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The establishment of quantum communication links over a global scale is enabled by satellite nodes. We
examine the influence of the Earth’s atmosphere on the performance of quantum optical communication channels
with emphasis on the downlink scenario. We derive the geometrical path length between a moving low Earth
orbit satellite and an optical ground station as a function of the ground observer’s zenith angle, his geographical
latitude, and the meridian inclination angle of the satellite. We show that the signal distortions due to regular
atmospheric refraction, atmospheric absorption, and turbulence have a strong dependence on the zenith angle.
The observed saturation of transmittance fluctuations for large zenith angles is explained. The probability
distribution of the transmittance for slant propagation paths is derived, which enables us to perform the security
analysis of decoy-state protocols implemented via satellite-mediated links.
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I. INTRODUCTION

The recent success in practical realization of quantum state
transfer between satellites and ground stations [1–11] has
established the cornerstone of future global quantum com-
munication. This achievement is especially impressive in the
view of how fast the quantum communication over free-space
quantum links reached its maturity. During only three decades
the free-space quantum communication reached distances of
7600 km [9], while starting from proof-of-principle demon-
stration over a 30-cm quantum channel [12].

An acceleration of the development of satellite-based quan-
tum technologies is caused by the need to establish global
secure communication networks. The present classical public
key cryptography is based on mathematical problems that
admit no efficient solutions with currently available technolo-
gies. However, its security is vulnerable to quantum computer
hacking attacks, in particular, those based on Shor’s factoring
algorithm [13]. Therefore, the future realization of quantum
computers threatens the currently used classical cryptographic
protocols to become insecure and hence useless.

Conversely, quantum key distribution (QKD) establishes
unconditional secure cryptographic keys between two distinct
parties [14,15]. The security of QKD is based on some funda-
mental principles of quantum physics such as the no-cloning
theorem [16], Bell correlations [17], uncertainty relations for
the most of continuous-variable protocols [18–24], etc. Iron-
ically, while providing the security of QKD, the no-cloning
theorem at the same time puts limitations on possible com-
munication distances due to inability to amplify a quantum
signal. One way to bring quantum communication to global
scale is the use of satellites. Satellite-mediated QKD networks
could span large communication distances by linking widely
separated ground stations [9,10].

The setup of the satellite-mediated quantum links is a
demanding task. The following problems must be overcome

for successfully establishing a feasible quantum communi-
cation with satellites: the relative motion of the communi-
cation parties [25–27], the influence of gravity [28,29], the
clock synchronization problem [30,31], acquisition, tracking,
and pointing issues with moving platforms [32–34], the in-
fluence of background noise [35–37], to name just a few.
For low Earth orbiting (LEO) satellites, the communication
time is limited to a few minutes [38,39] and this puts ad-
ditional tight bounds on communication security. Finally,
the Earth’s atmosphere contributes significantly to the loss
budget and to the deterioration of the quantum signal due to
diffraction, scattering, absorption, and atmospheric turbulence
[40–42].

The common feature of the aforementioned issues is the
strong dependence of disturbing factors on the relative posi-
tion of the moving satellite and the ground station. For the
observer at the ground station the instantaneous position of the
satellite is given by the zenith angle, i.e., by the angle between
the satellite and the vertical direction. The dependence of
atmospheric disturbances on the zenith angle has attracted the
attention of scientists since ancient times. Already Ptolemy
(100–175 A.D.) noticed that the atmospheric refraction dis-
places the apparent position of celestial bodies toward the
zenith [43]. Such a regular refraction is caused by the altitude
variation of the atmospheric refractive index. It influences
the precision of satellite measurements and is responsible
for apparent elongation of celestial objects, mirages, green
flashes on setting sun, to name just a few [44]. Other types
of disturbances, such as intensity scintillation [45,46] and
image dancing [40,47], arise from turbulent fluctuations of
the atmospheric refractive index. The strength of these fluc-
tuations varies with altitude and hence its influence on optical
light propagation is also a function of the zenith angle. Thus,
the examination of the zenith angle dependence of relevant
characteristics is of immense importance for the establishing
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of robust and reliable optical quantum communication links
via the satellites.

In this article we address several aspects of ground-to-
space communication connected with Earth’s atmosphere.
We focus on quantum links between optical ground stations
(OGS) and LEO satellites. Orbital periods of LEO satellites
are of 120 min or less, leading to short passage times of the
OGS, with which communication is aimed to be established.
Depending on the inclination angle of the satellite orbit, the
expected communication time varies in the range of 8–16 min.
This communication time window is actually narrower due
to the time needed for satellite acquisition. Additionally,
satellites with trajectories of small inclination angle could
lose the contact with the OGS because of natural barriers,
while OGS telescopes could disconnect communication with
satellites at small zenith angles due to mechanical construc-
tion of telescope mounts. Under these circumstances, it is
desirable to start the acquisition procedure when the satellite
appears on the horizon. In this case, quantum communication
could be established already at small satellite elevation angles
(large zenith angles). Since the disturbing influence of the
atmosphere grows with the growth of the zenith angle, the
zenith angle dependence is crucial for the strict analysis of
quantum satellite communication links.

In the following we provide a systematic analysis of
quantum communication channels with the inclusion of dis-
turbance effects due to geometrical elongation of communi-
cation links, atmospheric regular refraction, extinction, and
turbulence. In our consideration we focus on the zenith angle
dependence of the associated signal losses. Additionally, the
finite communication time puts severe restrictions on secure
quantum key length in satellite-mediated communication.
Careful estimation of the loss budget of quantum channels
is needed to estimate the lower bound of the key length and
its rate. In this article we perform the security analysis of a
decoy-state protocol that is commonly used in practice.

This article is structured as follows. In Sec. II we re-
view some basic communication scenarios with satellites and
in Sec. III A we obtain the geometrical distance between
a ground station and a satellite. We focus on atmospheric
refraction effects in Sec. III B. The regular extinction of the
optical signal due to scattering and absorption on air particles
is discussed in Sec. III C. In Sec. IV, the dependence of optical
field correlation functions on the zenith angle for the optical
field propagating in turbulence is studied. These functions
allow us to calculate the scintillation index, the mean beam-
spot radius, and the beam-wandering variance. In Sec. V, we
derive the probability distribution of the transmittance that
characterizes satellite-mediated atmospheric quantum chan-
nels. An application of the developed theory to the security
analysis of decoy-state protocols is discussed in Sec. VI.
A summary and conclusions are given in Sec. VII.

