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Spatially entangled photon-pair generation using a partial spatially coherent pump beam
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We demonstrate experimental generation of spatially entangled photon pairs by spontaneous parametric down-
conversion (SPDC) using a partial spatially coherent pump beam. By varying the spatial coherence of the pump,
we show its influence on the down-converted photon’s spatial correlations and on its degree of entanglement, in
excellent agreement with theory. We then exploit this property to produce pairs of photons with a specific degree
of entanglement by tailoring of the pump coherence length. This work thus unravels the fundamental transfer
of coherence occurring in SPDC processes, and provides a simple experimental scheme to generate photon
pairs with a well-defined degree of spatial entanglement, which may be useful for quantum communication and
information processing.
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Quantum entanglement is considered as one of the most
powerful resources for quantum information. In this respect,
pairs of photons are the simplest system showing genuine
quantum entanglement in all their degrees of freedom: spatial,
spectral, and polarization [1–3]. Most of the fundamental
experiments and related applications are implemented using
polarization-entangled photons. Examples range from the first
test of Bell’s inequality [4] to the recent development of
long-distance quantum communication systems [5]. In the last
years, there has been renewed interest in continuous variable
entanglement between transverse position and momentum of
photon pairs [6]. Indeed, their infinite-dimensional Hilbert
space holds high potential for developing powerful infor-
mation processing algorithms [7] and secured cryptography
protocols [8]. Furthermore, spatially entangled photon-pair
sources are at the basis of many quantum imaging approaches,
including ghost imaging [9], sub-shot-noise [10] and sub-
Rayleigh imaging [11]. All these quantum applications cru-
cially rely on properties of the down-converted photons. In
this respect, their degree of entanglement is a fundamental
parameter that generally defines the power of the quantum-
based technique. As concrete examples, it sets the information
bound in high-dimensional quantum communication systems
[12] and the spatial resolution in certain quantum imaging
schemes [13]. However, most apparatus used to produce en-
tangled pairs are not flexible and adapting pair characteristics
to specific use is generally a challenging task. In this work,
we propose an experimental approach based on spontaneous
parametric down-conversion (SPDC) with a partial spatially
coherent pump beam to produce entangled photon pairs with
tunable degree of spatial entanglement.

SPDC is the most popular technique to produce spatially
entangled photon pairs. In its conventional form, a coherent
Gaussian beam of light (i.e., the pump beam) illuminates
a nonlinear crystal (χ2 nonlinearity) that produces pairs of
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photons in accordance with energy and momentum con-
servation [14]. Alternatively, SPDC was also demonstrated
using light emitting diodes (LED) [15,16] and continuous-
wavelength multimode diode laser [17,18] excitations. Prop-
erties of down-converted photons, including their degree of
entanglement, are set by the crystal parameters and the pump
beam properties [19–23]. During this process, coherence
properties of the pump beam get entirely transferred to those
of the two-photon field [24–26]. Interestingly, none of these
experimental studies consider the use of a nonperfectly spa-
tially coherent pump beam to produce photon pairs, with the
notable exception of the recent work of Ismail et al. [26]
that investigates polarization entanglement between photons.
Theoretically, the link between spatial coherence properties
of the pump and the degree of entanglement of the down-
converted field has been precisely established in [27,28]. In
this work, we first investigate experimentally the influence of
the pump spatial coherence on the correlation properties of
the spatially entangled photon pairs. We then demonstrate the
dependency of the degree of entanglement, characterized by
the Schmidt number [29–31], with the coherence of the pump.
Finally, we exploit this effect to generate photon pairs with
a well-defined degree of entanglement by manipulating the
transverse coherence length of the pump.

