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Phase retrieval for Bragg coherent diffraction imaging at high x-ray energies
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Coherent x-ray beams with energies � 50 keV can potentially enable three-dimensional imaging of atomic
lattice distortion fields within individual crystallites in bulk polycrystalline materials through Bragg coherent
diffraction imaging (BCDI). However, the undersampling of the diffraction signal due to Fourier-space com-
pression at high x-ray energies renders conventional phase-retrieval algorithms unsuitable for three-dimensional
reconstruction. To address this problem, we utilize a phase-retrieval method with a Fourier constraint specifically
tailored for undersampled diffraction data measured with coarse-pitched detector pixels that bin the underlying
signal. With our approach, we show that it is possible to reconstruct three-dimensional strained crystallites
from an undersampled Bragg diffraction data set subject to pixel-area integration without having to physically
upsample the diffraction signal. Using simulations and experimental results, we demonstrate that explicit
modeling of Fourier-space compression during phase retrieval provides a viable means by which to invert
high-energy BCDI data, which is otherwise intractable.
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I. INTRODUCTION

Coherent diffraction imaging (CDI) with radiation in the
lower end of the hard x-ray range (∼10 keV) is steadily
gaining traction as a technique for imaging objects ranging
in size from tens of micrometers to tens of nanometers with
sensitivity to diverse physical properties. For example, when
applied to Bragg reflections from single crystals, CDI and
related techniques such as ptychography are capable of spatial
mapping of lattice imperfections such as strain and crystal
defects [1–5], thus providing a versatile tool applicable in
materials science and solid-state physics. In particular, Bragg
CDI (BCDI) at x-ray energies � 50 keV can potentially allow
the probing of nanoscale structural detail within crystalline
grains of a much-larger-scale bulk material. This is possi-
ble due to the greater penetrative power at these photon
energies compared to those in present-day measurements,
owing to greatly diminished absorption and extinction ef-
fects [6]. Though other high-energy x-ray methods have been
developed that do not rely on beam coherence to achieve
micrometer-scale resolution of grains in bulk materials (e.g.,
diffraction contrast tomography and high-energy diffraction
microscopy [7–9]), implementation of high-energy BCDI has
not been viable due to low coherent flux at high x-ray energies
at today’s synchrotron facilities. Fortunately, improvements in
synchrotron storage ring technology [10] now being adopted
around the world will enable greatly increased coherent flux at
energies greater than 50 keV, making high-energy CDI practi-
cal in the near future. This in turn would open up an entirely
new class of possible experiments for three-dimensional high-
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resolution strain field mapping at such light sources. Specific
systems of interest include individual grains embedded in bulk
polycrystals subject to real-world thermomechanical condi-
tions, and crystals embedded in other dense media to mimic,
for example, catalytic environments. However, in envisioning
such BCDI experiments, certain difficulties can be foreseen
from the standpoint of signal processing and image inversion.

Successful reconstruction of the image of a diffracting
crystallite from a BCDI measurement is predicated upon
sufficient resolution of the signal features (fringe distribution
about a Bragg peak). In any CDI experiment performed at
high x-ray energies, compression of the three-dimensional
Fourier space will directly impact the ability to satisfy this
condition, given the fixed sizes of typical area detector pixels
and practically realizable object-detector distances. Existing
methods seek to address this issue through initial signal
processing by combining physical upsampling and sparsity-
based methods [11,12] to arrive at postprocessed diffraction
patterns suitable for conventional phase-retrieval methods. In
the same spirit, a recent simulation work [13] demonstrates
the possibility of BCDI signal enhancement with refractive
optical elements prior to phase retrieval. In this article, we
implement a direct phase-retrieval solution for undersampled
BCDI data sets from compact single crystals, an approach
directly applicable to future studies of embedded crystals.
Our explicit modeling of Fourier-space compression is related
conceptually to an earlier work in transmission ptychogra-
phy [14], in which binning-induced resolution loss due to
coarse pixelation is offset by information redundancy through
a high degree of probe position overlap. Our CDI-specific
work similarly focuses on phase retrieval from undersampled
signals, but without incorporating signal redundancy, as in
ptychography. We precisely quantify the extent to which
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modeling of Fourier-space compression alone allows us to
relax signal sampling requirements to obtain reconstructions
free of binning artifacts [15]. Our work in this article (i)
alludes to a fundamental theoretical limit in binning-related
signal-processing applications that allows us to partially relax
the well-known Nyquist criterion for CDI experiments and,
in addition, (ii) provides an inexpensive alternative to con-
structing large experimental enclosures to enable sufficient
angular resolution at high beam energies. This limit comprises
a more permissive sampling criterion for successful image
reconstruction, and is afforded by the additional constraints
imposed on the data through modeling the compression of
Fourier space during phase retrieval. While our focus in this
article is on BCDI measurements and the reconstruction of
complex three-dimensional objects, the methods described
here can also be adapted to two-dimensional transmission CDI
measurements.