II. SATELLITE-MEDIATED COMMUNICATION LINKS

A low Earth orbit (LEO) is an orbit around Earth with
an altitude above the Earth’s surface H ranging from 160 to
2000 km and an orbital period between about 80 and 130 min.
The fast movement of the satellite puts certain restrictions
on the communication performance with the ground stations

FIG. 1. Typical communication scenarios of optical ground sta-
tions (OGS) with satellites S via uplink (d) and downlinks (a)–(c).
The subscript i = 1, 2, 3 in the notation Si refers to the successive
positions of the satellite. After the satellite makes one orbital revolu-
tion along its orbit, (i) its new position S3 as well as orbit (ii) appear
inclined for the ground observer OGS2. This apparent change in the
orbit inclination is due to the Earth’s rotation.

and limits the communication window to several minutes.
The duration of the communication session depends on OGS’
geographical position, the duration of acquisition procedure,
the presence of natural obstacles along the optical path, etc.
The signal-to-noise ratio for satellite-mediated optical link
is connected with the length of the optical path between
the communication parties and hence it is related with the
shape of the satellite orbit and its relative position to the
ground-station communication party. Moreover, atmospheric
refraction bends the optical ray paths, while the atmospheric
turbulence corresponds to various random refraction and
diffraction phenomena. In this section we remind the reader of
some basic geometrical concepts of satellite-mediated optical
links and leave the detailed analysis of some aforementioned
aspects to the following sections.

Figure 1 shows the generic communication experiment
with classical or quantum light. Two ground stations OGS1

and OGS2 establish the communication links with satellite
S shown in successive moments of time. The instantaneous
positions of the satellite at times t1, t2, and t3 are denoted
as S1, S2, and S3, respectively. The satellite has a polar orbit
which passes over the Earth’s polar regions from south to
north. Moreover, since orbits of most LEO satellites have
vanishingly small ellipticity, we will consider circular orbits
in the following. Initially, at time t1, the orbit, denoted as
(i), passes through the meridian plane of OGS2 but has some
inclination to meridian plane of OGS1. At later time t2, the
satellite approaches the horizon, makes one full orbit revo-
lution, and appears at the point S3. For a ground observer1

the apparent satellite trajectory changes from (i) to (ii) during
this single revolution period due to the Earth’s rotation. In the
following, we will also assume that the observer’s parallax
due to the Earth’s rotation during one communication session
can be neglected. This is justified if the flight time over the

1In the following, we use the word ”observer” in general referring
to the communication party located in the optical ground station.
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observer horizon is much smaller than the satellite orbiting
period.2

The satellite zenith trajectory that passes through the ob-
server’s meridian plane can be considered as the most favor-
able for establishing a communication link and is called as the
“best pass” by some authors [42]. Indeed, in this case the link
length is smaller compared to the link’s lengths for inclined
satellites. However, in many practical cases the mechanical
mount of the OGS receiver or sender telescopes prevents one
to use the whole advantage of the link that can lead to the
interruption of the communication process near small zenith
angles of the observer [39]. In such cases, the tradeoff exists
between the use of optimal propagation path and the duration
of communication session. In this context, the analysis of
communication with the satellites moving along the inclined
orbits is important.

Depending on the location of the source, we distinguish
downlink [paths (a)–(c) in Fig. 1] and uplink [path (d)]
communication scenarios. A downlink geometry is favorable
for optical signal transmission since the optical beam starts
to propagate in vacuum until it enters the atmosphere. As a
consequence, the transmitted beam shows smaller diffraction-
induced broadening and small beam wandering due to refrac-
tion on turbulent atmospheric inhomogeneities. This is the
reason why the majority of quantum optical experiments are
being performed in downlink configuration [5,8,9,39]. Under
comparable atmospheric conditions, an uplink communica-
tion shows inferior performance due to the influence of at-
mospheric turbulence already on early stages of optical signal
transmission. Theoretical studies [42] reported the reduction
in received key bits being less than one order of magnitude
compared to downlink scenario. However, an uplink for quan-
tum communication purposes poses the following advantages:
simple design of satellite missions or use of already launched
satellites [1], relaxed requirements on data storage and pro-
cessing equipment, variability of quantum light sources and
their accessibility for maintenance and repair [34]. In this
article, we will focus primarily on downlink communication
scenarios.

III. REGULAR LOSSES OF SATELLITE-MEDIATED LINK

An optical beam undergoes diffraction-induced broadening
while propagating in free space. The amount of broadening
depends on propagation path length and whether beam is
focused, collimated, or divergent. Since the receiver collects
the incoming light with the aid of finite-aperture device such
as telescope, only a fraction of the signal reaches the detector.
For fixed aperture size, the signal losses due to truncation on
the aperture will increase with the increase of the propagation
path. Moreover, absorption and scattering on atmospheric
gases and aerosols leads to the degradation of the signal-to-
noise ratio as well.

2Strictly speaking, for satellites with small altitudes above the
ground and for observers located at small geographical latitudes,
the corrections due to the aforementioned parallax effects should be
included.
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FIG. 2. Geometry of the communication configuration shown in
the plane that passes through the Earth’s center C, the observer’s
location O, and the satellite position S (a). The same communication
link OS is shown in its relative position to the observer’s meridian
plane ABOC (b). The cross section of the trajectory with the cone
of angle 2Z and side SO yields the associated link OS′ of the same
length.

In this section we consider the effects leading to the
regular diffraction-induced and extinction losses in satellite-
mediated links. By the word “regular” we refer to effects
that occur in a systematical manner. Among such effects
we distinguish purely geometric optical path elongation due
to increase of relative positions of communication parties.
The regular losses in this case depend on the geographical
location of the OGS, on the type of the satellite orbit, and on
such characteristics as the satellite altitude, orbit inclination
angle, and the satellite declination angle to the Equator plane.
Additionally, regular atmospheric refraction bends the light
rays, increasing the optical propagation path and contributing
to loss budget. This effect is especially pronounced if the
satellite is positioned close to the observer horizon. Finally,
we discuss the signal loss due to atmospheric absorption and
scattering.

A. Slant range

We consider the communication scenario with an orbiting
satellite which has been described in the previous section and
derive the length of the line segment connecting the ground
observer and the satellite. This purely geometric length re-
ferred as the slant range does not account for any elongation
effects due to atmosphere and depends on the geographical
location of the observer and on the parameters of the satellite
orbit.

In the following, we consider a perfect polar satellite orbit
that passes through both north and south poles. For simplicity,
we assume that the orbit is perfectly circular with the radius
R = R⊕ + H , where R⊕ = 6371 km being the Earth’s radius
and H being the satellite altitude above the ground. The slant
range between the OGS and the satellite is obtained then
from simple trigonometric considerations [see Fig. 2(a) and
Appendix A]

L(Z ) =
√

H2 + 2HR⊕ + R2⊕ cos2 Z − R⊕ cos Z, (1)

where Z is the zenith angle lying between the vertical direc-
tion of the observer and the direction pointing on the satellite.
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In Appendix A we show that for the satellite orbits inclined
to the observer meridian plane on angle �ι, the zenith angle
varies in the range Z ∈ [Z�ι

min, π/2] with

Z�ι
min = arccos[

√
1 − cos2 � sin2 �ι], (2)

where � is the geographical latitude of the observer. Con-
sequently, the slant range (1) varies from the minimal value

L(Z�ι
min) at zenith to the maximal value

√
(R⊕ + H )2 − R2⊕ at

the observer’s horizon.
In order to relate the orbit inclination angle �ι with the

characteristics of the relative motion of the satellite and the
observer, we restrict our attention to the communication sce-
nario shown in Fig. 1 for the OGS2. If the satellite is initially
at zenith of the observer (indicated as S1 in Fig. 1) and moves
toward the observer’s horizon along the zenith trajectory (i),
after one satellite orbiting period Tsat it reappears at S3 and
moves along the inclined trajectory (ii). The trajectory (ii) is
then inclined to the observer’s meridian plane due to the Earth
rotation. After nth satellite revolution the inclination angle �ι

between the satellite orbit plane and the observer meridian is
given by

�ι = n
Tsatv⊕

R⊕
, (3)

where v⊕ = 1669.8 km/h is the speed of Earth’s rotation at
the Equator. We refer the orbit with zero inclination �ι = 0
as to the zenith orbit. In this case, the orbit plane coincides
with the observer meridian. In our convention, �ι is positive
(negative) if the satellite flies westward (eastward) of the
observer meridian plane.

