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Creating lattice gauge potentials in circuit QED: The bosonic Creutz ladder
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In this work we propose two protocols to make an effective gauge potential for microwave photons in circuit
QED. The first scheme is based on coupled transmons whose on-site energies are harmonically modulated
in time. We investigate the effect of various types of capacitive and inductive couplings, and the role of the
phase difference between adjacent sites on creating a complex hopping rate between coupled qubits. The second
method relies on the parametrically coupling the modes of a SQUID in a resonator and controlling the hopping
phase via a coherent pump. Both proposals can be readily realized in a superconducting circuit with the existing
technology and are suitable for scalable lattices. As an example benefiting from these complex-valued hopping
terms, we simulated the behavior of a plaquette of bosonic Creutz ladder as one of the important models with
interdisciplinary interest in various branches of physics. Our results clearly show the emergence of chiral edge
modes and directional transport between lattice sites. Combined with intrinsic nonlinearity of the transmon qubits
such lattices would be an ideal platform for simulating many different Hamiltonians such as the Bose–Hubbard
model with nontrivial gauge fields. Important direct applications of the presented results span a broad range from
signal processing in nonreciprocal transport to quantum simulation of gauge-invariant models in fundamental
physics.
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I. INTRODUCTION

Coherence and coherent effects are the hallmarks of quan-
tum systems. The flourishing and growing field of circuit
quantum electrodynamics (circuit QED) in recent years have
opened a horizon in quantum control and coherent studies
via benefiting from the quantized electromagnetic fields of
a circuit, mimicking an atom with discrete states. The con-
trollability and ease of tunability of circuit QED elements
make them powerful candidates for some of the large-scale,
integrated quantum networks. So far, circuit QED is almost
the only engineerable quantum system. Its properties arise
from the quantized electric charge and magnetic flux making
a harmonic ladder. Besides, the Josephson junction is the
main nonlinear element leading to an anharmonic ladder with
unequal energy spacing to realize an artificial atom.

In circuit QED, the atom-light interactions are imple-
mented via a combination of the microwave resonators and
superconducting qubits on an integrated chip with diverse
experimental control [1]. The system can easily be extended to
large-scale lattices for realizing efficient simulators for Bose–
Hubbard, and Jaynes–Cummings–Hubbard models. More-
over, due to the inherent openness of the system, circuit QED
provides a unique platform to investigate driven-dissipative
systems and study the strong correlations and nonequilibrium
physics [2–8]. Another unique feature of circuit QED is
the possibility of studying quantum phenomena on macro-
scopic scales. Benefiting from the inherent nonlinearity of

the Josephson junction an interaction between superconductor
qubits can be realized, as well.

Photons are the best information carriers due to their ease
of control, accessibility, and preparation. Moreover, the recent
advancements in the realm of photonics have made it possible
to manipulate and steer them almost arbitrarily. Therefore, for
making a large-scale network of qubits, photons are one of the
obvious choices. However, photons are neutral particles with-
out any charge, so they do not lend themselves to magnetic-
field manipulations, trivially. Recently an artificial gauge field
has been synthesized from the atom-light interaction that
controls the flow of the neutral photons as if they are charged
particles and move in a magnetic field [9,10].

In this article we report on the control of dynamical cou-
pling between two superconducting qubits in a microwave
circuit. We employ light-matter coupling to induce photon-
photon interactions and generate an effective magnetic field
for the photons. By periodically modulating the energy of
a Josephson junction in a transmon qubit, or by controlling
the coupling between the modes of a SQUID in a resonator,
we show the emergence of an effective magnetic field as a
nontrivial phase in the hopping term between adjacent nodes
[11–13]. In contrast to other systems, the parameters of this
setup, such as on-site energy, interaction between the adjacent
sites, and the driving frequency, can be varied over a wide
range. The effect of this phase on the photon transport is
studied in a lattice of coupled bosonic nodes arranged in
a plaquette, where a directional photon transport along the
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FIG. 1. (a) A circuit of two transmons coupled with both induc-
tive and capacitive elements. (b) Schematics of a plaquette from a
bosonic Creutz ladder showing all the nodes and the coupling terms.

plaquette edge has been demonstrated. This topological fea-
ture can be further utilized to make a protected photon
transport in a disordered lattice as previously proposed and
demonstrated in other coupled-resonator systems [14,15].

This work is organized as follows: In the second section
we derive the effective Hamiltonian of two coupled transmon
qubits whose Josephson junction’s energies are harmonically
modulated in time. We show how this modulation gener-
ates a complex hence, nonreciprocal hopping between cou-
pled qubits. Moreover, we propose another scheme based
on SQUIDs for making a complex hopping between cavity
modes that is realizable with the existing circuit QED tech-
nology. In the third section we study the effect of this complex
coupling term in a bosonic Creutz ladder, an important model
appearing in different disciplines of physics. There, we briefly
introduce the model and derive its symmetries and the chiral
properties arising from a nonreciprocal coupling. For the sake
of brevity we focus on one plaquette of the Creutz ladder,
where we explicitly show how some of the nontrivial features
of the ladder, including the chiral modes and edge states, are
achievable in this plaquette. Finally, section four concludes
the paper and presents some of the immediate theoretical and
experimental follow-up works. The study and the results of
this paper present a road map for simulating important Hamil-
tonians such as bosonic Creutz ladder and Bose–Hubbard
lattice with circuit QEDs.