Figure 1(a) shows the apparatus used to produce spa-
tially entangled photon pairs. A partially coherent beam of
light is generated by intercepting the propagation path of a
continuous-wavelength (405 nm) Gaussian laser beam with
a (rotating or not) random diffuser (plastic sleeve). Blue
photons interact with a tilted nonlinear crystal of β-barium
borate (BBO) to produce infrared pairs of photons by type-I
SPDC. At the output of the crystal, transverse momentum k
of photons is mapped onto pixels of an electron multiplied
charge coupled device (EMCCD) camera by a Fourier-lens
imaging system ( f3). The camera allows direct intensity mea-
surements, providing conventional intensity images (black-
red colorscale), and correlation intensity measurements (blue-
red colorscale), giving the joint probability distribution � of
photon pairs. The technique used to measure � is described
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FIG. 1. (a) Light emitted by a diode laser (λp = 405 nm) is
scattered by a static thin diffuser (plastic sleeve) and illuminates
a nonlinear crystal of β-barium borate (BBO) to produce spatially
entangled pairs of photons by type-I SPDC. Spectral filters at 810 ±
10 nm select near-degenerate photons. Lenses f1 = 150 mm and
f2 = 200 mm image an iris onto the crystal surface. When the
diffuser is maintained fixed, the crystal is thus illuminated by a static
speckle pattern (b). White scale bar corresponds to 700 μm. Mo-
menta of photons are imaged onto an EMCCD camera by imaging
the far field via a f3 = 40-mm lens, and a direct intensity image (c) is
recorded by accumulating photons onto an EMCCD camera sensor.
Sum-coordinate projection of the joint probability distribution of
photon pairs (d) shows a coincidence speckle pattern that reveals
the transfer of coherence between the pump and the down-converted
fields. Black-red and blue-red colorbars correspond, respectively, to
intensity and intensity correlation measurements.

in [32] and relies on two main assumptions that are verified
in this experiment: The power of the continuous-wavelength

pump laser is sufficiently low to neglect higher-order gener-
ation processes (∼100 mW) and cross-talks between pixels
of the camera are negligible (see Appendix E). Note that this
detection technique directly removes the correlation back-
ground due to accidental photon coincidences (i.e., coinci-
dences between photons from different pairs). Throughout
this work, � is visualized using two types of bidimensional
projections: sum-coordinate and X+-coordinate projections.
A sum-coordinate projection represents the probability of
detecting the two photons with symmetric momentum rel-
ative to their mean k1 + k2 and a X+-coordinate projection
represents the joint probability of detecting one photon with
momentum ky1 (kx1 can take any possible values) and its twin
with momentum ky2 and kx2 = −kx1 [33–35] (see Appendix
F for more details on the detection technique and the �

projections).
When the diffuser is maintained static, the crystal is illu-

minated by a speckle pattern [Fig. 1(b)]. A direct intensity
image [Fig. 1(c)] is acquired by photon accumulation on
the camera sensor and shows a homogeneous structure, very
similar to the one observed without diffuser [Fig. 2(a1)]. How-
ever, when measuring the joint probability distribution � with
the EMCCD camera, its projection along the sum-coordinate
diagonal shows a central peak surrounded by a speckle pattern
[Fig. 1(c)]. The presence of this speckle together with the
absence of any spatial structure in the direct intensity image
demonstrates that first-order spatial coherence of the pump
field (i.e., intensity speckle pattern) gets entirely transferred
to second-order coherence of the down-converted field (i.e.,
coincidence speckle pattern).

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

FIG. 2. Without diffuser, the direct intensity image (a1) shows a well-defined disk and the X+-coordinate projection of � (a2) shows a
strong antidiagonal. An element (ky1, ky2) of the X+-coordinate projection corresponds to the joint probability of detecting one photon at
k1 = (kx1 , ky1 ), with no constraints on kx1 , together with the second photon at k2 = (−kx1 , ky2 ). The strong antidiagonal is a signature of
momentum conservation between photons produced by SPDC with a fully coherent collimated pump beam. When a rotating random diffuser
composed by one layer of plastic sleeve is introduced in the apparatus, edges of the direct intensity disk gets blurred (b1) and the width of the
antidiagonal on the X+-coordinate projection increases (b2). When one photon is detected at k, its twin has now a high probability to arrive on
an area that spreads around −k. This area broadens when the coherence length of the pump is decreased by using rougher random diffusers, as
shown on direct images (c1) and (d1) and X+-coordinate projections (c2) and (d2) measured using, respectively, two layers of plastic sleeve and
three layers. Correlation measurements are performed by acquiring a total number of images between 4 × 105 (no diffuser) and 2 × 107 (three
layers) with an exposure time set between 5 and 30 ms. Black-red and blue-red colorbars correspond, respectively, to intensity and intensity
correlation measurements.
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As a consequence, spatial incoherence properties of the
pump must be retrieved in the momentum correlations of
the pairs. When the diffuser is rotated faster than the camera
integration time, the pump acts as a partial spatially coherent
beam. Using a Gaussian-Schell model for the pump beam [36]
and a Gaussian approximation for the down converted field
[37,38] (see Appendix A) � is written as

�(k1, k2) ∼ exp

(
−σ 2

r |k1 − k2|2
2

)
exp

(
−|k1 + k2|2

2σ 2
k

)
.