In order to get some impression of the communication
geometry with the satellite with the inclined orbit, we consider
two satellite positions S and S′ at successive times and the ob-
server at O as shown in Fig. 2(b). These positions are chosen
in such way that the slant ranges OS and OS′ are equal as well
as the corresponding zenith angles, i.e., �SOB = �S′OB =
Z . Let us choose the plane ABOC as the observer meridian.
Then, the instantaneous position of the satellite is given by
both its zenith and azimuth angles. The latter is the angle
between the projected segment that connects the observer with
the satellite and the reference vector in the meridian plane
pointed toward the north pole. Clearly, for the inclined orbit
at geographical latitudes different from the polar or equatorial
ones, the positions S and S′ have the same zenith angle but
different azimuth angles.

One can imagine that the points S and S′ lie on the cross
sections of the satellite trajectory with the right circular cone
whose height is aligned along the observer’s zenith and the
apex coincides with O [cf. the segment of the cone OASS′ in
Fig. 2(b)]. For inclined orbits that pass above the observer’s
horizon, each cone of angle 2Z crosses the trajectory in
two points if Z ∈ (Z�ι

min, π/2] and in one point if Z = Z�ι
min.

Due to this symmetry we are able to characterize the length
of geometrical link between the observer and the satellite
by Eq. (1) with Z ∈ [Z�ι

min, π/2] and ignore the detailed in-
formation on the corresponding azimuth values. The latter
assumption is well justified if the detailed position of satellite
is determined by a tracking system that aligns automatically
the sender and the receiver telescopes. In this case, the

observer coordinate system is associated with the plane OSC
[cf. Fig. 2(a)] that rotates around the axis OC. Therefore, for
optical communication with the automatical azimuth angle
tracking the relevant link information is incorporated in the
zenith angle dependence of the relevant quantities. It is worth
to note that the cross section of the cone of given Z with other
satellite trajectory determines the slant ranges of the same
length. For example, link AO on Fig. 2(b) for the zenith orbit
AB is equivalent to the links SO and S′O which results in equal
propagation properties of light along these links.

B. Regular refraction

In this section we calculate the elongation of the slant
range due to atmospheric refraction. Atmospheric refraction
phenomena are based on the fact that Earth’s atmosphere has
an optical refractive index that is different from its value
in vacuum. Furthermore, the value of the refractive index
varies with the altitude, geographical location, and meteo-
rological conditions and hence refraction depends on space
and time variables. We refer to refraction phenomena that
systematically occur in the atmosphere as to regular refraction
[44,48–50]. Regular refraction changes with altitude in a
theoretically predictable fashion. Time variation of regular
atmospheric refraction has rather seasonal behavior even for
large zenith angles [51] and can be ignored.

Due to a spatial variability of the refractive index with
altitude, the light coming from a distant source and reaching
the ground observer propagates along a curved path rather
than a straight line. As a consequence, the signal from distant
objects arrives under the apparent zenith angle Za rather
than under the true zenith angle Z . Both zenith angles are
related as

Za = arcsin

(
1

n0
sin Z

)
, (4)

where n0 = 1.000 27 is the air refractive index near the
ground. We consider the effect of regular refraction on elon-
gation of the slant range given L(Z ).

Earth’s atmosphere can be viewed as a spherically stratified
medium with specific distribution of refractive-index values
within each strata. In order to obtain this distribution, we
use the so-called standard atmosphere model [52]. The stan-
dard atmosphere is an idealized steady-state representation of
Earth’s atmosphere that gives values of atmospheric pressure,
temperature, and other parameters for altitudes up to 1000 km.
The altitude-dependent values of the air refractive index can
be found using the distributions of temperature and pressure
according to the Edlén equation [53,54]. We distinguish 10
atmospheric layers above the ground and within each layer
we approximate the latitude dependence of refractive index in
linear manner (for details see Appendix B) If we denote the
latitude of ith layer upper bound as Hi, the linear path within
the layer is determined as

Li = {(R⊕ + Hi−1)2 + (R⊕ + Hi )
2

− 2(R⊕ + Hi−1)(R⊕ + Hi ) cos[�(Z, ri )]}1/2. (5)
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FIG. 3. Optical path length elongation factor due to atmospheric
refraction as a function of observer’s apparent Za and true Z zenith
angles for several LEO satellite orbits with altitudes H .

The rest of the total optical path lies in the vacuum and is
given by

L11 = {(R⊕ + H10)2 + (R⊕ + H )2

− 2(R⊕ + H10)(R⊕ + H ) cos[�(Z, r10)]}1/2. (6)

The angles � and � determine the relative position of in-
coming and refracted light rays within each layer and are
complex functions of observer’s zenith angle Z and the so-
called refraction integral ri [44]. The explicit expressions for
the lengths (5) and (6) are given in Appendix C [cf. Eqs. (C19)
and (C21)].

It is worth to note that it was assumed that the paths’
segments Li in the form (5) are obtained with the assumption
that they are linear within each atmospheric layer. This is
approximately true for the standard atmosphere model, which
gives the minimal ray curvature of 4.4R⊕ near the ground at
Za=90◦ (cf. Ref. [55] for empirical formulas). This allows
us to neglect the ray curvature effects in the following. This
is of course an idealization and for specific daytime and
meteorological conditions the accounting for ray curvature
effects turns out to be important [56].

Figure 3 shows the path elongation factor due to atmo-
spheric refraction,

εr (Za) = 1

L(Za)

11∑
i=1

Li(Za), (7)

where L(Za) is given by Eqs. (1) and (4) and Li(Za) are defined
by Eqs. (5) and (6). Alternatively, Eq. (7) can be written as
a function of the true zenith angle, i.e., εr (Z ). The behavior
of εr as a function of the apparent zenith angle Za starts
to deviate from εr (Z ) while approaching the horizon due to
larger optical density along the propagation path near the
horizon. The elongation factor diminishes with the growth of
orbit altitude. This is due to the increase of the propagation
path in the vacuum with the increase of satellite altitude. For
further convenience we give a polynomial fit to the elongation
factor as a function of the apparent zenith angle (in degrees)

for the orbit with H = 780 km:

εr (Za) = 1 + 1.818908×10−4Z2
a

− 4.066061×10−5|Za|3 + 3.813573×10−6Z4
a

− 1.920844×10−7|Za|5 + 5.710429×10−9Z6
a

− 1.032821×10−10|Za|7 + 1.117105×10−12Z8
a

− 6.644358×10−15|Za|9 + 1.672433×10−17Z10
a .