The outline of this article is as follows: in Sec. II, we
describe the effect of Fourier-space compression on a BCDI
signal and the phase-retrieval framework that explicitly mod-
els this. In Sec. III, we present the three-dimensional recon-
structions from simulated high-energy scattering as well as a
reconstruction from an experimental Bragg coherent diffrac-
tion measurement designed to emulate high beam energy. We
also discuss the limits of binning for successful phase retrieval
and derive the resultant sampling criterion. In Sec. IV, we
discuss the potential ramifications of this method for the
design of high-energy CDI experiments.

II. PHASE RETRIEVAL WITH FOURIER-SPACE
COMPRESSION

In a BCDI measurement, a compact single crystal co-
herently illuminated with monochromatic x rays is rotated
through the Bragg condition in small angular steps (typically
0.01◦ steps over a 0.5◦ range for a 9 keV energy beam). The
three-dimensional scattered intensity is queried with such a
scan in a sequence of parallel slices, as shown in Fig. 1(a).

For a given Bragg reflection, the beam energy E is in-
versely proportional to the Bragg angle θBragg. Also since
|q| = |k f − ki| ∝ 2 sin θBragg, the scale of Fourier space is
inversely proportional to E . The fringe spacing and angular
extents of the diffraction patterns resulting from energies αE
and E are in the ratio 1/α2 for some multiplicative factor
α. Consequently, the same Fourier-space aperture is resolved
by proportionately fewer pixels at higher beam energies (i.e.,
when α > 1), as seen in Fig. 1(b). The effect of this com-
pression on the measured signal is modeled by binning the
well-resolved diffraction pattern into proportionately larger
pixels, and for this reason we call α the pixel binning
factor (PBF). Figure 2(e) shows the kth binned intensity
pattern Ik ∈ RM×M from a sequence of diffraction images
I = {Ik|k = 1, 2, . . . , K} acquired in a high-energy BCDI
experiment.

This signal (noisy in practice) is related to a virtual,
high-resolution image I↑

k ∈ RN×N (with N > M) that is not
accessed experimentally,

〈Iμν;k〉 = εμν;k +
∑

i, j∈Bμν;k

I↑
i j;k, (1)

FIG. 1. (a) Schematic of a conventional BCDI experiment result-
ing in well-sampled fringes. (b) The identical experimental geometry
with photon energy that is six times higher, showing the compression
of Fourier space and the signal undersampling. ki and k f are the
incident and scattered wave vectors, respectively, and satisfy |ki| =
|k f |. In these schematics, we compare, side by side, the effects of
pixel binning by considering the energy scaling factor alone and, for
the sake of simplicity, do not take into consideration the significant
reduction in the Bragg angle θBragg at six times the original beam
energy.

where 〈·〉 denotes the expectation value. Throughout this
article, we use “noisy” to refer to Poisson noise since this is
the dominant source of error in the photon counts of a physi-
cal BCDI measurement with sufficiently high signal-to-noise
ratio. Here, Iμν;k and I↑

i j;k are the (μ, ν)th and (i, j)th pixels

in Ik and I↑
k , respectively, and εμν;k is the contribution of the

incoherent background scattering, which is generally nonzero
in x-ray scattering experiments. The index set Bμν;k is a
contiguous block of fine pixels in the virtual image I↑

k that
subtends the same solid angle as the measured pixel Iμν;k

[Fig. 2(c)]. This model intentionally does not account for
compression along the third independent direction k owing to
the availability of high-resolution rotation stages (rotational
precision ∼0.0003◦) at coherent scattering facilities that can
accommodate the compression of Fourier space along k by
simply reducing the angular step size of a scan. Further, since
the radius of curvature of the Ewald sphere is proportional
to the beam energy, the effects of this curvature are even
more diminished at � 50 keV than at typical CDI energies
of ∼8 keV. For this reason, we focus on the issue of detector-
plane binning alone.

We note that in general, the introduction of εμν;k in Eq. (1)
introduces significant complexity into the analysis of the
acquired signal. A relatively strong q-dependent incoherent
background would render it difficult at best to infer the true
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FIG. 2. (a) A simulated complex-valued 3D object (128 × 128 ×
70 pixels) with surface phases, with the color scale in units of radians.
(b) A 128 × 128-pixel slice depicting the phase through the middle of
the object in (a). (c) High-resolution diffraction pattern representing
the kth 2D slice of the 3D intensity pattern (in simulated photon
counts) corresponding to the object in (a). A contiguous 8 × 8 block
in this pattern is indexed by (μ, ν ), along with neighboring blocks
(μ ± 1, ν ). (d) Zoom-in of the block in (c). (e) Binned diffraction
pattern (16 × 16) showing a pixel whose intensity is the sum of those
in the block Bμνk .

contribution from the coherently diffracting object. However,
a relatively low-level incoherent background superposed on
an otherwise high-quality BCDI signal can be addressed with
a simple background subtraction, as is common practice. For
this reason, we restrict ourselves in this article to theoretical
analysis and simulations in which εμν;k = 0, and apply a
simple background subtraction to the experimental data in
Sec. III C.