(1)
The position-correlation width σr only depends on the crystal
length L and the pump frequency λp as σr = √

αLλp/(2π )
(α = 0.455 [39]). The momentum-correlation width σk de-
pends on the pump beam waist ω and its correlation length

c as

σk =
√

1


2
c

+ 1

4ω2
. (2)

For a given crystal, varying the coherence properties of the
pump beam (i.e., waist and correlation length) modifies the
spatial structure of the two-photon wave function and its asso-
ciated joint probability distribution. In particular, decreasing
the correlation length at fixed waist induces an increase of the
momentum-correlation width: When one photon of a pair is
detected at k, the area of maximum probability detection for
its twin is centered at −k and spreads as σ 2

k ∼ 
−2
c . This effect

is shown in Fig. 2. For a perfectly coherent pump beam (no
diffuser), the direct intensity image [Fig. 2(a1)] shows a well-
defined homogeneous disk and the X+-coordinate projection
of � [Fig. 2(a2)] shows a strong antidiagonal. Such a strong
antidiagonal is a clear signature of transverse momentum con-
servation in SPDC using a collimated pump beam. When a ro-
tating diffuser is used (single layer of plastic sleeve), the pump
beam becomes partially coherent which results in a blurring
of the edges of the direct intensity disk [Fig. 2(b1)] and an
increase of the diagonal width in the X+-coordinate projection
[Fig. 2(b2)]. Broadening of momentum correlations with the
decrease of pump spatial coherence shows very well when
using rougher diffusers, respectively, made by superimposing
two layers of plastic sleeves [Figs. 2(c1) and 2(c2)] and three
layers [Figs. 2(d1) and 2(d2)]. A quantitative analysis of this
effect is provided in Fig. 3. On the one hand, values of σk

are determined by fitting sum-coordinate projection of � (see
Appendix B) by a Gaussian model [37,38]. On the other
hand, values of 
c are measured by removing the crystal and
Fourier imaging the pump beam directly onto the camera
(see Appendix D). The linear regression of σ 2

k = f (1/
2
c )

[Fig. 3(a)] returns a slope value of 0.8 ± 0.3. This result is
in good accordance with Eq. (2) and its underlying theoretical
model [27,28] (fitting details in Appendix E).

Not only does partial coherence influence momentum cor-
relations between pairs, but it also modifies their degree of
entanglement, that can be quantified by the Schmidt number.
For a mixed state, it is defined as the minimum Schmidt
number of the pure states composing it [30,31]. In this work,
it is estimated from the Schmidt number K of a virtual pure
two-photon state generated by a pump beam of diameter σ−1

k
using the formula K = 1/4[1/(σrσk ) + σrσk]2 [29]. Indeed,

(a)

(b)

FIG. 3. (a) Momentum-correlation width σk is represented in the
function of coherence length of the pump 
c. Values on the graph
correspond to four different measurements performed (0) without
diffuser, (1) with one layer of plastic sleeve, (2) two layers, and (3)
three layers. Linear regression fits experimental values and returns a
slope of 0.8 ± 0.3 (blue dashed line and shaded area), in accordance
with Eq. (2). (b) Schmidt number K is represented in the function
of the coherence length of the pump 1/
c (black circles). The
blue dashed curve and the shaded area are a semiempirical model
obtained by combining results of the linear regression of σk with the
theoretical formula of σr and the K formula [29]. The red dashed
curve is a pure theoretical prediction obtained by inserting known
experimental parameters (crystal and pump properties) into Eq. (3).

the partially coherent pump beam can be modeled as a mixture
of many small coherent beams of diameter σ−1