(8)

Finally, the slant range that accounts the elongation due to
atmospheric refraction reads as

Lr (Za) = εr (Za)L(Za), (9)

where L is given by Eq. (1).

C. Regular extinction

Another source of losses that can be considered as regular
or deterministic losses are associated with molecular and
aerosol scattering. For the horizontal atmospheric links, the
extinction factor is χext = exp[−βext (h)L], where βext (h) is
the extinction coefficient due to molecular absorption and
scattering at given height h above sea level and L is the
distance between the communication parties. Clearly, for ele-
vated links this formula should be modified in order to include
the variation of the extinction coefficient with the height. If the
slant range to the satellite is given by Eq. (9) we can write

χext = exp

[
−
∫ Lr (Za )

0
dL′βext (L

′)
]
, (10)

where the observer is assumed to be located at sea level and
L′ = h sec Za. Since the value of the extinction coefficient
depends on the number density N (h) of air constituents at
given height h, its altitude dependence can be written as

βext (L
′) = β0

ext
N (L′)

N0
= β0

ext exp[−L′/(H0 sec Za)], (11)

where β0
ext is the extinction coefficient at sea level and N0 is

the corresponding number density of air constituents. Here,
we have used the altitude dependence of N derived within the
standard atmosphere model [cf. Appendix B, Eq. (B8)] with
the scale parameter H0 = 6600 m. Substituting Eq. (11) in
(10), we finally derive

χext = exp

[
−β0

ext
H0 sec Za

1000
(1 − e−Lr (Za )/(H0 sec Z0 ) )

]
. (12)

Here, we have adopted the conventional units of the extinction
coefficient to be given in km−1. Molecular or Rayleigh scatter-
ing contributes 2.544 × 10−3 km−1 to this coefficient for opti-
cal wavelength λ = 800 nm [57]. The aerosol distribution has
a more complex dependence on altitude than the model (B8).
Nevertheless, for the most part of the optical propagation path
one can consider that aerosol scattering contributes roughly
the same amount to extinction as the Rayleigh scattering.
For the total extinction coefficient in (10), we adopt therefore
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the value β0
ext = 5 × 10−3 km−1. We also note that a similar

expression to (12) has been derived in Ref. [58].

IV. ATMOSPHERIC TURBULENCE

In the previous section we considered the influence of
regular refraction on the elongation of the optical path length
for light propagating in the atmosphere. The regular refraction
is caused by the variation of the air refraction index with the
altitude and is predictable provided the altitude variation of
temperature and pressure is known. Other types of refractive
and diffraction phenomena arise due to the irregular variation
in space and time of the refractive index. Such random vari-
ations are connected with temperature fluctuations and wind
shear and have statistical properties of turbulent scalar fields.
The strength of turbulent refractive-index fluctuations also
varies with the altitude. Hence, the irregular disturbances of
the optical signal in satellite-mediated communication depend
on the zenith angle. In this section we discuss the depen-
dence of aperture-averaged scintillations, beam broadening,
and beam wandering on the zenith angle.

A. Statistical description of optical turbulence

Turbulent air motion consists of a set of vortices or eddies
of various diameters, ranging from extremely large with char-
acteristic so-called outer scale Lo to extremely small with a
scale lo. Under the influence of inertial forces, larger eddies
break up into smaller ones. This cascade process continues
until the minimal scale lo, referred to as the inner scale, is
reached and dissipation of turbulent flow energy takes place.
This evolution of turbulent air vortices leads to a random
variability of the refractive index,

ni(ρ, t ) = ni + δn(ρ, t ), (13)

where ρ = (x y z)T and ni is the regular part of the re-
fractive index within ith atmospheric layer [cf. Eq. (B7) of
Appendix B]. In the following we will omit the index i for
convenience and adopt the notation n(ρ, t ) for the refractive
index (13). In Eq. (13) the z axis is chosen along the optical
ray while r = (x y)T lies in the transverse plane to the
ray direction. At optical wavelengths, the fluctuating part δn
is of the order of 10−6 or less. When the Taylor’s “frozen
turbulence” hypothesis [59] holds, implying that the random
field n(ρ, t ) is transported with constant velocity v, there-
fore remaining stationary in the moving coordinate system
n(ρ, t ) = n(ρ − vt ), the time dependence of refractive index
is incorporated in the spatial variable.

In the statistical theory of optical turbulence, the refractive-
index fluctuations δn are described by the power spectrum

�n(k) = 1

(2π )3

∫
R3

d3ρ Bn(ρ)e−ik·ρ, (14)

where the Bn is the correlation function

Bn(ρ1 − ρ2) = 〈[n(ρ1) − 〈n〉][n(ρ2) − 〈n〉]〉
= 〈δn(ρ1)δn(ρ2)〉. (15)

For a locally isotropic random field the correlation function
simplifies further and the turbulent spectrum can be written as

�n(κ; z) = 1

π

∫ z

0
dz′Fn(κ; z′), (16)

Fn(κ; z) =
∫
R2

d2r BI (r, z)e−iκ·r, (17)

where κ = (kx ky)T and r = r1 − r2. For the inertial range
of spatial wave-number values |κ| ∈ [2π/Lo, 2π/lo], the spec-
trum for Kolmogorov turbulence is

�n(κ, z) = 0.033C2
n (z)|κ|− 11

3 . (18)

Here, C2
n is the refractive-index structure parameter character-

izing the strength of refractive-index fluctuations.
In the following considerations we will require the specific

form of correlation function, called structure function, for
optical phase fluctuations:

DS (r1, r2, r′
1, r′

2; z) = 〈[S(r1, r′
1; z) − S(r2, r′

2; z)]2〉, (19)

where ri, r′
i, i = 1, 2, are the transverse components of the

corresponding spatial vectors ρi = (ri z) and ρ′
i = (r′

i z).
Here, the fluctuating phase is found from the first approxima-
tion of geometric optics

SUL(r, r′; z) = k

2

∫ z

0
dz′ δn

(
r

z′

z
+ r′ z − z′

z
, z′
)

(20)

for uplink and

SDL(r, r′; z) = k

2

∫ z

0
dz′ δn

(
r

z − z′

z
+ r′ z

′

z
, L − z′

)
(21)

for downlink communication scenarios. In this article we
focus our attention on the downlink communication config-
uration and omit the corresponding superscripts for simplicity
in the notations. The formulas for uplink can be then obtained
by replacing z′ → L − z′ in integrals similar to the one in
Eq. (21).

For a locally isotropic and homogeneous random field δn,
the Markov approximation

〈δn(r; z)δn(r′; z′)〉 = 2πδ(z − z′)
∫
R2

d2κ

× �n(κ, z) exp[iκ · (r − r′)] (22)

is well justified [40,60]. The phase structure function (19) is
evaluated then as

DS (r1, r2, r′
1, r′

2; z)

= DS (r1 − r2, r′
1 − r′

2; z)

= πk2
∫ z

0
dz′
∫
R2

d2κ �n(κ, z − z′)

×
{

1 − exp

(
iκ·
[

(r1 − r2)
z − z′

z
+ (r′

1 − r′
2)

z′

z

])}
.