II. NONRECIPROCAL COUPLING VIA
PARAMETRIC MODULATION

A. On-site energy modulation of transmons in an array

Transmon qubits are some of the important building blocks
of circuit QED. A brief review on some of their basic im-
portant properties and a list of relevant references can be
found in Appendix A. The system of our interest is com-
posed of two transmons coupled together via a capacitor or
an inductor as shown in Fig. 1(a). Moreover, the energy of
the Josephson junction of each transmon is assumed to be
periodically modulated in time. The effect of modulation in
creating nontrivial gauge fields has been investigated for about
a decade in different realms of physics [16–18] and very re-
cently in circuit QED [19]. In this section we are interested in
investigating those effects in a circuit QED lattice composed
of coupled transmons. As elaborated in Appendix B in detail,
this problem can be transformed to a more general problem
of two coupled bosonic degrees of freedom whose on-site
energies are time-harmonically modulated. The nodes are

coupled together via a particle-conserving operator described
with an effective hopping term from one node to the other.
In this section we employ the Floquet theorem to investigate
the effect of this modulation on the general behavior of the
system.

Although the calculations and results are presented for
a two-site lattice only, the same treatment is applicable to
an extended lattice with many nodes. The interested reader
may refer to relevant references for further information and
elaboration on the Floquet theorem [20–22].

As derived in Eq. (B7), the Hamiltonian of two bosonic
nodes with time-harmonically modulated energies and a fixed
coupling rate J is given as

Ĥ (t )/h̄ = −J (â†
2â1 + â†

1â2)

+ [ω01 + �01 cos (ωMt + φ1)]

(
â†

1â1 + 1

2

)

+ [ω02 + �02 cos (ωMt + φ2)]

(
â†

2â2 + 1

2

)
. (1)

For every node described as a harmonic oscillator, Fock
space is the eigenspace of the number operator and satisfies
the following relation

ωm

(
â†

mâm + 1

2

)
|n〉m = ωm

(
nm + 1

2

)
|n〉m , (2)

where m is the lattice-site index.
Now consider that in Eq. (2) the trapping frequency is

periodically modulated in time with frequency ωM as ωm =
ω0m + �0m cos (ωMt + φm). For this modified harmonic oscil-
lator we define the following rotated Fock states:

|N〉m = |n〉m exp [−i ω0m (nm + 1/2)t] exp

×
[
−i

�0m

ωM
(nm + 1/2) sin (ωMt + φm)

]
. (3)

This state is composed of three main parts: (1) the Fock
state, (2) a free-propagation of the Fock state given by the first
exponential, and (3) a time-harmonically modulated rotation
given by the second exponential. It is straightforward to show
that this state is a solution of the periodically modulated
harmonic oscillator Hamiltonian appearing in Eq. (1). In other
words, the time-periodic modulation of the trap frequency
changes the instantaneous frequency of each Fock state, and
the new basis is related to the old ones via the following
transformation:

Rm(t ) = exp [−i ω0m (nm + 1/2)t] exp

×
[
−i

�0m

ωM
(nm + 1/2) sin (ωMt + φm)

]
. (4)

In this rotated basis frame the transformed Hamiltonian
reads

Ĥrot(t ) = Û †(t )Ĥ (t )Û (t ) − ih̄Û †(t ) ˙̂U (t ), (5)

where Û (t ) = ⊗mRm(t ) is the unitary transformation with
Rm(t ) elements. The Hamiltonian of Eq. (1) in the rotated
frame reads

Ĥrot(t )/h̄ = −J exp

(
i

[
�02

ωM
sin (ωMt + φ2) − �01

ωM

× sin (ωMt + φ1)

])
ei(ω02−ω01 )t â†

2â1 + H.c. (6)

053834-2



CREATING LATTICE GAUGE POTENTIALS IN CIRCUIT … PHYSICAL REVIEW A 99, 053834 (2019)

This form implies that the modulation of the on-site energy
of each node with a fixed hopping rate to the adjacent node is
equivalent to an effective modulation of the hopping rate.

For the sake of simplicity we assume that the modulation
depth is the same for all nodes, i.e., �02 = �01 = �0. Know-
ing that eix sin θ = ∑∞

n=−∞ Jn(x)einθ , where Jn(x) is the nth-
order Bessel function of first kind, the periodic Hamiltonian
in Eq. (6) can be expressed in terms of partial Hamiltonians
as1

Ĥrot(t )/h̄ = −Jei(ω02−ω01 )t
+∞∑

n=−∞
inein φ1+φ2

2

×Jn

[
2�0

ωM
sin

(
φ2 − φ1

2

)]
einωMt â†

2â1 + H.c.

(7)

The nth partial Hamiltonian becomes stationary when
nωM = ω01 − ω02. If the modulation frequency matches the
energy difference between two adjacent sites (i.e., ωM =
ω01 − ω02) then the Hamiltonian in Eq. (6) would be simpli-
fied as

Ĥ/h̄ = −i Jei φ1+φ2
2 J1

[
2�0

ωM
sin

(
φ2 − φ1

2

)]
â†

2â1 + H.c.