K that each
produce a two-photon pure state. The mixed state can then
be written as an incoherent superposition of these pure states
and its Schmidt number inferred from their minimum Schmidt
number value. Experimentally, while σk is determined using
the apparatus described previously (Fig. 1), values of σr

are measured using a different experimental configuration in
which the output surface of the crystal is imaged onto the
EMCCD camera (see Appendix C). Figure 3(b) shows that K
decreases with the reduction of the correlation length 
c (black
points). Experimental data shows a good agreement with a
semiempirical model (blue dashed line). It is computed from
the K formula [29] by using the results of the linear regression
in Fig. 3(a) (σ 2

k ∼ 1/
2
c) together with the theoretical formula

of σr (see Appendix E).
Values of K can also be estimated only from known exper-

imental parameters (crystal and pump laser properties) using
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the theoretical model [Eq. (1)],

Kth = 1

4

⎡
⎣ 2ωlc

√
2π√

αLλp
(
l2
c + 4ω2

) +
√

αLλp
(
l2
c + 4ω2

)
2ωlc

√
2π

⎤
⎦

2

, (3)

with L ≈ 0.9 mm (crystal thickness), λp ≈ 405 nm (pump
wavelength), α = 0.455 [39], and ω ≈ 125 μm (pump waist).
Kth is shown in Fig. 3(b) as a red dashed line. We observe an
order of magnitude agreement between theoretically expected
values of K and those measured experimentally. Knowing the
characteristics of the crystal and the pump therefore allows
predicting reasonably well the degree of entanglement of
the source. For a given crystal, we show that manipulating
the pump coherence using rotating random diffusers enable
the deterministic control of the degree of entanglement in the
two-photon field generated.

The future of quantum optical technologies depends on our
capacity to detect [32,40,41] and manipulate photons [42,43],
but it also crucially relies on our ability to generate photons
with properties adapted to specific application. In our work,
we show how to produce spatially entangled photons with a
specific degree of entanglement by controlling the spatial co-
herence of the pump beam with rotating random diffusers. For
this, we investigated the fundamental transfer of coherence
between the pump and the down-converted field and showed
a good agreement with the theory [27,28]. This novel source
may play an important role in free-space quantum commu-
nications, since it has been recently shown in theory that a
two-photon field is less susceptible to atmospheric turbulence
when it was generated by a partial spatially coherent beam
[44]. In this respect, the use of a spatial light modulator in
place of the random diffusers will be the next natural step
to enable tailoring entanglement in real time and use it as a
tunable parameter to produce quantum states that are optimal
for a given protocol and strength of turbulence. Incoherent
two-photon illumination could also play an important role in
optical imaging to improve resolution [45]. Finally, this work
may have technological impact as it paves the way towards the
development of cheap and compact photon-pair sources using
light emitting diodes as pump beams [46].

Note added in proof. Recently, a new work on spatially
entangled photon-pair generation by a spatially incoherent
pump was reported by Zhang et al. [47].
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APPENDIX A: THEORETICAL MODEL

1. Joint probability distribution in momentum-space �(k1, k2)

As demonstrated in [28] [Eq. (B8)], the joint probability
distribution �(k1, k2) for a partial spatially coherent pump
beam is written as

�(k1, k2) ∼ |χ̃ (|k1 − k2|2)|2Ṽ (k1 + k2, k1 + k2), (A1)

FIG. 4. Sum-coordinate projections of � measured with (a) no
diffuser, (b) one-layer rotating diffuser, (c) two layers, and (d) three
layers. Values of σk are estimated in each case by measuring the
width of the central spot using a Gaussian model [37,38]. White scale
bar corresponds to 0.05 μm−1.

where χ̃ is the phase-matching function and Ṽ is the trans-
verse momentum-correlation function of the pump field. In
our work, we use two distinct approximations.

(1) A Gaussian approximation [37,38] for χ̃ :

|χ̃ (|k1 − k2|2)|2 ∼ exp

[
−σ 2

r |k1 − k2|2
2

]
, (A2)

where σr = √
αLλp/(2π ), λp is the pump wavelength, L the

crystal length, and α = 0.455 [39].
(2) A Gaussian-Schell approximation [36] for the partial

spatially coherent pump beam, which results in Ṽ being
written as

Ṽ (k, k′) ∼ exp

[
−ω2|k − k′|2

2
− |k + k′|2

8σ 2
k

]
, (A3)

where σk = √
1/l2

c + 1/(4ω2), with lc the coherence length of
the pump and ω its waist.