(23)
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For the Kolmogorov spectrum (18), in the case of downlink
the structure function (23) reduces to [61]

DS (r, r′, Lr )

= 2ρ
− 5

3
0

∫ 1

0
dξ

C2
n ([1 − ξ ]Lr )

C2
n,0

|r(1 − ξ )+r′ξ | 5
3 , (24)

where

ρ0 ≈ (1.5C2
n,0k2Lturb)−3/5 (25)

is the radius of spatial coherence of a plane wave in the
atmosphere, Lturb is the propagation length within the optically
active turbulent atmospheric layer, Lr is the total propagation
length, ξ is the dimensionless integration variable, and

C2
n,0 = C2

n (h0 sec Za) (26)

is the refractive-index structure function taken at some refer-
ence height h0 above the ground (see also Appendix D). The
structure function (24) for uplink is obtained by the change of
the variable ξ → 1 − ξ .

B. Aperture-averaged scintillations

The dependence of optical intensity fluctuations, i.e., scin-
tillations, on the zenith angle has attracted attention in the con-
nection with astronomical photometry. Early measurements
of the scintillation index σ 2

η [62–64] have shown that the
aperture-averaged scintillations (or power scintillations) grow
with the growth of the zenith angle as

σ 2
η = 〈�η2〉

〈η〉2
∝ (sec Za)γ , (27)

where

η =
∫
A

d2r I (r, Lr ) (28)

is the transmittance of the light intensity I (r, Lr ) through the
receiver aperture with opening area A, and r is the spatial
variable transversal to propagation direction. The exponent
γ in Eq. (27) is related to the statistics of turbulent fluc-
tuations of the refractive index and depends on the charac-
teristics of the receiver telescope. Theoretical considerations
[40] based on the Rytov approximation yield γ = 11

6 for
small receiving apertures and γ = 3 for large receiving aper-
tures, respectively. These results agree reasonably with the
experiments [65].

The later investigations [65–68] have shown that depen-
dence (27) is valid for small and moderate zenith angles or
for highly elevated optical ground stations. For large zenith
angles, measured stellar scintillations exhibit a saturation or
decrease in its value. A similar behavior has been reported
for optical signals from satellites [69,70]. On the other hand,
the Rytov approximation (27) yields the divergent scintillation
index for Za→90◦ and does not account for the saturation ef-
fect. The phenomenon of saturation of scintillations has been
theoretically studied in Refs. [45,71–74] and is attributed to
multiple scattering phenomena on turbulent inhomogeneities.

In this section we derive the scintillation index of the
aperture-averaged optical signal from the satellite and discuss
its dependence on the zenith angle. As an accompanying
result we obtain the expressions for two first moments of the

transmittance (28), the mean width of the beam spot at the
receiver and the beam-wandering variance. These parameters
will be used in Sec. V for the derivation of the probability
distribution of quantum channel transmittance.

The scintillation index (27) is derived from the first two
moments of the transmittance (28), namely,

〈η〉 =
∫

|r|�a
d2r �2(r; Lr ), (29)

〈η2〉 =
∫

|r1|�a
d2r1

∫
|r2|�a

d2r2 �4(r1r2; Lr ), (30)

where

�2(r; z) = 〈u(r; z)u∗(r; z)〉 = 〈I (r; z)〉, (31)

�4(r1, r2; z) = 〈u(r1; z)u∗(r1; z)u(r2; z)u∗(r2; z)〉
= 〈I (r1; L)I (r2; z)〉, (32)

a is the receiving aperture radius, and u(r; L) is the optical
field amplitude. Obviously, the field correlation functions �2

and �4 turn to be important ingredients for the evaluation of
σ 2

η . On the other hand, their moments are related to the beam-
wandering variance

σ 2
BW =

∫
R4

d2r1d2r2 x1x2�4(r1, r2; L), (33)

and to the mean short-term beam-spot radius of the transmit-
ted beam

WST =
√

W 2
LT − 4σ 2

BW = 2

[ ∫
R2

d2r x2�2(r; L) − σ 2
BW

]1/2

.

(34)

Here, the variable x denotes the x component of the trans-
verse vector r. The short-term beam-spot radius is associ-
ated with the intensity distribution observed during small
exposure times while the long-term radius WLT includes
broadening effects due to beam wandering and is associ-
ated with long detection times. In the following section we
show that the quantities (29), (30), (33), and (34) are of pri-
mary importance for the description of quantum atmospheric
channels.

The correlation functions �2 and �4 we calculate using
the phase approximation of the Huygens-Kirchhoff method
[75,76]. This approximative method neglects the fluctuations
of the field amplitude. On the other hand, the phase fluc-
tuations characterized by Eqs. (20) and (21) are caused by
random diffraction and refraction in the turbulent medium,
which are included up to the terms of order 〈δn2〉1/2. The
former condition is justified for communication scenarios
through links with saturated turbulence [77], which is the case
for satellite-mediated atmospheric channels. More rigorous
methods [78] and experiments [40,79] suggest that the lat-
ter condition is satisfied for arbitrary propagation paths and
turbulence strengths. Thus, the phase approximation of the
Huygens-Kirchhoff method accounts for the diffraction and
refraction effects arising due to the optical beam propagation
in the turbulent atmosphere in most practically important
cases.
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For the TE00 mode of the laser beam (Gaussian beam) in the plane of the radiating aperture,

u(r; 0) =
√

2

π2W 2
0

exp

[
−
(

1

W 2
0

− ik

2F

)
r2

]
, (35)

with W0 being the initial beam-spot size and F being the initial beam wavefront radius, the correlation functions (31) and (32)
read as

�2(r; Lr ) = k2

4π2L2
r

∫
R2

d2r′e
− g2r′2

2W 2
0

−2i �

W 2
0

r·r′− 1
2 DS (0,r′;Lr )

, (36)

�4(r, R; Lr ) = 2k4

π2(2π )3L4
r W 2

0

∫
R6

d2r′
1d2r′

2d2r′
3 e

− 1
W 2

0
(r′

1
2+r′

2
2+g2r′

3
2 )+2i �

W 2
0

[1− L
F ]r′

1·r′
2 e

−2i �

W 2
0

r·r′
2−4i �

W 2
0

R·r′
3J (r, r′

1, r′
2, r′

3), (37)

J = exp

⎡⎣1

2

∑
j=1,2

{DS (r, r′
1 + (−1) jr′

2; Lr ) − DS (r, r′
1+(−1) jr′

3; Lr ) − DS (0, r′
2+(−1) jr′

3; Lr )

⎤⎦, (38)

where we have used the relative and the center-of-mass coor-
dinates r = r1 − r2 and R = (r1 + r2)/2, respectively. Here,
� = kW 2

0 /(2Lr ) is the Fresnel number of the transmitter
aperture, g2 = 1 + �2[1 − Lr/F ]2 is the generalized diffrac-
tion parameter, and the phase structure function DS is given
by (24). We also note that Eqs. (36) and (37) incorporate
multiple-scattering effects.