(8)
This final form indicates that the on-site energy modulation

can be translated to a nontrivial change in the hopping rate
between the coupled sites. Depending on the energy differ-
ence between the lattice sites and the modulation frequency,
the effective coupling can be engineered to be a real number
or a complex value. While the former corresponds to a recip-
rocal hopping between two sites the latter is an asymmetric
coupling meaning that the ith → jth coupling rate is not the
same for the reverse direction.

For the sake of completeness, we study the effect of the
different energy scales in the two-site problem where the
initial Hamiltonian is given by Ĥ/h̄ = −J (â†

2â1 + â†
1â2) +

[ω
2 + � sin (ωt )](â†

1â1 − â†
2â2). Going to a rotated basis we

get

Ĥrot(t )/h̄ = −Je−i[ωt− 2�
ω

cos (ωt )]â†
2â1 + H.c.

= −J
∑

m

imJm

(
2�

ω

)
ei(m−1)ωt â†

2â1 + H.c.

−−−→
RWA − iJJ1

(
2�

ω

)
â†

2â1 + H.c. (9)

Figure 2 shows the occupation probability of the single-
particle states at node 1 and 2 for different frequencies ω.
As can be seen from Eq. (9), the full response consists of
higher harmonics in the decomposition of the hopping term.
Nonetheless, in the rotating wave approximation, i.e., when

1Note that for n = 0 the coupling rate is still real, meaning a
reciprocal coupling between adjacent sites. To break this symmetry
one has to keep at least the first term in the expansion. Besides, it is
not a stationary Hamiltonian. Moreover, note that the contribution of
these higher-order terms vanish when the modulation vanishes, i.e.,
�0 = 0 as physically expected.
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FIG. 2. Time evolution of a two-site problem with one excitation
driven by a modulated onsite frequency with frequency ω and
amplitude of the modulation �. ω = � in all cases.

the energy scale of the modulating frequency ω is higher
than the amplitude of the modulations, Jm( 2�

ω
), just the

nonoscillatory or stationary term will determine the whole
dynamics. In these calculations, this condition is achieved by
maximizing the value of the amplitude for the m = 1 mode
with � ∼ ω, such that all the others are much smaller. As
can be seen in Fig. 2, the exact behavior deviates from the
typical particle swap behavior further when the on-site and
modulation frequency decreases. This is clear in the behavior
of the red and black lines (lines with square and circular mark-
ers), dashed and solid, when the overall exchange behavior has
some additional faster features compared with the blue lines.
These features are due to the higher-energy terms contributed
by higher harmonics.

Added as a new feature to the existing toolbox of circuit
QED this nonreciprocal coupling can substantially extend the
capability of this technology as a versatile quantum simulator
beyond what has been achieved so far [23,24]. In the next
section we study one of the important models that could be
simulated with this added capability.

B. Parametric modulation of cavity modes

The modulating flux scheme proposed in the previous
section is completely general and fully applicable for realizing
the complex coupling required in the Creutz ladder. For a
four-site plaquette however, we propose another scheme in
this section that benefits from another commonly used circuit
QED setup based on SQUIDs which is readily realizable
[25–28]. The setup parametrically couples the total flux in a
cavity, �̂c, to the pump flux �̂p through a Hamiltonian as

ĤSQ = EJ | cos (π�̂p/�0)| cos (2π�̂c/�0). (10)

The interaction Hamiltonian can be derived by expanding
ĤSQ to the first order in �̂p around a flux bias �ext, and to the
second order in �̂c around zero. After applying the parametric
approximation to the pump we get the following interaction
Hamiltonian:

Ĥint = h̄g0(αp + α∗
p)

[
4∑

i=1

(âi + â†
i )

]2

, (11)
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where αp denotes the coherent pump amplitude. The bosonic
operators âi, â†

i are the annihilation and creation operators
of the four cavity modes, and g0 is an effective coupling
constant. Equation (11) contains various terms corresponding
to different physical processes. However, we can selectively
activate different processes by an appropriate choice of pump
frequency. Two cavity modes of i, j get coupled together via
a coherent pump if fp = | fi − f j |, and the Hamiltonian Ĥint

will be reduced to ĤCC = h̄g′(âiâ
†
j + â j â

†
i ). The phase of the

coupling rate g′ can be tuned by phase locking different pump
fluxes to a reference value. In other words the coupling be-
tween different modes can be designed to be real or complex,
leading to reciprocal or nonreciprocal coupling, respectively.

III. BOSONIC CREUTZ LADDER

The possibility of manipulating the phase of the coupling in
a lattice of transmon qubits allows one to simulate fundamen-
tal problems in high-energy physics as well as in condensed
matter. For instance, quantum Hall effects, topological states,
and chiral edge modes are some of the important phenom-
ena that could be simulated in these circuits. Based on the
scheme proposed in the previous section, by proper choice of
the modulation frequency and on-site energies, the hopping
rate between adjacent sites in a lattice can be independently

tuned to be real- or complex-valued. As an example of the
various Hamiltonians that can be simulated via this scheme,
in this section we focus on a particular model that appears in
multidisciplinary physics: the bosonic Creutz ladder [29–31].
This model describes a cross-linked lattice in a classical
magnetic field. Due to its structure and interference effects
and depending on the values of the hopping and the magnetic
field, isolated edge states can appear. In fact, there is a deep
connection between the domain-wall approach of the chiral
modes in lattice gauge theory, and the robust nature of these
states under small variations of the bond strengths; this feature
is linked to the topological properties of the ladder.