Combining Eqs. (A2), (A3), and (A1) leads to Eq. (1).

2. Sum-coordinate projection of �(k1, k2)

The sum-coordinate projection of �, denoted P�
+ , is calcu-

lated by integrating Eq. (1) along k1 + k2 and takes the simple
form,

P�
+ (k1 + k2) ∼ exp

(
−|k1 + k2|2

2σ 2
k

)
. (A4)

APPENDIX B: σk MEASUREMENTS AND UNCERTAINTIES

Values of σk are determined by fitting sum-coordinate
projections of � with a Gaussian function [Eq. (A4)]. Figure 4
shows images of the sum-coordinate projections measured
with (a) no diffuser, (b) one-layer rotating diffuser, (c) two
layers, and (d) three layers.
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TABLE I. Values of σk , σ 2
k ,�σk , �σ 2

k , �N . Units are μm−1.

No diffuser One layer Two layers Three layers

�N 2.23 × 10−2 4.09 × 10−2 6.65 × 10−2 8.90 × 10−2

σk 2.4 × 10−3 9.8 × 10−3 1.7 × 10−2 2.2 × 10−2

σ 2
k 5.6 × 10−6 9.7 × 10−5 2.9 × 10−4 4.97 × 10−4

�σk 7.8 × 10−5 1.0 × 10−3 2.2 × 10−3 4.2 × 10−3

�(σ 2
k ) 3.7 × 10−7 2.0 × 10−5 7.6 × 10−5 1.8−4

�σk/σk 3% 10% 12% 18%
�(σ 2

k )/σ 2
k 6% 20% 24% 36%

The fitting model takes the form,

f (x, y) = ae
− (x−b)2+(y−c)2

2σ2
k + d, (B1)

where {a, b, c, d, σk} are fitting parameters. Uncertainties
�σk originate from the presence of noise �N in the sum-
coordinate images that alter the precision of the fit. The link
between �N and �σk is given by the value of grad[ f ] at
the position (x, y) = (σk/

√
2, σk/

√
2), giving the following

formula:

�σk = σke1/2

a
�N. (B2)

Values of �N are measured from the sum-coordinate images.
Then, uncertainties �(σ 2

k ) are calculated by error propaga-
tion: �(σ 2

k ) = 2σk�σk . All values are reported in Table I.

APPENDIX C: CORRELATION POSITIONS AND σr

MEASUREMENTS

1. Position correlations

Position correlations between pairs of photons are ob-
served by imaging the output surface of the crystal and
measuring the joint probability distribution �, as shown in
Fig. 5(a). The diffuser is maintained static and is the same as
the one used in Fig. 1. The direct intensity image [Fig. 5(b)]
is acquired by photon accumulation on the camera sensor
and shows a speckle structure. When measuring the joint
probability distribution � with the EMCCD camera [32,40],
its projection along the minus-coordinate diagonal shows
a central peak [Fig. 5(c)]. The minus-coordinate projection
image represents the probability of detecting two photons
from a pair separated by a (oriented) distance r1 − r2 [33,34].
The strong peak at the center is a clear signature of the strong
correlations in position between pairs of photons.

2. σr measurements using partially coherent pump beams

Values of σr are determined using the experimental setup
described Fig. 5(a). The same rotating diffusers (respectively,
composed by one, two, and three layers of plastic sleeve)
as those of Figs. 2 and 3 are used to generate partially
coherent pump beams with different correlation lengths. In-
terestingly, Fig. 6 shows that neither the direct intensity
images [Figs. 6(a1)–6(d1)] nor the X−-coordinate projections
[Figs. 6(a2)–6(d2)] depend on the coherence properties of the
pump beam. The X−-coordinate image represents the joint
probability of detecting one photon at position y1 (x1 can

(a)

(b) (c)

FIG. 5. (a) Light emitted by a diode laser (λp = 405 nm) is
scattered by a static thin diffuser (plastic sleeve) and illuminates
a nonlinear crystal of β-barium borate (BBO) to produce spatially
entangled pairs of photons by type-I SPDC. Spectral filters at
810 ± 10 nm select near-degenerate photons. Lenses f1 = 150 mm
and f2 = 200 mm image an iris onto the crystal surface. When
the diffuser is maintained fixed, the crystal is thus illuminated by
a static speckle pattern. White scale bar corresponds to 700 μm.
Positions of photons at the output surface of the crystal are imaged
onto an EMCCD camera via a single-lens imaging system f3/2 =
20 mm. The direct intensity image (b) recorded by accumulating
photons onto an EMCCD camera sensor is a speckle pattern. Minus-
coordinate projection of the joint probability distribution of photon
pairs (c) shows a strong peak at its center that reveals the strong
correlations between positions of the pairs.