1. Mean transmittance

The average intensity at the receiver aperture is found from
Eqs. (31) and (36). We use the quadratic approximation [41]

exp
[− (r/ρ0)

5
3
] ≈ exp[−(r/ρ0)2] (39)

for the spatial dependence of the phase structure function (24).
This approximation gives a good accuracy for small values of
the radius of spatial coherence ρ0, i.e., for long propagation
distances and strong optical turbulence, which is always the
case for satellite-mediated links. Performing the integration in
Eq. (36), we obtain the Gaussian distribution of the intensity
distribution at the receiver aperture plane

〈I (r; Lr )〉 = 2

πW 2
LT

exp

[
−2

r2

W 2
LT

]
, (40)

where the long-term beam-spot radius at the receiver is [cf.
also Eq. (34)]

WLT(Lr ) = W0

[(
1 − Lr

F

)2

+ �−2

(
1 + W 2

0

ρ2
0

X 2

)]1/2

. (41)

Here, ρ0 is defined in Eq. (25) and

X 2 = 1

C2
n,0

∫ 1

0
dξ C2

n (Lr, 1 − ξ )ξ 5/3 (42)

is the weighting factor that depends on the slant profile of
the refractive-index structure function C2

n (Lr, 1 − ξ ). This
profile is related with the vertical profile of turbulence as
C2

n (Lr, 1 − ξ ) = C2
n [h(ξ ) = Lr (1 − ξ ) cos Za] (see Appendix

D for details). The natural diffraction of the laser beam is

included in Eq. (41) by considering the initial beam waist
W0, wavelength λ (Fresnel number �), and propagation dis-
tance Lr . The resulting natural laser beam divergence is usu-
ally the main source of signal loss. The obtained formula
(41) coincides with the long-term beam-spot radius given
in Ref. [80].

The obtained mean intensity allows one to calculate the
mean transmittance straightforwardly. Inserting Eq. (40) in
Eq. (28) and performing the integration with respect to the
spatial variable, we obtain

〈η〉 ≈ 1 − e
− 2a2

W 2
LT . (43)

This is the transmittance of Gaussian beam with the beam-spot
radius WLT through a circular aperture of radius a. The approx-
imation sign is used due to the used quadratic approximation
(39). This formula can serve for estimative calculations only
and for the precise evaluations from Eqs. (29) and (36) we
derive

〈η〉 = k2

L2
r

∫ a

0
dr r

∫ ∞

0
dr′r′e

− g2r′2
2W 2

0
− 1

2 DS (0,r′;Lr )
J0

(
2�

W 2
0

rr′
)

,

(44)

where Jn(x) is the Bessel function of nth order.
For the sake of completeness, we give the expression of

the short-time beam-spot size (34). Following Ref. [81] it is
calculated as

WST(Lr ) = W0

[(
1 − Lr

F

)2

+ �−2

(
1 + W 2

0

ρ2
0

X 2

1 + 0.24
(

ρ0

aX
)1/3

)]1/2

. (45)

Here, the term proportional to X arises due to the diffraction-
induced beam broadening caused by the turbulent atmosphere.
In the limit X → 0 we obtain from Eq. (45) the diffraction-
induced beam broadening in vacuum. We also note that
Eq. (45) does not account for the beam broadening due to
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the random scattering on particles, aerosols, and precipita-
tions. This additional broadening might be relevant under
the condition of high moisture or low visibility, as has been
shown in Ref. [82]. In this article, however, we deal with ideal
weather conditions for optical communication. The short-term
beam-spot radius (45) is important for the derivation of the
probability distribution of the channel transmittance as will
be shown in the next section.

2. Second moment of transmittance

The second moment of transmittance is obtained by sub-
stituting Eq. (37) in (30). Unfortunately, the integration
cannot be performed in analytic form. However, for satellite-
mediated atmospheric links we can simplify the integral
kernel (38) for the further numerical integration (for details
see Appendix E):

J (r, r′
1, r′

2, r′
3) ≈ exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

|r(1 − ξ ) + [r′
1 + (−1) jr′

3]ξ | 5
3

]

+ exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

|[r′
2 + (−1) jr′

3]ξ | 5
3

]

− exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

{|[r′
2 + (−1) jr′

3]ξ | 5
3 + |r(1 − ξ ) + [r′

1 + (−1) jr′
3]ξ | 5

3
}]

, (46)

This expression can be simplified further by noting that
most of the optical propagation path lies in vacuum as well
as in the atmosphere with negligibly small turbulence, i.e.,
Lturb  Lr . As a consequence, for small values of the inte-
gration variable ξ in (46), when the contributions from the
r(1 − ξ ) term are dominant, the value of the refractive-index
structure constant is equal to zero. On the other hand, for
ξ ≈ 1 the structure constant is finite but the contribution from
r(1 − ξ ) is negligibly small. Therefore, one can neglect the
dependence on r in (46) along the whole propagation path

J (r, r′
1, r′

2, r′
3) ≈ J (0, r′

1, r′
2, r′

3). (47)

We stress that this formula is justified for downlink configura-
tions only. Inserting (37) in (30) and using the approximation
(47), we obtain

〈η2〉 = 2k4

π2(2π )3L4
r W 2

0

∫
|r1|�a

d2r1

∫
|r2|�a

d2r2

∫
R6

d2r′
1d2r′

2d2r′
3

× e
− 1

W 2
0

(r′
1

2+r′
2

2+g2r′
3

2 )+2i �

W 2
0

[1− L
F ]r′

1·r′
2

× e
−2i �

W 2
0

r1·(r′
2+r′

3 )+2i �

W 2
0

r2·(r′
2−r′

3 )
J (0, r′

1, r′
2, r′

3). (48)

The further evaluation of integrals in (48) should be performed
numerically.

Figure 4 shows the aperture-averaged scintillation index
σ 2

η = 〈�η2〉/〈η〉2 as a function of the zenith angle calculated
by using the phase approximation of the Huygens-Kirchhoff
method. For the calculation of 〈η2〉 we have used the approxi-
mate expression (48), whereas 〈η〉 is calculated from Eq. (44).
Table I lists the atmospheric and optical beam parameters
used in the calculation of the scintillation index. The curves
shown for three inclination angles yield the same functional
dependence on zenith angle for medium and large Za due
to the properties discussed in Sec. III A and differ on the
minimal value of the zenith angle Z�ι

min [see Eq. (2)]. For
small and moderate zenith angles the scintillation index σ 2

η

shows the asymptotic behavior given by Eq. (27). The scin-
tillation index calculated within the phase approximation of
Huygens-Kirchhoff method shows the saturation and decrease
of intensity fluctuations for large zenith angles.

This result can be qualitatively compared with the exper-
imental data that have been taken within five measurement
campaigns between 2006 and 2016 and shown in Fig. 5
(shaded area). The direct quantitative comparison of theoret-
ical curves in Fig. 4 with any individual experimental curve
contributing to Fig. 5 is hardly possible due to the lack of all
needed parameters of turbulence and the hardly measurable
profile of C2

n (z) inherent to the given meteorological con-
ditions. Measurements of intensity scintillation index were
conducted with an optical ground station nearby Munich,
Germany, with elevation of about 602 m above sea level. Mea-
surement wavelength was 847 and 1550 nm, depending on the
used satellite (see Table II for an overview of measurement
campaigns). We also note that the difference in zenith angles
with maximal scintillation index in Figs. 4 and 5 arises due to
the different elevations of the observers.