In a two-leg ladder shown in Fig. 1(b) this model is
described with the following Hamiltonian:

H = −
∑

n

[
td (b†

nan+1 + a†
nbn+1) + eiφ (a†

n+1an + b†
nbn+1)

+ tv
2

(b†
nan + a†

n+1bn+1) + H.c.

]
. (12)

As depicted in Fig. 1(b), an and bn are the bosonic degrees
of freedom in a two-leg ladder with td and tv being the hopping
terms in the diagonal and vertical directions, respectively. φ is
the magnetic flux leading to a coupling between the sites as
eiφ , horizontally. In the Fourier basis the Hamiltonian of an
N-site ladder could be written as

H =
∑

k

(a†
k, b†

k )

( −2 cos
(

2πk
N + φ

) −2td cos
(

2πk
N

) − tv
−2td cos

(
2πk
N

) − tv −2 cos
(

2πk
N − φ

) )(
ak

bk

)
=

∑
k

(a†
k, b†

k )	nk	σ
(

ak

bk

)
, (13)

where σ (α) is the α-Pauli matrix, n(0)
k = −2 cos ( 2πk

N ) cos (φ) (prefactor of the identity operator), n(x)
k = −2td cos ( 2πk

N ) − tv , and
n(z)

k = 2 sin ( 2πk
N ) sin (φ).

After diagonalization, the Hamiltonian reads as follows:

H =
∑

k

(η†
+,k η

†
−,k )

(+�k − 2 cos
(

2πk
N

)
cos (φ) 0

0 −�k − 2 cos
(

2πk
N

)
cos (φ)

)(
η+,k

η−,k

)
, (14)

where �k = {4 sin2 ( 2πk
N ) sin2 (φ) + [2td cos ( 2πk

N ) + tv]2}1/2 and η±,k are linear combinations of ak, bk .
Depending on the parameter values in the Hamiltonian the system acquires different symmetries. We define hk = 	nk	σ . From

the Fourier description of Eq. (13), it is clear that σ xhkσ
x = h−k , corresponding to the time-reversal symmetry for any parameter

values of the Hamiltonian.
At φ = π

2 , one can obtain two additional symmetries as σ zhkσ
z = −h−k and σ yhkσ

y = −hk , corresponding to the particle-
hole symmetry and chiral symmetry, respectively. More information about the properties of the Hamiltonian and the implications
of the chiral symmetry can be found in Appendix C.

At this value of the flux and in the “strong” coupling limit where the vertical coupling vanishes, tv = 0, and the diagonal
coupling td = 1, the Hamiltonian will be simplified as

H = −
∑

n

(b†
nan+1 + a†

nbn+1 + a†
n+1bn + b†

n+1an) − i
∑

n

(a†
nan+1 + b†

n+1bn − a†
n+1an − b†

nbn+1)

=
∑

k

(
a†

k, b†
k

)( 2 sin
(

2πk
N

) −2 cos
(

2πk
N

)
−2 cos

(
2πk
N

) −2 sin
(

2πk
N

)
)(

ak

bk

)
=

∑
k

(
η

†
+,k, η

†
−,k

)(2 0
0 −2

)(
η+,k

η−,k

)
, (15)

where the “Bloch” basis η±,k is defined as

(
η+,k

η−,k

)
=

(
cos

(
πk
N − π

4

)
sin

(
πk
N − π

4

)
sin

(
πk
N − π

4

) − cos
(

πk
N − π

4

)
)(

ak

bk

)
. (16)

As elaborated in Appendix C in the limit of no coupling
between the first and last site of the lattice the chiral modes
have a simplified version given by the left and right modes as
shown in Eq. (C4). To investigate the evolution of these states
and the implication of the chiral edge symmetry on the particle
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transport in the next part we focus on just one building block
of this lattice, i.e., a four-site plaquette.

A. Four-site plaquette

Based on what is described in Appendix C, the Hamil-
tonian of the Creutz ladder at strong coupling when φ =
π
2 , tv = 0, and td = 1 and with the definitions of an =
a1, an+1 = a2, bn = a3 and bn+1 = a4 takes the following
form:

H = −(a†
3a2 + a†

1a4 + a†
2a3 + a†

4a1)

− i(a†
1a2 − a†

2a1 + a†
4a3 − a†

3a4)

= 2(η†
+η+ − η

†
−η−), (17)

Moreover, from Eq. (C1) the Bloch states are determined
as

η+ = 1
2 [e−iπ/4(a2 − a3) + eiπ/4(a1 − a4)],

η− = 1
2 [eiπ/4(a2 + a3) + e−iπ/4(a1 + a4)], (18)

where the zero modes are obtained from Eq. (C4) as

η0,L = 1√
2

(eiπ/4a1 + e−iπ/4a3),

η0,R = 1√
2

(e−iπ/4a2 + eiπ/4a4). (19)

Having the eigenstates of the Hamiltonian, it is straight-
forward to study the evolution of the single-particle state as
below:

|+〉 = η
†
+|0〉, |−〉 = η

†
−|0〉, |L〉 = η

†
0,L|0〉,

|R〉 = η
†
0,R|0〉, | + (t )〉 = e−i2t |+〉, | − (t )〉 = ei2t |−〉,

|L(t )〉 = |L〉, |R(t )〉 = |R〉. (20)

Note that the second line is based on the fact that |+〉 and
|−〉 have the energies of +2 and −2, respectively, and |L〉 and
|R〉 are the zero-energy states.