take any possible values) and its twin with momentum y2 and
x2 ≈ x1 (see Sec. F). The strong diagonal is a clear signature
of position correlations: Both photons are always produced at
the same position in the crystal during the SPDC process, and
this property does not depend on the coherence properties of
the pump beam.

Similarly to the calculations of section A and those of [28],
the use of a Gaussian approximation [37,38] and a Gaussian-
Schell model [36] allows writing the joint probability distri-
bution �(r1, r2) as

�(r1, r2) ∼ exp

(
−|r1 − r2|2

2βσ 2
r

)
exp(−2ω2|r1 + r2|2), (C1)

where ω is the pump beam waist and β = (α + α−1)/α (α =
0.455 [39]). The minus-coordinate projection of �, denoted
P�

− , is calculated by integrating Eq. (D3) along r1 − r2 and
takes the simple form,

P�
− (r1 − r2) ∼ exp

(
−|r1 − r2|2

2βσ 2
r

)
. (C2)

The minus-coordinate projection images acquired for dif-
ferent correlation lengths are shown in Figs. 6(a3)–6(d3).

3. σr measurements and uncertainties

Values of σr are determined by fitting minus-coordinates
projections of � with a Gaussian function [Eq. (C2)]. Fig-
ures 6(a3)–6(d3) show images of the minus-coordinate pro-
jections measured with (a) no diffuser, (b) one-layer rotating
diffuser, (c) two layers, and (d) three layers. The fitting model
takes the form,

f (x, y) = ae
− (x−b)2+(y−c)2

2σ2
r + d, (C3)
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(a3) (b3) (c3) (d3)

(d2)

FIG. 6. Direct intensity of the down-converted field at the crystal plane is imaged onto the EMCCD camera using the experimental
configuration described in Fig. 5(a) without diffuser (a1), with a rotating diffuser composed by one layer of plastic sleeve (b1), two layers
(c1), and three layers (d1). All intensity patterns are homogeneous and identical. When the camera is used to measure the joint probability
distribution �, the X−-coordinate projection of � (see Sec. F) camera shows a very strong diagonal in all four cases: without diffuser (a2),
with one layer of plastic sleeve (b2), two layers (c2), and three layers (d2). These projections show that position correlations do not depend
on the coherence properties of the pump. Minus-coordinate projections of � taken without diffuser (a3), with one layer (b3), two layers (c3),
and three layers (d3) show the same peak at their center, which highlights the strong correlations between positions of the pairs. Fitting these
images with the model of Eq. (C2) allows determining values of σr reported in Table II.

where {a, b, c, d} are fitting parameters. Uncertainties �σr

originate from the presence of noise �N in the minus-
coordinate images that alter the precision of the fit. The link
between �N and �σr is given by the value of grad[ f ] at
the position (x, y) = (σr/

√
2, σr/

√
2), giving the following

formula:

�σr = σre1/2

a
�N. (C4)

Values of �N are measured from the minus-coordinates im-
ages. All measured values are reported in Table II.

TABLE II. Values of σr , �σr , �N . Units are μm.

No diffuser One layer Two layers Three layers

�N 1.86 × 10−2 1.25 × 10−2 1.17 × 10−2 1.57 × 10−2

σr 18.6 20.2 17.2 17.2
�σr 0.6 0.4 0.3 0.4
�σr/σr 3% 2% 2% 2%

APPENDIX D: PUMP BEAM ANALYSIS AND COHERENCE
LENGTH �c MEASUREMENT

Properties of the pump beam, namely its waist ω and
correlation length 
c, are measured using the two experimental
configurations described in Figs. 7(a) and 7(b).