The measurement device that delivered the data for the
scintillation index analysis is an infrared camera located in

Δι=0◦

Δι=25◦

Δι=50◦

Sc
in

ti
lla

ti
on

in
de

x,
σ

2 η

0.1

0.0

0.2

0.4

0◦ 20◦ 40◦ 60◦ 80◦

Zenith angle, Za

Z25◦
min

Z50◦
min

0.3

(sec Za)3

FIG. 4. Aperture-averaged scintillation index as a function of
the zenith angle for several inclination angles of the satellite orbit.
The dotted intervals indicate the minimal zenith angles for inclined
orbits [cf. Eq. (2)]. The dotted curve corresponds to the asymptotic
value (27).
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TABLE I. Atmospheric, optical beam, and geographical param-
eters used in the simulations. Zenith-dependent values are given at
Za = 0◦.

Parameter Notation Value

Radius of spatial coherence ρ0 (cm) 13
Reference structure parameter C2

n0 (m−2/3) 10−17

Wavelength λ (nm) 840
Initial beam-spot radius W0 (cm) 2
Receiver’s aperture radius a (m) 0.5
Wavefront radius F (m) 105

Observer’s coordinates 48◦N, 11.5◦ E

the exit pupil of the telescope. Thus, images of the intensity
field incident onto the telescope aperture are recorded and
analyzed. The experimental curves in Fig. 5 are obtained
based on data from a single camera pixel. The effective radius
of the pixel, taking magnification of the optical system into
account, is a = 3.2 mm. The small value of the detector
aperture as well as short exposure times (of order 0.1–1 ms)
reduce the telescope aperture smoothing effect, yielding the
intensity scintillation index

σ 2
I = 〈�I2〉

〈I〉2
≈ σ 2

η

∣∣
a→0.

For the sake of better comparison, the 1550-nm data are
recalculated to 847-nm wavelength using weak scattering
theory. This is possible since the 1550-nm measurements lie
well within the weak scattering regime, i.e., at low zenith
angles. Twelve measurements are analyzed to form the mean
run of scintillation index as shown in Fig. 5. The gray area
indicates the confidence bound defined by the standard devi-
ation. At low and high zenith angles, the standard deviation
is not illustrated since only a single measurement track is
recorded in these regimes and, thus, determination of standard
deviation is not possible. Further description of the individual

30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦
Zenith angle, Za

20◦

Model, Eq. (49)

Experiment

2.5

2.0

1.5

1.0

0.5

0.0

Sc
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ti
lla

ti
on

in
de

x

FIG. 5. Intensity scintillation index of LEO-ground downlink
at 847 nm. Experimental data are given with confidence intervals
(shaded area) and mean value (dashed line) calculated from the
individual measurements. The theoretical curve (solid) is calculated
using Eq. (49).

TABLE II. Overview of conducted measurement campaigns.

Satellites
Year (Laser terminal) Wavelength (nm) No. Measurements

2006 OICETS (LUCE) 847 5
2009 OICETS (LUCE) 847 4
2015 ISS (OPALS) 1550 1
2016 ISS (OPALS) 1550 1
2016 Socrates (SOTA) 1550 1

measurement campaigns and the data analysis method are
found in [70,83].

In Appendix F we consider an estimation for the aperture-
averaged scintillation index based on approximate phe-
nomenological expressions for field correlation functions.
This can give some insight into saturation effects observed at
large zenith angles. The consideration yields

σ 2
η = 1.12C2

n,0 [�κ]
7
3 (H0 sec Za)3

× 2F3

(
7

6
,

3

2
; 2,

13

6
, 3; −a2�κ2

)
,

�κ = 0.69 μC−6/5
n,0 k−1/5(H0 sec Za)−8/5. (49)

Here, a is the receiving aperture radius, k = 2π/λ is the
optical wave number, and 2F3(a, b; c, d, e; x) is the hyperge-
ometric function. This simple analytic formula contains three
phenomenological parameters: the refractive-index structure
parameter at the ground C2

n,0, the characteristic height of the
atmospheric turbulent layer H0, and the dimensionless propor-
tionality parameter μ. The theoretical curve based on Eq. (49)
shows a reasonable agreement with the experimental data in
Fig. 5. The model parameters are C2

n,0 = 2.5×10−17 m−2/3,
H0 = 0.5 km, a = 3.2 mm, λ = 847 nm, and μ = 0.92.

3. Beam-wandering variance

For the sake of completeness, we give the expression
for the beam-wandering variance (33). Beam-wandering phe-
nomenon depends strongly on the outer scale of turbulence Lo.
The finite Lo defines the upper bound on the size of turbulent
inhomogeneities that are able to deflect the beam as a whole.
Since the Kolmogorov spectrum (18) has a discontinuity at the
turbulent wave numbers |κ| ≈ κo = 2π/Lo, it is more suitable
to use the smoothened spectrum

�n(κ, z) = 0.033C2
n (z)|κ|− 11

2
(
1 + e

− |κ|2
κ2
o
)
. (50)

For slant paths the outer turbulence scale varies with the
height h. Very well known is the empirical Coulman-Vernin
profile that reads as [84]

Lo(h) = 4

1 + ( h−8500
2500

)2 , (51)

where the outer scale is given in meters.
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FIG. 6. Variation of the mean short-term divergence angle
WST/Lr and the standard deviation of the angle-of-arrival fluctuations
σBW/Lr , with the zenith angle. The results are presented for several
inclination angles of the satellite orbit �ι. Dotted lines indicate the
minimal zenith angles (2) for inclined orbits.

Using the spectrum (50) and following the derivation steps
of Ref. [85] we obtain

σ 2
BW = 1.29L3

r

∫ 1

0
dξ ξ 2C2

n (Lr, 1 − ξ )
{
W −1/3

ST ([1 − ξ ]Lr )

+ [W 2
ST([1 − ξ ]Lr ) + L2

o ([1 − ξ ]Lr )/(2π )2
]−1/6}

.

(52)

Here, WST(Lr ) is given by (34) and the altitude depen-
dence of the outer scale is given by (51) with h ≈ Lr cos Za.
Appendix D summarizes the model for the C2

n pro-
file needed for the calculation of the beam-wandering
variance (52).

Figure 6 shows the divergence angle WST/Lr and the
standard deviation of the angle-of-arrival fluctuations σBW/Lr

as a function of the apparent zenith angle and several in-
clination angles �ι of the satellite orbit. For the simulation
of turbulent atmosphere we use the AFGL+WK (the Air
Force Geophysics Laboratory and Walters-Kunkel model)
night model for the altitude variation of the refractive-index
structure parameter (see Appendix D). Other relevant atmo-
spheric parameters are listed in Table I. The beam-spot radius
and the beam-wandering variance grow with the growth of
the zenith angle. The asymmetry of the curves for inclined
orbits is dictated by the geographical position of the observer
as discussed in Sec. III A. For zenith angles near Za = 80◦
some saturation of both quantities appears. This is due to
the drop of the turbulence strength in the lower troposphere
(3–10 km), the region that has its maximal contribution to the
optical path at this zenith angle. Near the observer horizon
the contributions of boundary layer turbulence at 1 km as
well as of the atmospheric refraction have a maximal effect

on the optical beam distortions leading to the growth of both
beam-spot size and beam wandering.