Let us assume that the system is initialized at one-particle
state in the mode 1 as |a1〉 = a†

1|0〉. The creation operator
reads

a†
1 = eiπ/4

2
η

†
+ + e−iπ/4

2
η

†
− + eiπ/4

√
2

η
†
0,L. (21)

Therefore, the single-particle state evolves as

|a1(t )〉 = eiπ/4

2 e−i2t |+〉 + e−iπ/4

2
ei2t |−〉 + eiπ/4

√
2

|1〉

= 1

2
{[1 + cos (2t )]|a1〉 + i[1 − cos (2t )]|a3〉

+ sin (2t )(|a2 + i|a4〉)}. (22)

As can be seen, the behavior of the occupations of the
four modes has a clear signature of chirality. Starting from the
single-particle state |a1〉 at initial time, the population of this
state decreases and gets transferred to the state of |a2〉 + i|a4〉.
Finally, the whole population appears in |a3〉. Figure 3 shows
the population of these modes as a function of time where a
clockwise transport is clear. In other words, the time evolution
of the population has some direction (clockwise in this case)

FIG. 3. Temporal dependence of the local occupations of the
modes involved in a plaquette configuration. This behavior has the
signature of chirality. Starting with an initial state |a1〉, the population
of this state decreases while increases |a2〉 + i|a4〉 population and
finally the whole population appears in |a3〉.

which leads to complete population transfer from |a1〉 to |a3〉,
deterministically.

As experimentally it is easier to initiate the system in a co-
herent state rather than a number state it is worth investigating
the behavior of the system when initiated in such a coherent
state. Assume that the system starts from the coherent state of
the first mode in |α1n〉 satisfying a1n|α1n〉 = α1n|α1n〉. Given
|α1(t = 0)〉 = e−1/2ea†

1 |0〉 and the decomposition in terms of
eigenmodes a†

1 as in Eq. (21) we get

|α1(t )〉 = e−1/2 exp

(
1 + cos (2t )

2
a†

1

)
exp

(
sin (2t )

2
a†

2

)

× exp

(
i
1 − cos (2t )

2
a†

3

)
exp

(
i
sin (2t )

2
a†

4

)
|0〉.

(23)

As can be seen, the intensity of the coherent states, i.e.,
|αi(t )|2 follows identically the same time evolution as the one
given by the single-particle state derived in Eq. (22). This
results indicate that the time evolution of both Fock state as
well as the coherent state in a four-site plaquette of a bosonic
Creutz ladder show a similar temporal behavior.

B. Loss and interaction effect

One of the major sources of discrepancy between our
model and the real cavity is loss. In reality, the photons in
a cavity have a finite lifetime which leads to a loss for all
the modes. Assuming the same loss κ for all the nodes, the
dynamics of the open system can be approximated with a
Hamiltonian as:

H = −
∑

n

(b†
nan+1 + a†

nbn+1 + a†
n+1bn + b†

n+1an)

− i(a†
nan+1 + b†

n+1bn − a†
n+1an − b†

nbn+1)

− i
κ

2
a†

nan + b†
nbn. (24)

Following the same procedure as for the conservative case
and treating the system in the Fourier basis it is straight-
forward to show that the frequencies of the Hk± are modi-
fied as ±2 − iκ/2. Therefore, the Hamiltonian of a four-site
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FIG. 4. Time evolution of two bosonic excitations in a Creutz
plaquette. The two limiting cases (no interaction U = 0, and hard-
core boson U → ∞) can be characterized by a shift in the frequency
of the time-dependent probability of finding the two excitations in
the same place at a later time t .

plaquette will be modified as

Hl =
(

2 − i
κ

2

)
η

†
+η+ +

(
2 − i

κ

2

)
η

†
−η−. (25)

This means for a system initiated at one-particle state of
|a1〉, the time evolution of Eq. (22) follows the modified form
of

|a1(t )〉 = eiπ/4

2
e−i(2−iκ/2)t |+〉 + e−iπ/4

2
e−i(−2−iκ/2)t |−〉

+ eiπ/4

√
2

e−κ/2t |1〉 = |a1(t )〉lossless e−κ/2t . (26)

The last equation simply implies that modes of a lossy
plaquette have the same dynamics as a closed system with an
additional general loss due to the finite lifetime of the photons
in a real cavity. Therefore, the edge mode is still present in the
system and the chiral transport of the particle from the first to
the third node can still be observed if κπ � 4.

One of the main features of implementing complex hop-
ping terms, in a setup built out of transmons is the possibility
to modify the on-site energies of the local degrees of freedom.
This fact allows us to enter in phases of interacting quantum
many-body systems in the presence of a magnetic field such
as the fractional quantum Hall effect. As a final analysis, we
show that the on-site energy already changes the dynamics
of a Creutz plaquette, noticeably. For this purpose, we study
the dynamics of two bosonic excitations in the plaquette in
two relevant limits, when there is no on-site interaction in the
bosonic field, i.e., a free bosonic field (U = 0), and where the
on-site interaction is so strong that the system is described
by a hard-core boson limit, i.e., only the empty and single-
occupied state are allowed, so we can characterize the local
Hilbert space by a two-level system (U → ∞).