1. Intensity distribution of the pump beam in the crystal plane

The intensity distribution of the pump beam in the crystal
plane is measured using the experimental configuration de-
scribed in Fig. 7(b). Figures 7(c)–7(f) show results of four
acquisitions performed without diffuser [Fig. 7(c)], with a
rotating diffuser composed by one layer of plastic sleeve
[Fig. 7(d)], two layers [Fig. 7(e)], and three layers [Fig. 7(f)].
Since the diffusers rotate with a period much shorter than
the acquisition time of the camera, the distribution of pump
intensity at the crystal plane is homogeneous and does not
depend on the coherence properties of the pump.

2. Beam waist and correlation length measurements

Measurements of ω and 
c are performed using the ex-
perimental configuration of Fig. 1(a). In this case, the pump
field at the crystal plane is Fourier imaged onto the EMCCD
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(a)

(c)

(g) (h)

(d)

(b)

(e)

(i)

(f)

(j)

FIG. 7. (a) Apparatus used to Fourier image the pump field at the crystal plane onto the camera. It is similar to the one shown in
Fig. 1(a) without the crystal and all the filters. (b) Apparatus used to image the pump field at the crystal plane onto the camera. It is similar to
the one shown in Fig. 5(a) without the crystal and all the filters. Using configuration (b), intensity distribution of the pump beam at the crystal
plane is imaged on the camera without diffuser (c), with a rotating diffuser composed of one layer of plastic sleeve (d), two layers (e), and
three layers (f). All intensity patterns are homogeneous and identical. Using configuration (b), intensity distribution of the pump beam in the
momentum space is imaged on the camera without diffuser (g), with a rotating diffuser composed of one layer of plastic sleeve (h), two layers
(i), and three layers (j). Without diffuser, the pump beam is focused onto the camera and the width of the peak σp0 is used to estimate the beam
waist ω = 1/σp0 ≈ 125 μm. When rotating diffusers are inserted, the peak broadens and its width σp provides an estimation of the correlation

length 
c using the formula 
c = 2/
√

σ 2
p − σ 2

p0
. Values of 
c are reported in Table III.

camera via lens f3. Figures 7(g)–7(j) show four direct inten-
sity images acquired, respectively, without diffuser [Fig. 7(g)],
with a rotating diffuser composed by one layer of plastic
sleeve [Fig. 7(h)], two layers [Fig. 7(i)], and three layers
[Fig. 7(j)]. For a perfectly coherent pump, the width of the
focus (denoted σp0 ) in Fig. 7(g) is inversely proportional to
the beam waist ω,

ω = 1

σp0

. (D1)

Fitting this intensity distribution by Gaussian model provides
an estimation of ω ≈ 89 μm. For partially coherent pump
beams, intensity distributions in the Fourier domain shown in
Figs. 7(h)–7(j) are written as

Ip(kp) ∼ exp

[
−|kp|2

2σ 2
p

]
, (D2)

where σp = 2
√

1/
2
c + 1/(4ω2) (Gaussian-Schell model

[36]). Fitting these distributions with Eq. (D2) allows
determining σp in each case and calculating 
c with the

formula,


c = 2√
σ 2

p − σ 2
p0

. (D3)

Values of 
c are reported in Table III.

APPENDIX E: DETAILS OF THE FITTING IN FIG. 3

1. Linear fitting in Fig. 3(a)

Experimental data in Fig. 3(a) are fitted with a linear model
of the form,

f
(
1/
2

c

) = a


2
c

+ σ 2
k

(

−2

c = 0
)
, (E1)

where a is a fitting parameter and σ 2
k (
−2

c = 0) is the value
of σ 2

k measured at 
−2
c = 0. Uncertainty �a originates mostly

TABLE III. Values of σp in μm−1 and 
c in μm.

No diffuser One layer Two layers Three layers

σp 8.0 × 10−3 1.8 × 10−2 3.5 × 10−2 5.0 × 10−2


c +∞ 122 59 41
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from the uncertainty of the value of σ 2
k (
−2

c = 6 × 10−4) mea-
sured with three diffusers (36% error). The link between �a
and �(σ 2

k (
−2
c = 6 × 10−4)) is then given by the following

formula:

�a = �
(
σ 2

k

(

−2

c = 6 × 10−4
))


2
c, (E2)

which gives a = 0.8 and �a = 0.3. The blue shaded area in
Fig. 3(a) corresponds to values located between the two linear
curves: fmax = a+�a


2
c

+ σ 2
k (
−2

c = 0) + �(σ 2
k (
−2

c = 0)) and

fmin = a−�a

2

c
+ σ 2

k (
−2
c = 0) − �(σ 2

k (
−2
c = 0)).

