ) = |P(t )| cos[2�(t )] sin[2
(t )], (25)

Py(t ) = |P(t )| sin[2
(t )].

We consider the features of anisotropic decoherence in the
particular case where

μx = −μz = 1√
2
. (26)

In this case 
(t ) and the vectors P(n)(t ) are located on the
plane xz. By analogy with classical optics, such photon states
should be called linearly polarized:

|χ〉 = |V 〉 sin (�(t )) + |H〉 cos (�(t )). (27)

Lengths (absolute values) of the P(n)(t ) vectors (degree of
the polarization) are equal and are expressed as

|P(n)(t )| = 1√
2

exp (−εt )
√

1 + exp (−2βt ). (28)

Angle �(t ) does not depend on ε. The latter defines the
isotropic contribution to the polarization decoherence process,
and β defines the rotation of the polarization plane (xz plane).
For instance, two regimes of polarization decoherence in
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FIG. 1. Vector trajectories P(n)(t ) presented on the xz Stokes-
Poincaré plane with solid black lines. Numbers n = 1, 2, 3, 4 mark
vector numbers. These dependences were obtained using Eqs. (23),
(24), (25) conditioned by Eq. (26). Here the channel is parametrized
as β

ε
= 10, and τ = εt is the dimensionless channel length (τ � 1).

H,V, S, F denote the starting points of the trajectories and corre-
spond to the pure states from Eq. (18).

the xz polarization plane of the Stokes-Poincaré coordinate
system are shown in Figs. 1 and 2. Trajectories of P(n)(t )
in the case of ε < β are shown in Fig. 1, where rotation of
the polarization plane is the prevailing process. Otherwise,
decrease of P(n)(t ) vectors lengths is the more prevalent
process compare to the rotation of the polarization plane.

The probabilities of detecting the correct quantum bit and
the one with bitflip are derived correspondingly as follows:

P0,0 = P1,1 = 1 + B

4
, P0,1 = P1,0 = 1 − B

4
, (29)

where

B = 1
2 [1 + exp(−βt )] exp(−εt ). (30)

FIG. 2. Vector trajectories P(n)(t ) presented on the xz Stokes-
Poincaré plane with solid black lines. Numbers n = 1, 2, 3, 4 mark
vector numbers. These dependences were obtained using Eqs. (23),
(24), (25) conditioned by Eq. (26). Here the channel is parametrized
as β

ε
= 0.2, and τ = εt is the dimensionless channel length (τ � 1).

H,V, S, F denote the starting points of the trajectories and corre-
spond to the pure states from Eq. (18)

FIG. 3. Quantum bit error rate Q values dependent on dimen-
sionless channel length τ = εt (τ � 1), with its properties equal to
cases of depolarization in Figs. 1 and 2, i.e., β/ε = 10 and β/ε = 0.2
respectively.

It should be noted that we assume an ideal single photon
source and detector in order to investigate the impact of only
depolarization on the quantum key generation process.

Hence, the quantum bit error rate (QBER) can be estimated
as

Q = P0,1 + P1,0

P0,1 + P1,0 + P0,0 + P1,1
= 1 − B

2
. (31)

One may examine possible QBER values in Fig. 3 with
channel properties equal to cases of depolarization in Figs. 1
and 2, i.e., β/ε = 10 and β/ε = 0.2 respectively. Further,
we demonstrate the critical channel length τcrit [where τ =
εt (τ � 1) is dimensionless channel length], i.e., where 1 −
2h(Q(τcrit )) = 0 [33], dependent on different channel config-
urations (different β/ε) in Fig. 4, where h(x) is the binary
entropy function.

It was found that the critical channel length τcrit corre-
sponds to an approximately 20% decrease of the Stokes vector

FIG. 4. Critical channel length τcrit , dependent on different val-
ues of the channel parameters’ relation β/ε. Here τ = εt (τ � 1)
is the dimensionless channel length and τcrit is the critical channel
length where the secure key rate drops to zero, i.e., where 1 −
2h(Q(τcrit )) = 0 [33], where h(x) is the binary entropy function.
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length; it should be less than this value in order to maintain a
positive secret key rate.

IV. CONCLUSION

In this paper we propose and investigate the model Li-
ouville equation, see Eq. (2), for the density matrix of the
mixed state of a photon in a quantum channel, which is
subject to anisotropic decoherence in the polarization domain.
The equation takes into consideration the anisotropy of the
real part of the dielectric constant (vector ξn) and relaxation
superoperator �̂. The latter is parameterized by the decay
rates of off-diagonal elements γ01, γ02, photon absorption rate
γ , isotropic decoherence rate ε, and vector βμ considering
decoherence anisotropy in the polarization domain. These
parameters can be interpreted as the characteristics of a com-
plex process of photon states’ decoherence in an optical fiber.

As shown in our work, these parameters affect not only the
polarization of the states but the length of the Stokes vector
(see Figs. 1 and 2). The constructed model allows one to take
into consideration a more realistic and specific description of
the depolarizing fiber channel. As an example, we estimate
the impact of quantum states decoherence on the performance
of the polarization-coded quantum key distribution protocol
BB84. Quantum bit error rates’ dependence on channel length
(see Fig. 3) and critical (maximal allowed) channel length de-
pendence on channel configuration (see Fig. 4) are presented.
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