The wave field ψk ∈ CN×N associated with each I↑
k

satisfies

I↑
k = |ψk|2. (2)

In the Fraunhofer regime [16], these quantities are re-
lated to the unknown compact, three-dimensional, complex-
valued scatterer ρ through the discrete three-dimensional (3D)
Fourier transform operator F3D,

ψ = F3D[ρ], (3)

where ψ ∈ CN×N×K is the array built from sequential, par-
allel, 2D slices of the diffracted field ψk . Our goal is to
design a phase-retrieval algorithm that reconstructs the well-
resolved quantities ρ and ψ by explicitly capturing the binning
[(1)–(3)]. In particular, we utilize the following Fourier-space
constraint (first introduced in Ref. [14] in the context of
ptychography) to update ψ

(n)
i j;k at iteration n:

ψ
(n+1)
lm;k =

⎡⎢⎢⎣ Iμν;k∑
i, j∈Bμν;k

∣∣ψ (n)
i j;k

∣∣2

⎤⎥⎥⎦
1
2

ψ
(n)
lm;k ∀ l, m ∈ Bμν;k . (4)

This update operation ensures that the estimated 3D diffracted
field ψ(n) at each iteration n is consistent with the binning
model defined in Eq. (1). Equation (4) results in modified
versions of the commonly used iterative algorithms in phase-
retrieval recipes (of which Ref. [17] contains a comprehensive
review). Of these, we use the Gerchberg-Saxton error reduc-
tion (ER) [18] and Fienup’s hybrid input-output (HIO) [1]
for the reconstructions in this article. The object support is
periodically updated using a “shrinkwrap” algorithm [19].

This manner of Fourier-space signal binning shares a
strong similarity with a ptychographic fly-scan measurement
in real space, described in a recent article [20]. In this fly-scan
work, the acquired signal is modeled as the aggregate of inten-
sity contributions from discrete probe positions in the fly-scan
path. The resolution loss as a function of increasing scanning
speed described in this fly-scan work is analogous to the case
of CDI in the presence of Fourier-space compression, where
we expect degradation of the final image quality from phase
retrieval as a function of increased binning. We investigate this
trend comprehensively in Sec. III.

Equation (4) is also derived from a robust Gaussian model
of the photon-counting process [21,22]; see Appendix A for
a detailed derivation. This ensures that our update (4) is
consistent with a statistically sound inference method with
good asymptotic properties [22].

Lastly, we note that at beam energies � 50 keV, there is
negligible crosstalk between successive acquired images in
a BCDI measurement owing to the near orthogonality of the
discrete sampling directions in Fourier space (see Appendix B
for details). This effectively brings the high-energy versions of
BCDI and transmission CDI on the same footing and allows
us to describe our method in terms of the more general three-
dimensional BCDI, with two-dimensional transmission CDI
being a special case. At lower beam energies, a substantial
skew in the Fourier-space sampling directions results in non-
negligible crosstalk between successive images and might
provide BCDI with an advantage over transmission CDI in
terms of the stability of such a phase-retrieval algorithm.

III. RESULTS

A. Reconstructions from simulated scattering

For simulation purposes, a synthetic complex-valued ob-
ject ρ with arbitrarily oriented facets was created within a
three-dimensional complex array to represent a nanoscale
crystalline particle with a definite strain state. Pixels within
the particle were assigned an amplitude of 1, and phase values
that varied continuously and gradually in three dimensions.
The phase for each simulated crystal was chosen to vary as a
multivariate Gaussian centered on the middle of the numerical
array and whose standard deviation was comparable to the
size of the particle, as can be seen from the cross section
in Fig. 2(b). Pixels outside the particle were set to 0. The
corresponding far-field scattering signal was determined from
the 3D Fourier transform: I↑ = |F3D[ρ]|2. Sufficient oversam-
pling of the diffraction fringes in I↑ was ensured by providing
a buffer of zero-valued pixels around the particle such that
the particle size was below one-third of the array size in
each dimension. This ensured that the autocorrelation ρ ⊗ ρ

053838-3



S. MADDALI et al. PHYSICAL REVIEW A 99, 053838 (2019)

FIG. 3. (a) Isosurface plot of a synthetic particle reconstructed
with conventional phase retrieval (α = 1), which we use as a ground
truth for comparison. (b)–(e) Central slices through binned diffrac-
tion signals (simulated photon counts) for α = 2, 4, 6, 8, respec-
tively, with steadily degrading fringe visibility (including sampling
rates σx, σy along the axes of the imaging plane). (f)–(i) Isosurface
plots of synthetic particles recovered using conventional phase re-
trieval on binned noisy signals with α = 2, 4, 6, 8. (j)–(m) Isosurface
plots of synthetic particles recovered using modified phase retrieval
on binned noisy signals with α = 2, 4, 6, 8 show much better agree-
ment with (a). All the color bars denote the phase expressed in
radians. The pixelation in the final reconstructions was removed by
Gaussian kernel smoothing and the isosurfaces were plotted at a
value of 0.5 of the maximum object amplitude.