2. Theoretical curves in Fig. 3(b)

Figure 3(b) shows values of K measured experimentally
(black points) together with a semiempirical model (blue
dashed line and blue shaded area) and a theoretical model (red
dashed curve). The semiempirical model is computed using
the formula K = 1/4[1/σkσr + σkσr]2 with the following.

(1) The results of the linear regression in Fig. 3(a): σ 2
k =

0.8/
2
c + σ 2

k (
−2
c = 0).

(2) A value of σr calculated using the theoretical formula:
σr = √

Lλp/2π ≈ 7.6 μm.
Borders of the blue shaded area correspond to the two

extreme cases for the slope coefficient 0.8 + 0.3 = 1.1 and
0.8 − 0.3 = 0.5.

The theoretical model (red dashed curve) is computed from
Eq. (3) with L = 0.9 mm (crystal thickness), λp = 405 nm
(pump wavelength), α = 0.455 [39], and ω = 125 μm (pump
waist).

APPENDIX F: IMAGE PROCESSING

1. Measurement process

We use an EMCCD Andor Ixon Ultra 897 to measure the
joint probability distribution � of spatially entangled photon
pairs using a technique described in [32]. The camera was
operated at −60◦C, with a horizontal pixel shift readout rate
of 17 Mhz, a vertical pixel shift every 0.3 μs, and a vertical
clock amplitude voltage of +4V above the factory setting.
When the camera is illuminated by photon pairs, a large set of
images is first collected using an exposure time chosen to have
an intensity per pixel approximately 5 times larger than the
mean value of the noise (∼171 gray values), which correspond
to exposure time values ranging between 5 ms and 30 ms.
No threshold is applied. The joint probability distribution of
photon pairs � is calculated by processing the set of images
using the formula provided in [32]:

�i j ∼ 〈xix j〉 − 〈xi〉〈x j〉, (F1)

where i and j denote two pixels positions, 〈xix j〉 is the average
value of the product between gray values xi and x j of pixels

i and j, and 〈xi〉 is the average gray value at pixel i. This
technique is applicable in this work because the following as-
sumptions are satisfied: (i) Cross-talk between camera pixels
is negligible; (ii) the pump laser is operating above threshold
to ensure a Poisson distribution of pump photons; (iii) pump
laser power is low enough (∼100 mW) to ensure that a >2
photon generation process in the crystal is negligible.

2. Projections of the joint probability distribution

In our experiment, � takes the form of a four-dimensional
matrix containing (75 × 75)2 ∼ 108 elements, where 75 × 75
corresponds to the size of the illuminated region of the camera
sensor. The information content of � is analyzed using four
types of projections.

(1) The sum-coordinate projection, defined as

P�
+ (k+) =

∑
k

�(k+ − k, k). (F2)

It represents the probability of detecting pairs of photons
generated in all symmetric directions relative to the mean
momentum k+.

(2) The minus-coordinate projection, defined as

P�
− (r−) =

∑
r

�(r− + r, r). (F3)

It represents the probability for two photons of a pair to be
detected in coincidence between pairs of pixels separated by
an oriented distance r−.

(3) The X+-coordinate projection, defined as

P�
X+(ky1 , ky2 ) =

∑
kx

�(ky1 , ky2 |kx,−kx ) (F4)

=
∑

kx

�
(
ky1 , ky2 , kx,−kx

)
∑

kx1 ,kx2
�

(
ky1 , ky2 , kx1 , kx2

) . (F5)

It represents the probability of detecting one photon with
momentum ky1 (with no constraints on kx1 ) given that the other
is detected with a momentum ky2 and kx2 = −kx1 (symmetric
columns).

(4) The X−-coordinate projection, defined as

P�
X−(y1, y2) =

∑
x

�(y1, y2|x, x + 1) (F6)

=
∑

x

�(y1, y2, x, x + 1)∑
x1,x2

�(y1, y2, x1, x2)
. (F7)

It represents the probability of detecting one photon at po-
sition y1 (with no constraints on x1) given that the other
is detected with a momentum y2 and x2 = x1 + 1 (adjacent
columns).
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