As a case of study, we investigate the two-particle dy-
namics in the plaquette, loading the system with two excita-
tions in the first and third sites, i.e., |ψ (t = 0)〉 = â†

1â†
3|0〉 =

|11, 13〉 and compute the probability of finding them in the
first and third sites at a later time t . In the non-interacting
limit, we get an analytic expression for this probability,
|〈11, 13|11, 13(t )〉|2 = [cos4 (t ) + sin4 (t )]2, that can be com-
pared with the interacting case where the shift in the frequency
signals the non-trivial interactions between the particles (see

Fig. 4). This shift and the interpolation between both limits
can be measured with modern quantum technologies in a
circuit QED platform. This indicates the presence or absence
of interaction in a plaquette and can be scaled up to a whole
ladder or even to a two-dimensional (2D) lattice.

IV. CONCLUSION

In this work we propose a method based on modulating
the on-site flux of coupled transmons in a lattice to induce a
non-zero phase for the coupling term between adjacent sites.
The phase of the coupling can be broadly tuned as a func-
tion of the modulation frequency, modulation depth, and site
energies. The possibility of having arbitrary complex-valued
couplings opens a door to simulating several important mod-
els.

As an example, we chose the bosonic Creutz ladder as an
important Hamiltonian arising in several disciplines ranging
from high-energy physics to condensed matter. The important
ingredients of this Hamiltonian, the complex-valued cou-
plings, can be realized based on the proposed scheme. Several
interesting features arise in such a lattice, including topolog-
ical and chiral edge modes. To investigate the behavior we
focused our study and numerical modeling on one plaquette
of the lattice, i.e., a four-site building block. As shown by our
calculations chiral edge modes appear in this configuration
where a directional population transfer along the plaquette
edges can be observed for both the single-particle as well as
the coherent states. Moreover, we propose an experimental
scheme based on parametric coupling between cavity modes.
By controlling the phase and frequency of the pump, one
can engineer the Hamiltonian of a four-site Creutz ladder.
This experimental proposal is readily achievable with state-
of-the-art circuit QED technology. To measure the directional
transfer, one measures the intermodal scattering when the
cavity is excited at one mode and power is detected at another.
By measuring the asymmetry of the scattering parameters,
say the transmission from node 1 to 2 versus node 2 to 1,
the directional transfer can be inferred. This technique is, for
instance, clearly demonstrated in Ref. [28].

The method presented in this paper is extendable and
applicable for 2D lattices where the hopping term between
adjacent lattice sites can be easily manipulated. Moreover, by
employing the inherent nonlinearity of the transmon Hamil-
tonian, the proposal can be extended even further to include
on-site interactions as well. By changing the ratio of the
on-site interaction energy U , and the coupling J , the behavior
of a lattice in phase space can span all the way from a
Mott insulator (for large ratio) to the superfluid phase (for
small ratio). The proposed method combined with the existing
circuit QED technology makes these systems one of the most
promising and versatile candidates for simulating rich physics
from condensed-matter systems to high-energy problems.
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APPENDIX A: TRANSMON QUBIT

A transmon is one of the basic elements of the circuit
QED consisting of a capacitor in parallel with a Josephson
junction [13,32,33]. Due to the inherent nonlinearity of the
latter element, the harmonicity of an LC-circuit oscillator is
removed and an effective two-level atom is obtained. The
following expression gives the Hamiltonian of a transmon,
which consists of a capacitor C and a Josephson junction with
energy EJ :

ĤNLC = Q̂2

2C
− EJ cos

(
φ̂

φ0

)
, (A1)

where Q̂ and φ̂ are charge and flux operators satisfying the
canonical commutation relation of [φ̂, Q̂] = ih̄.

For small flux we can Taylor expand the nonlinear term
cos(φ̂/φ0) around zero and rewrite the Hamiltonian in the
form of ĤNLC = Ĥ0 + Ĥ1 as follows:

Ĥ0 = Q̂2

2C
+ EJ

φ2
0

φ̂2

2
= Q̂2

2C
+ φ̂2

2L
, (A2a)

Ĥ1 = −EJ

[
cos

(
φ̂

φ0

)
− 1 + φ̂2

2φ2
0

]
. (A2b)

In the above equations Ĥ0 is the Hamiltonian of a harmonic
oscillator with capacitance C and an effective inductance L =
φ2

0/EJ . The remaining operator Ĥ1 is the nonlinear part of the
Hamiltonian.

We define the normalized, dimensionless charge q̂ and flux
ϕ̂ as

q̂ = Q̂
4
√

h̄2C/L
, ϕ̂ = φ̂

4
√

h̄2L/C
. (A3)

Substituting these normalized variables in the harmonic
oscillator Hamiltonian, the linear part Ĥ0 could be rewritten
as the canonical form of a quantum harmonic oscillator as

Ĥ0 = h̄ω0

2
(q̂2 + ϕ̂2) = h̄ω0

(
â†â + 1

2

)
, (A4)

where ω0 = √
1/LC is the resonance frequency of the linear

LC circuit, and the bosonic operators â and â† are the annihi-
lation and creation operators defined as ϕ̂ = (â + â†)/

√
2 and

q̂ = i(â† − â)/
√

2.
Although in this paper we do not require the nonlinear be-

havior of the Josephson junction, for sake of completeness we
briefly derive various interaction terms that can be obtained
with a transmon qubit.