was fully contained in the simulation array, preventing cyclic
aliasing. In our constructions, the particle and grid sizes were
chosen to give a sampling rate (defined as σ ≡ N/s, where N
and s are the pixel spans of the array and particle, respectively)
well above the Nyquist rate of σ = 2 in each dimension. For
various choices of the pixel binning factor α, higher-energy
diffraction patterns were simulated by binning the intensities
I↑
i j;k in the first two dimensions into pixel blocks of size α2 to

obtain Ik , after which Poisson noise was added to simulate
a physical measurement. The values of α were chosen to
demonstrate progressive loss of fringe visibility. Post binning,
the pixels on the edges of the array that were not incorporated
into any of the bins Bμν;k were discarded. Thus, in each case,
the original object was recovered on a numerical grid of size
αNα × αNα × 70, where Nα was the detector-plane pixel span
of the binned intensity Ik . The signal strength was chosen to
give a signal-to-noise ratio (SNR) of ∼40 dB in the vicinity of
the Bragg peak. This corresponds to an approximate photon
count of 30 000 at the Bragg peak, similar to those in typical
BCDI measurements [23,24].

A systematic comparison of modified and conventional
phase-retrieval schemes as a function of fringe visibility
is shown in Fig. 3. A synthetic object of pixel span �
25 contained in a 256 × 256 × 70-pixel array was used,

resulting in sampling rates of σ = (σx, σy) = (12.19, 11.13)
in orthogonal directions in the detector plane and 3.03 in
the third direction. Figures 3(b)–3(e) show a pronounced loss
of fringe visibility as the degree of binning increases. As a
result, the conventional phase-retrieval approach that does not
account for binning results in lower-quality reconstructions
[Figs. 3(f)–3(i)]. In contrast, accounting for Fourier-space
compression gives the reconstructions in Figs. 3(j)–3(m),
which more accurately reproduce the morphology and phase
features of the reconstruction of the unbinned (α = 1) data set,
which was obtained using unmodified ER and HIO algorithms
[Fig. 3(a)]. Figure 4 shows cross sections of the amplitudes
and phases of the reconstructions seen in Fig. 3. Repetitions
of the modified phase-retrieval recipe with different random
initial values for ρ were found to repeatedly converge to
very similar solutions, one set of which are shown in this
figure. A Gaussian filter of sufficiently small kernel width
(three pixels) was applied to these reconstructions in order
to obtain the smooth isosurfaces seen in Fig. 3. In addition
to Gaussian filtering, a variety of methods may be employed
to refine the reconstructions obtained from a single run of
the phase-retrieval recipe, such as averaging the reconstruc-
tions from different randomized initializations, phase-retrieval
genetic algorithms [25], or incorporating upsampled signal
information into the modified phase retrieval, obtained by
translating the area detector across the exit beam in subpixel
steps [11].

We note that the binned diffraction patterns corresponding
to α = 2, 4 yielded sampling rates of σ � 6, 3, respectively,
both of which are well above the Nyquist sampling threshold
of 2. In these cases, we would expect that the unmodified
phase-retrieval approach would be appropriate for these data
and that the modified phase retrieval would not improve the
image significantly. However, in our numerical tests, we see
that this is not the case: the images in Figs. 3(f) and 3(g)
(unmodified algorithm) do not reproduce the phase features
of Fig. 3(a) as well as Figs. 3(j) and 3(k), even though
the morphology is reproduced faithfully. This is because of
the inherent difference between binning and sampling in a
strict signal-processing sense. Aggregation of the continuous
intensity field (i.e., binning) in each pixel block Bμν;k of a
high-resolution diffraction pattern is a mathematical transfor-
mation that is fundamentally different from collecting a set
of periodically spaced points from the high-resolution pattern
(i.e., periodic sampling) [26]. It is only to the latter that
the Nyquist criterion strictly applies, even though the terms
“undersampling” and “overbinning” are sometimes used inter-
changeably in the context of solid angles subtended by a pixel.
The effects of this difference, as our tests show, are prominent
at sampling rates near 2. However, the binning model we have
introduced can be applied in such circumstances to mitigate
these artifacts.

B. Limits of pixel binning

We now address the limits of the user-defined binning (or,
equivalently, upsampling) parameter α for successful phase
retrieval given a binned CDI data set. For the purposes of this
discussion, we consider this effect in terms of a single over-
sampled image I↑(2D) from a sequence of images [Fig. 5(a)]
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FIG. 4. (a) Amplitude and phase cross sections of the reconstructed crystal shown in Fig. 3(a), from conventional phase retrieval applied
to unbinned diffraction (prior to Gaussian filtering). (b)–(e) Slices from the reconstructions corresponding to α = 2, 4, 6, 8. The amplitude is
expressed in arbitrary units, while the phase is expressed in radians. The central dip in the phase is discernible in all reconstructions.

without loss of generality. We frame the analysis below by
interpreting the binning operator in terms of a convolution
kernel.

The pixel intensities obtained by two-dimensional binning
of I↑(2D) can be thought of as periodically sampled from the

FIG. 5. (a) Single detector image. (b) Convolution kernel corre-
sponding to binning operation. (c) Fourier transform of the detector
image (Patterson function), also equal to the object autocorrelation
ρ ⊗ ρ, projected in the imaging plane. (d) 2D sinc function which is
the Fourier transform of the convolution kernel in (b). (e) Sequence
of central slices of noisy signals corresponding to α = 2 through 8.
(f) Fourier-space representations of the corresponding convolution
kernels overlaid with the outline of the Patterson function. (g)
Reconstructions from the modified phase-retrieval method indicating
degradation of image quality from α = 5 onwards.

2D convolution of the oversampled intensity pattern and a
2D box function: I↑(2D) ∗ W. The convolution kernel W is a
square window of size α × α pixels whose Fourier transform
is the 2D sinc function [Fig. 5(b)]. Further, it is known that
the 2D Fourier representation of I↑(2D) is compact (see the
Supplemental Material of Ref. [12]). We show here that the
Fourier representation of I↑(2D) ∗ W (i.e., the product of the
respective 2D Fourier transforms) is indicative of the thresh-
old of irreversible information loss. We use F2D[·] to denote
the 2D Fourier transform operator.

The sequences of images in Figs. 5(e)–5(g) correspond to
increasingly large binning windows (α = 2 through 8), ap-
plied to a different (arbitrarily faceted) simulated nanocrystal,
similar to the one featured in Fig. 3. In the corresponding
Fourier representation [Figs. 5(f)], we see that signal infor-
mation is lost when any significant component of the compact
function F2DI↑(2D) is suppressed to zero through multiplica-
tion with F2DW. This situation occurs at the nodes of the
function F2DW, for α > 4. Thus the criterion for successful
phase retrieval is that F2DI↑(2D) should lie entirely within the
central lobe of F2DW. This limit is clearly demonstrated in
Fig. 5(g), wherein the quality of 3D image reconstruction
suffers dramatically when α is too high for the given par-
ticle. An experimental ramification to this limit is that, for
a fixed experimental geometry (x-ray energy, object-detector
distance, detector pixel size), the largest value of α one can
choose for phase retrieval is limited by the scatterer size.

We now cast the above criterion in the perspective of
a physical BCDI measurement. In particular, we show that
the criterion results in a relaxation by a factor of 2 in the
maximum size of the scatterer as permitted by the Nyquist
condition, which is usually adhered to in CDI experiments.
Consider the relation between the Fourier-space size of a
single detector pixel �q and the experimental parameters
such as the physical pixel size p, sample-detector distance z,
and the beam energy E : �q = E p/hcz, where h is Planck’s
constant and c is the speed of the propagating wave [16]. If x0

is the largest span of the real-space scatterer, then the Nyquist
criterion dictates that �q � 1/(2x0) for sufficient sampling
of diffraction fringes and therefore successful (unmodified)
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phase retrieval. This gives the criterion for the maximum per-
missible scatterer size for a given experimental configuration,

x0 �
(

1

2

)
hcz

E p
. (5)

The criterion derived earlier in this section, on the other
hand, dictates that the span of F2DI↑(2D) (equal to 2x0 in
real-space units) should be no larger than the size of the
central lobe of the sinc function corresponding to the single
pixel window in Fourier space (equal to 2/�q in the same
real-space units). This gives us a new scatterer-size criterion,

x0 � hcz

E p
, (6)

which represents a factor of 2 relaxation in the Nyquist bound
of (5). If the scatterer is larger than the threshold in (6),
the modified phase-retrieval method presented in this work
will fail without the acquisition of additional signal data (for
example, as described in Refs. [11,12]), or modification of
the experiment itself. Beyond such modifications to the BCDI
setup, the imaging of extended structures well beyond this
size threshold by using focused high-energy x rays (i.e., high-
energy ptychography) is currently an active area of research
[27].

It may appear that the BCDI phase-retrieval problem with
Fourier-space scaling is inherently underdetermined because
the unknowns in the discrete quantity ρ ∈ CN×N×N2 outnum-
ber the binned intensity measurements made with coarse
pixels. However, it can be shown that the unknowns and
constraints are, in fact, equal in number: for a fine pixel grid
of size N × N × N2, there are 2N2N2 unknowns to solve for,
with the factor of 2 arising from the real and imaginary (or,
equivalently, amplitude and phase) components of ρ. On the
other hand, (4) imposes exactly N2N2 independent Fourier-
space constraints on ρ (since for a general ρi j;k we have
i, j ∈ {1, 2, . . . , N} and k ∈ {1, 2, . . . , N2}), while the support
constraint imposes another N2N2 independent constraints by
scalar multiplication of each pixel with either 0 or 1. Even
though the unknowns and constraints are equal in number,
convergence of the phase retrieval to a unique solution re-
quires that the criterion on x0 above be satisfied so as to not
lose information irretrievably.