In a typical transmon qubit the Josephson junction en-
ergy exceeds the capacitor energy, i.e., EJ � EC . Therefore,

ε = √
8EC/EJ  1, and one can express cos(φ̂/φ0) in terms

of normal ordered operator products as

cos

(√
ε

2
(â + â†)

)
= e− ε

4

∞∑
n,m;n+m=even

(− ε
2

) n+m
2

n!m!
(â†)nâm.

(A5)

Keeping the number-conserving operators only, the nonlin-
ear part of Hamiltonian takes the following form:

Ĥ1 � h̄δω0â†â − h̄�â†â†ââ + h̄�′

6
â†â†â†âââ + · · · . (A6)

In this last equation the frequency shift and interaction
energies are given by

δω0 =
√

2EJEC (1 − e− ε
4 ), � = EC

2
e− ε

4 , �′ = ε

3
�.

(A7)

The harmonic frequency shift can be absorbed into a redef-
inition of ω0, i.e., ω0 + δω0 − � → ω0, and for low excitation
numbers the transmon Hamiltonian would be simplified as

ĤTr � h̄ω0â†a − h̄�(â†â)2. (A8)

APPENDIX B: COUPLED TRANSMONS

Consider a circuit of two transmons coupled together via
a capacitor CJ and an inductor LJ as shown in Fig. 1(a). To
distinguish the variables, we use (φl , ql ) and (φr, qr ) for the
flux and charge of the left and right transmons, respectively.
The Lagrangian of the full circuit is given by

L =
[

Cl

2
φ̇2

l + EJl cos

(
φl

φ0

)]
+

[
Cr

2
φ̇2

r + EJr cos

(
φr

φ0

)]

+ CJ

2
(φ̇r − φ̇l )

2 − 1

2LJ
(φr − φl )

2, (B1)

where Cη and EJη denote the capacitance and Josephson-
junction energy of each subcircuit, η = l, r, and LJ and CJ are
the inductance and capacitance of the coupling branch. We
introduce the node charges Qη = ∂L

∂φ̇η
fulfilling commutation

relations [φ̂η, Q̂η′ ] = ih̄δη,η′ . By introducing a vector notation
	̂φ ≡ (φ̂l , φ̂r ) and 	̂Q ≡ (Q̂l , Q̂r ), the equivalent Hamiltonian
can be written as

Ĥ = 1

2
	̂Q C−1 	̂QT −

[
EJl cos

(
φ̂l

φ0

)
+ EJr cos

(
φ̂r

φ0

)]

+ 1

2LJ
(φ̂r − φ̂l )

2, (B2)

where C is the capacitance matrix given by the following
equation:

C =
(

Cl + CJ −CJ

−CJ Cr + CJ

)
. (B3)
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Equation (B2) can be further simplified to get the followingHamiltonian for the two coupled transmons:

Ĥ =
[

1

2

Cr + CJ

CrCl + CrCJ + ClCJ
Q̂2

l − EJl cos

(
φ̂l

φ0

)
+ 1

2LJ
φ̂2

l

]
+

[
1

2

Cl + CJ

CrCl + CrCJ + ClCJ
Q̂2

r − EJr cos

(
φ̂r

φ0

)
+ 1

2LJ
φ̂2

r

]

+ CJ

CrCl + CrCJ + ClCJ
Q̂rQ̂l − 1

LJ
φ̂rφ̂l . (B4)

Without inductive coupling, the first two terms in each bracket are Hamiltonians of two transmons with modified shunt
capacitors, and the last term describes the interaction Hamiltonian via capacitive coupling. As can be seen, both of the capacitive
and inductive couplings have the same form and only the sign of the interaction is different. Therefore, without loss of generality
one can consider one type of coupling only, and the results are properly applicable to the other type via duality. In what follows
we focus on the inductive case, i.e., CJ = 0.

The presence of the coupling inductance LJ modifies the effective inductance of each transmon, so the new natural frequency
of each qubit is given as

ω0l/r =
√

1

Cl/r

(
1

LJ
+ EJl/r

φ2
0

)
= 1√

Cl/rLt
l/r

. (B5)

By using the normalized variables as in Eq. (A3) and their corresponding bosonic operators, the coupled qubits dynamics is
determined via the following Hamiltonian:

Ĥ = h̄ω0l

(
â†

l âl + 1

2

)
+ h̄ω0r

(
â†

r âr + 1

2

)
− h̄

2

√
Lt

l L
t
r

L2
J

√
ω0lω0r (âr â†

l + â†
r âl ). (B6)

Notice that, in the last parentheses, we dropped the non-particle-conserving terms of âr âl + â†
r â†

l , which is a valid assumption
in the rotating wave approximation (RWA) limit. This final equation corresponds to the Hamiltonian of two harmonic oscillators
on the left and right (i.e., the first-order approximation of the qubit) while the last term describes the hopping between those
qubits.