In our discussion of Fig. 5, we interpreted the binning
transformation of a coherent diffraction pattern as a convo-
lution followed by a uniform sampling operation. From the
point of view of information loss, this convolution aspect
shares an interesting parallel with the phenomenon of partial
coherence in CDI. It has been shown that the scattered inten-
sity field in the presence of partial coherence can be treated as
the convolution of the propagated coherent intensity field with
a blurring kernel, typically a multivariate Gaussian function
at third-generation synchrotrons [24,28,29]. The subsequent
deconvolution process to estimate the propagated wave field
is computationally simpler and avoids the separate characteri-
zation of the synchrotron beam as a superposition of coherent
modes [30,31]. This modeling of partially coherent diffraction
differs from the binning transformation described above only
in the type of convolution kernel used, the latter being a square
function as we have already seen. Both of these processes

FIG. 6. (a) Experimental schematic for mock high-energy BCDI
measurement. (b) Gold nanocrystal from modified phase retrieval
acting on signal collected at a distance of 0.5 m [isosurface colored
by phase (rad)]. (c) The same nanocrystal from conventional phase
retrieval acting on signal collected at 1.5 m. The axis units in (b) and
(c) are in nanometers.

result in reduced fringe visibility, and can be interpreted as a
modulation of the autocorrelation of the diffracting object by
an envelope function (which is a sinc function for binning).
In both cases, the modulating effect of the envelope can
be undone to obtain the pristine signal, provided none of
its significant components are suppressed by the envelope.
However, the binning case fundamentally differs from the
convolution-only case in that additional mathematical mod-
eling is required to account for the inherent reduction in the
number of measured data (i.e., the pixel intensity counts) and
provide signal sampling.

C. Experimental validation

To validate our method, we performed a synchrotron ex-
periment in which two 3D BCDI data sets were collected
from the same scatterer at the same x-ray beam energy in
two different ways: (i) data was measured to ensure highly
oversampled fringes appropriate for unmodified BCDI phase
retrieval, and (ii) data were measured under “coarse-pixel”
conditions wherein the visibility of finely spaced fringes is
significantly reduced. In our proof-of-concept experiment, the
scatterer used was one of a number of gold nanocrystals of
varied sizes obtained by dewetting a gold film on a silicon sub-
strate. The scattering measurements were made at Beamline
34-ID-C of the Advanced Photon Source. A BCDI data set of
size 120 × 120 × 80 pixels, appropriate for unmodified phase
retrieval, was collected from this particle at a beam energy of
15 keV and an object-detector distance of 1.5 m and an angu-
lar step size of 0.005◦. The imaged particle resulting from this
data set [Fig. 6(b)] was found to be about 400 × 600 × 700
nm in size. The measurement was then repeated with the same
beam energy, but with the object-detector separation reduced
to one-third of the original distance (i.e., 0.5 m), resulting
in significant loss of fringe visibility in the detector plane.
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This configuration yields a PBF of α = 3 relative to the first
measurement because of the 3 : 1 ratio of the object-detector
distances. In this sense, such a data set emulates a high-energy
BCDI experiment, if one considers a factor of 3 in energy (45
keV) rather than object-detector distance. This avoids the need
to perform an actual BCDI experiment at 45 keV with limited
x-ray coherence. Further, since the x-ray energy is the same
in both cases, the image reconstructions from the two data
sets correspond to identical discrete grids in real space. The
respective phase-retrieval recipes are given by

(i) Conventional phase retrieval: 900 iterations of ER
(shrinkwrap every 30 iterations) → 600 iterations of HIO
→ 1000 iterations of ER (shrinkwrap every 50 iterations) →
3000 iterations of ER with no intermediate shrinkwrap.

(ii) Modified phase retrieval: 1000 iterations of ER → 2000
iterations of HIO → 1000 iterations of ER → 2000 iterations
of HIO → 3000 iterations of ER. Shrinkwrap was applied
every 250 iterations during the first 2000 of ER. Prior to
this phase retrieval, the background contribution εμν;k to the
“higher-energy” data set (assumed constant) was artificially
dealt with by thresholding the photon counts below 1 to 0.

In general, there is good agreement between the two re-
constructions and we speculate that the slight difference in
the phase profile between Figs. 6(b) and 6(c) is because of
differences in background levels in the two measurements.
Namely, physical positioning of the detector closer to the
direct beam in the 0.5 m measurement increases the level of
air scattering and other background sources.

We caution that while the above experiment emulates most
of the essential features of a true 45 keV measurement, there
are some salient differences. The first is that the Bragg angle
for the two measurements was the same, which would not
be the case at 45 keV. This implies non-negligibile crosstalk
between successive detector images (see Appendix B). We
speculate that the quality of a reconstruction from a true
45 keV measurement would be a little less than the results
shown here due to the reduced crosstalk. Second, there was no
Fourier-space compression along the rocking direction in the
“higher-energy-like” case. This is because the scale of Fourier
space depends on the energy of the beam and the relevant
lattice plane spacing of the crystal, neither of which changed
in moving the detector from 1.5 to 0.5 m. This meant that the
same angular step of 0.005◦ sufficed for both measurements.
As mentioned in Sec. II, in a true 45 keV measurement, the
compressed Fourier space in the rocking direction can be
adequately sampled with high-precision rotation stages.

We also note that because the modified Fourier-space
projection of (4) differs from the conventional Fourier-space
projection, we expect different rates of convergence, and for
this reason we adopted the different phase-retrieval recipes
above.

IV. CONCLUSION

We have described a phase-retrieval formalism tailored for
undersampled BCDI data from high-energy x-ray scattering
measurements that is based upon the modeling of signal
binning due to coarse pixelation in Fourier space [14]. The
approach we describe is necessitated by the fact that at
higher x-ray energies, Fourier-space compression makes it

impractical to resolve the fine fringe detail in a coherent
diffraction pattern necessary for standard CDI phase-retrieval
methods. We have demonstrated with simulations and exper-
iments that phase-retrieval algorithms explicitly designed to
take into account the binning effect allow for accurate recon-
struction of 3D compact crystals from data that would other-
wise be intractable with standard methods. This is possible, to
a certain limit, without acquiring any redundant data to serve
as constraints, as has been done in related work [11,12,14].
Specifically, we find that our approach enables successful re-
construction of 3D images from coherent diffraction sampled
up to a factor of 2 below the Nyquist criterion in the plane of
the detector. While we have derived this limit in the context
of high-energy BCDI, it could potentially be applicable to a
broader class of binning-related digital-imaging applications,
depending on the physical origins of the signal.

Within the field of experimental x-ray and materials sci-
ence, this work has important consequences for the design
of space-constrained coherent scattering experiments at high-
energy synchrotron facilities. By relaxing the fringe sam-
pling requirements and achieving the desired Fourier-space
resolution through algorithmic sophistication, the relatively
expensive option of building larger experimental enclosures
for high-energy CDI experiments is preempted for a larger
range of crystal sizes. Even beam-line facilities with large
object-detector distances can benefit from the ability to image
larger crystals. While enhancing the flexibility of experimen-
tal design, this is also an important step towards facilitating
structural imaging experiments of nanoscale crystalline vol-
umes in difficult-to-access environments that require the long
penetration depths of high-energy x rays.
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APPENDIX A: AN OPTIMIZATION-BASED APPROACH TO
THE FOURIER-SPACE CONSTRAINT

Iterative schemes for phase retrieval alternate between
updating an initial guess object between constraints in real and
Fourier space. The Fourier-space iteration typically involves
comparison with some form of measured data, such as a
pixelated signal on an area detector. The update expression
for the Fourier-space constraint is nonlinear and is arrived
at by optimizing over one of many possible noise models
associated with the measured data [22]. In this section, we
adopt this general approach to derive (4) more rigorously.

053838-7



S. MADDALI et al. PHYSICAL REVIEW A 99, 053838 (2019)

FIG. 7. Visualization of the binning operation in (A2) in matrix
for α = 4. Here, i, j = 1, 2, 3, . . . , 128 and μ, ν = 1, 2, 3, . . . , 32.

Given a well-sampled image of size N × N pixels from an
image stack of size N × N × N2 and a binning factor of α, we
define the binning matrix M of size (N/α) × N as

Mμi =
{

1 if (μ − 1)α < i � μα

0 otherwise.
(A1)

For the kth low-resolution pattern Ik in the sequence of
diffraction images, the binning operation in (1) is neatly
expressed as the following double summation:

〈Iμν;k〉 =
N∑

i=1

N∑
j=1

Mμiψi j;kψ
∗
i j;k (MT ) jν

=
∑

i

∑
j

Mμiψi j;kψ
∗
i j;kMν j, (A2)

where we have used the fact that I↑
i j;k = ψi j;kψ

∗
i j;k and assumed

negligible background scattering. The binning is visualized in
Fig. 7 as a matrix operation.

Keeping in mind that the noise associated with Iμν;k is
Poisson dominated in a physical measurement, we focus our
mathematical treatment on the variance-stabilized random
variable

√
Iμν;k as described in Ref. [22]. The negative log-

likelihood function for a measured dataset Iμν;k resulting from
a complex wave ψi j;k in the far field is given by

L[ψ] =
N2∑

k=1

N/α∑
μ=1

N/α∑
ν=1

[
I1/2
μν;k − 〈Iμν;k〉1/2

]2
. (A3)

For some (i, j), the Wirtinger derivative [32] of L with respect
to ψ∗

i j;k is given by

δL =
∑
μ,ν,k

[
1 −

(
Iμν;k

〈Iμν;k〉
)1/2

]
ψi j;k ∀i, j. (A4)

Optimality dictates that the gradient above vanishes for the
wave field ψ ≡ ψ̂ that minimizes the fitting function in (A3).
As a result, ψ̂ is the solution of the following set of nonlinear
equations:

ψ̂i j;k −
(

Iμν;k

〈Iμν;k〉(ψ̂)

)1/2

ψ̂i j;k = 0, (A5)

where the dependency of the expected count 〈Iμν;k〉 on the
unknown wave field ψ̂ is made explicit. Starting from an
initial guess ψ(0), the following fixed-point iteration is then

FIG. 8. BCDI schematic showing the three vectors q1, q2, and q3

along which Fourier space is being sampled. The zoomed-in region
also shows the direction of Q in relation to these vectors. Here, q1

and q2 are mutually perpendicular and in the imaging plane (owing
to the Cartesian pixel grid), while q3 is determined by the direction
of change of Q in the rotating crystal experiment.

usually employed to numerically solve (A5):

ψ
(n+1)
i j;k =

(
Iμν;k

〈Iμν;k〉(ψ(n) )

)1/2

ψ
(n)
i j;k ∀i, j, k. (A6)

This is identical to (4) and the original version in Ref. [14],
with the binning expressed using (A2). While we have derived
the iteration step above for an error model designed to be
robust to Poisson noise, the same mathematical treatment can
be applied to different models, each of which would require
optimization of an objective function different from (A3). See
Ref. [22] for details.