Now assume that the Josephson junction energy of each transmon is harmonically modulated as EJl,r (t ) = E0
Jl,r +

eJl,r cos(ωMt + �0l,r ). Plugging this form back into Eq. (B6) and assuming a weak modulation, i.e., eJl,r  E0
Jl,r

, the Hamiltonian
of the two-coupled qubits would be modified as

Ĥ = h̄ω0l

(
1 + 1

2

eJlLJ

φ2
0 + E0

l LJ
cos(ωMt + �0l )

)(
â†

l âl + 1

2

)
+ h̄ω0r

(
1 + 1

2

eJrLJ

φ2
0 + E0

r LJ
cos(ωMt + �0r )

)(
â†

r âr + 1

2

)

− h̄

2

√
Lt

l L
t
r

L2
J

√
ω0lω0r (âl â

†
r + âr â†

l ). (B7)

Since the modulation has a second-order effect on the
coupling term, those corrections have been ignored in the
first-order calculation which is the main scope of this paper.

APPENDIX C: BOSONIC CREUTZ LADDER

The chiral symmetry of the Creutz ladder is briefly dis-
cussed in the main text. In this Appendix these features will
be elaborated in more detail.

As discussed in the main text at φ = π
2 , the Hamiltonian

possesses the chiral symmetry as σ yhkσ
y = −hk , for all k

within the first Brillouin zone. The chiral symmetry implies
that any eigenstate |E〉 with energy E has a counterpart
| − E〉 = σ y|E〉 with energy −E . Therefore, in a chiral-
symmetric system, the eigenstates come in pairs at ±E .

For a state at E = 0, the state is its own partner, i.e., |E =
0〉 = σ y|E = 0〉.

To explicitly construct this zero mode, we use the low-
energy continuum theory. We consider the limit |tv| < |td | <

1 and focus on the low-energy states near 2πk
Nα

= π
α

+ q,

with lattice spacing α and small q. In real space q → −i∂x

and H → −ivF σ z∂x + mσ x, with vF = 2α and m = 2td −
tv . To describe the zero mode we allow m(x) to vary spa-
tially with a kink such that m(x → +∞) > 0 and m(x →
−∞) < 0. A zero-energy solution H |E = 0〉 = 0 can be con-
structed by considering eigenstates | ± y〉 of σ y with eigen-
value ±1, giving ∂xψ0,±(x) = ±m(x)

vF
ψ0,±(x). Integrating the

first-order equation leads to a single normalizable solution

as ψ0,−(x) = e− ∫ x
0 dx′ m(x′ )

vF . This solution is a localized wave
function at x = 0 with exponentially decaying tails on the
sides.

Due to the periodicity of the Hamiltonian in k, all integers
k within (−N/2,+N/2] define a closed curve in the (n(x)

k −
n(z)

k ) plane whose features strongly depend on the ratio R =
tv/td . If |R| < 2, this curve will enclose the origin (0,0) where
the Hamiltonian is strictly zero. On the other hand, if |R| >

2 the curve will not enclose this point and is deformed to a
trivial one. When |R| < 2, the number of times the closed
curve winds around the origin defines a topological invariant
called the winding number ν.
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The Bloch states of the periodic lattice is defined in Eq. (16) of the main text in Fourier space. To find the maximally localized
“Wannier” basis, which basically is the Bloch states representation in real space, we can employ the Fourier transform as(

η+,n+1/2

η−,n+1/2

)
= 1√

N

∑
k

ei2πk(n+1/2)/N

(
cos

(
πk
N − π

4

)
sin

(
πk
N − π

4

)
sin

(
πk
N − π

4

) − cos
(

πk
N − π

4

)
)(

ak

bk

)

= 1

2

(
e−iπ/4(an+1 − bn) + eiπ/4(an − bn+1)

−eiπ/4(an+1 + bn) − e−iπ/4(an + bn+1)

)
.

(C1)

One can show that the center of the maximally localized Wannier function gives the Berry phase of the band [34]. For the
lower energy mode we have

|η−,n+1/2〉 = 1√
N

∑
k

ei2πk(n+1/2)/N |η−,k〉, 〈η−,n+1/2|m̂|η−,n+1/2〉 = − i

2π

∑
k

〈η−,k| ∂

∂k
|η−,k〉 = φBerry

2π
, (C2)

where m̂ is the position operator in the discrete space of the lattice.
Moreover, the expectation value of the position of the Wannier functions can be found by using Eq. (C1), giving the relation

between the Wannier and the lattice operators we have

〈η−,n+1/2|m̂|η−,n+1/2〉 = [e−iπ/4(〈an+1| + 〈bn|) + eiπ/4(〈an| + 〈bn+1|)] m̂

4
[eiπ/4(|an+1〉 + |bn〉) + e−iπ/4(|an〉 + |bn+1〉)]

= 1

4
[〈an+1|(n + 1)|an+1〉 + 〈bn|n|bn〉 + 〈an|n|an〉 + 〈bn+1|(n + 1)|bn+1〉] = n + 1

2
. (C3)

Therefore, the Berry phase of the lower band in the Creutz ladder is φBerry − 2πn = π .
From the definition of the Wannier operators in terms of the original operators we can see that, in the absence of the coupling

between the first and the last site of the ladder, there are two zero modes described via the following relations:

η0,L = 1√
2

(eiπ/4a1 + e−iπ/4b1), η0,R = 1√
2

(e−iπ/4aN + eiπ/4bN ). (C4)

While η0,L is only dependent on the left side of the ladder, η0,R only depends on the right-most branch.
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