APPENDIX B: CROSSTALK BETWEEN SUCCESSIVE
IMAGES IN HIGH-ENERGY BCDI

Figure 8 shows the Fourier-space sampling basis vectors
q1, q2, q3 in a BCDI measurement. q1 and q2 are the mutually
perpendicular sampling vectors in the imaging plane of the
detector. q3 is determined by the change in the reciprocal
lattice vector Q on account of the crystal rotation between two
successive detector images: q3 = −δQ. For most experimen-
tally convenient combinations of Bragg scattering geometry,
detector orientation, and direction of crystal rotation, q3 is not
perpendicular to q1 and q2, implying a nonzero projection of
q3 into the imaging plane. Therefore some crosstalk usually
exists between the successive images collected in a BCDI
measurement. If the detector plane is perpendicular to the
exit beam, it can be shown that the angle between Q and the
{q1, q2} imaging plane is θBragg, the Bragg angle which drops
to below 3◦ for beam energies above 50 keV. Any meaningful
rotation of the crystal at this beam energy or higher would
leave a very small projection of q3 in the imaging plane,
causing minimal crosstalk and therefore minimum sharing of
information between successive acquired detector images.
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FIG. 9. (a)–(d) Central slices through diffraction signals corresponding to four different simulated complex scatterers (noise-free, well-
resolved fringes with sampling rate σ � 5.8 in the detector plane). (e)–(h) Central slices through the binned and noisy diffraction signals
(α = 4, sampling rate σ � 1.6). (i)–(l) Central slices through the diffraction signal recovered using the modified phase retrieval. (m)–(p)
Isosurface plots of the scatterers recovered from the noisy binned signal, colored by phase (radians). (q)–(t) Isosurface plots of the scatterers
recovered from the original well-resolved signal (a)–(d) with added Poisson noise. The conventional phase-retrieval recipe to obtain images
(q)–(t) was 150 iterations ER + 100 iterations HIO + 250 iterations ER, with shrinkwrap every 50 iterations. The modified phase-retrieval
recipe to obtain images (m)–(p) was 1500 iterations modified ER + 1500 iterations modified HIO + 2100 iterations modified ER, with
shrinkwrap every 300 iterations.

APPENDIX C: ADDITIONAL RECONSTRUCTION
RESULTS FOR VARIOUS FACETED SCATTERERS

Figure 9 shows the phase-retrieval results with the modified
Fourier-space constraint, applied to the simulated coherent
diffraction signals from four different particles, the size of
each being � 22 pixels in each dimension (smallest span was
20 pixels) and simulated on a 128 × 128 × 70-pixel grid. The
choice of α = 4 for this array size resulted by design in poor
fringe visibility, as we can see by computing the maximum
effective sampling rate in the imaging plane: σ = 128/(4 ×
20) = 1.6, which is below the Nyquist rate of 2.

Also provided in Fig. 10 are the results of our algorithm
applied to diffraction data manipulated in different ways.
Figure 10(a) shows the results of our algorithm applied to the
experimental data collected at a distance of 1.5 m (described
in Sec. III C), after it has been binned in-plane at α = 3.
This is to be compared with the reconstruction in Fig. 6(b),

FIG. 10. (a) Isosurface plot of the reconstructed nanoparticle
from Sec. III C, obtained from first taking the measured data at
distance 1.5 m and binning it at α = 3. The axes have dimensions
of nanometers. (b) Isosurface of the reconstruction result from our
algorithm, applied to the diffraction pattern from the synthetic parti-
cle in Fig. 3 that has been undersampled by a factor of 6 (i.e., every
sixth pixel is chosen).
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in which the same binning was achieved by translating the
detector closer to the scatterer. While there is agreement
between Figs. 10(a) and 6(b) with respect to the morphology
of the crystal, we speculate that the slight differences in phase
arise from the effects of binning the Poisson noise in addition
to the signal itself.

Figure 10(b) shows the results of our algorithm applied
to a truly undersampled data set, namely, from the synthetic
particle shown in Fig. 3(a). The simulated diffraction pattern
from this particle was undersampled by a factor of 6 (i.e.,
every sixth pixel was selected in both in-plane directions) and

our phase-retrieval algorithm was applied to it with α = 6.
This treatment effectively assumes that the diffraction thus
obtained has been binned and not undersampled. This result
is to be compared with the reconstruction in Fig. 3(l), which
was obtained from simulated diffraction binned at α = 6.
We see that while the morphology is faithfully reproduced,
there are errors in the obtained phase. This can again be
understood from the fundamental difference between sam-
pling and binning as different mathematical transformations
applied to the simulated diffraction, as we have mentioned in
Sec. III A.
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