V. PROBABILITY DISTRIBUTION OF TRANSMITTANCE

In this section we consider the model of atmospheric quan-
tum channels. For the physical consistence of this model the
preservation of the canonical commutation relations for the
quantized optical field operators is important. This require-
ment puts certain restrictions on the probability distribution
that governs the statistics of fluctuating channel transmittance.
We also show the relationship of the statistical characteristics
of this distribution and the moments of the field correlation
functions derived in the previous section.

Quantum light transmission through a linear medium, such
as Earth’s atmosphere, is conveniently characterized via the
input-output relations

âout = √
ηâin +

√
1 − ηĉ, (53)

where âin (out) is the input (output) field annihilation operator
and ĉ is an environmental mode operator. The random trans-
mittance η ∈ [0, 1] equals to the instantaneously transmitted
normalized intensity truncated by the receiver aperture [cf.
Eq. (28)]. The transmission of the quantum state through the
atmospheric link depends not only on the characteristics of the
channel, but also on the parameters of the receiver aperture.
In terms of the Glauber-Sudarshan P function [86,87], the
input-output relation (53) reads [88] as

Pout (α) =
∫ 1

0
dηP (η)

1

η
Pin

(
α√
η

)
, (54)

where we have assumed that the environmental modes are in
the vacuum state. Here, Pin(α) and Pout (α) are P functions
of the input and output quantum fields and P (η) is the
probability distribution of the transmittance (PDT). Hence, the
description of quantum-light propagation through the atmo-
sphere reduces merely to identifying P (η).

Violation of this requirement may lead to unphysical ef-
fects which have critical influence, e.g., on security bounds
of communication protocols. The first consistent model of the
PDT [89] considered beam wandering as the main source of
fluctuating losses on the receiver. In this case, the PDT can
be derived in analytical form and is given by the log-negative
Weibull distribution. This beam-wandering model was further
extended to include effects due to random beam broadening
and deformation of the beam profile into an elliptic form [90].
In Ref. [82] this so-called elliptic-beam model was extended
to include additional beam broadening and extinction due to
random scattering on atmospheric aerosols and dust particles.
The elliptic-beam model gives reasonable agreement with
the PDT measurements for short-distance links. For long-
distance channels, a discrepancy arises between the transmit-
tance moments calculated via the elliptic-beam PDT and the
corresponding moments (29) and (30) calculated from the first
principles. For elimination of this discrepancy, a PDT model
has been proposed based on the law of total probability [91].
This model is most suitable for the description of long-length
quantum channels and in this section we extend it to the case
of slant propagation paths.
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Analyzing experimental PDTs for short and long propa-
gation distances, one observes two limiting behaviors. For
short distances, the beam wandering appears to be the major
source of fluctuating losses and the corresponding PDT has
similar form to the log-negative Weibull distribution. For long
propagation distances, beam broadening and deformation are
the dominating effects yielding the PDT in the form of
truncated log-normal distribution. In the general case, using
the law of total probability [92], the PDT can be written
as

P (η) =
∫
R2

d2r0P(η|r0)ρ(r0), (55)

where the random vector r0 transverse to the propagation
direction describes the position of the deflected beam centroid
relative to the aperture center. The corresponding probability
distribution in (55),

ρ(r0) = 1

2πσ 2
BW

exp

[
− |r0|2

2σ 2
BW

]
, (56)

describes the beam-wandering contribution to the total PDT.
Here, σ 2

BW is the beam-wandering variance, Eq. (33). The
effects of beam-spot distortions are incorporated in the con-
ditional distribution P(η|r0). Physically it can be interpreted
as the conditional PDT for the beam with a centroid po-
sition tracked to the position r0 relative to the aperture
center.

For negligible small beam wandering σBW → 0, the distri-
bution (56) reduces to Dirac delta function and the conditional
probability according to (55) reduces to the PDT. In this
limit, the PDT resembles the log-normal distribution. Hence,
for general situations we can assume that the conditional
distribution can be approximated by the truncated log-normal
distribution

P(η|r0) ≈
{

1
F (1)

1√
2πησr0

exp
[− (log η+μr0 )2

2σ 2
r0

]
for η ∈ [0, 1],

0 otherwise,

(57)

where F (1) is the cumulative function of the (untruncated)
log-normal distribution at η = 1. The parameters of this
distribution are related to the conditional moments 〈η〉r0

and 〈η2〉r0 . These conditional moments can be considered
as the corresponding moments of the aperture transmit-
tance of the effective beam with beam-spot radius WST

whose centroid is displaced to the distance r0 from the
aperture center. In the limit of weak beam wandering, the
conditional moments can be written as (see Ref. [91] for
details)

〈η〉r0 ≈ η0 exp

[
−
( |r0|

R

)λ]
, (58)

〈η2〉r0 ≈ ζ 2
0 exp

[
− 2

( |r0|
R

)λ]
, (59)

where

η0 = 〈η〉∫∞
0 dξ ξ e−ξ 2/2e−[(σBW /R)ξ ]λ

, (60)

ζ 2
0 = 〈η2〉∫∞

0 dξ ξ e−ξ 2/2e−2[(σBW /R)ξ ]λ
, (61)

R = a

⎧⎨⎩ln

⎡⎣2
1 − exp

(− 2 a2

W 2
ST

)
1 − exp

[− 4 a2

W 2
ST

]
I0
(
4 a2

W 2
ST

)
⎤⎦⎫⎬⎭

−1/λ

, (62)

λ = 8
a2

W 2
ST

e−4(a2/W 2
ST )I1

(
4 a2

W 2
ST

)
1 − exp

[− 4 a2

W 2
ST

]
I0
(
4 a2

W 2
ST

)
×
⎡⎣ln

⎛⎝2
1 − exp

(− 2 a2

W 2
ST

)
1 − exp

[− 4 a2

W 2
ST

]
I0
(
4 a2

W 2
ST

)
⎞⎠⎤⎦−1

. (63)

Here, WST is given by (45) and In(x) is the modified Bessel
function of nth order. The parameters of the conditional
distribution (57) are determined from Eqs. (58) and Eq. (59)
approximately:

μr ≈ − ln

[
〈η〉2

r0√〈η2〉r0

]
≈ − ln

[
η2

0

ζ0

]
+
( |r0|

R

)λ

, (64)

σ 2
r0

≈ ln

[
〈η2〉r0

〈η〉2
r0

]
≈ ln

[
ζ 2

0

η2
0

]
. (65)

The knowledge of the parameter set {〈η〉, 〈η2〉, σBW, WST}
is therefore sufficient for the determination of the channel
PDT. For detection with a Cassegrain-type telescope, the PDT
derivation procedure can be further generalized as described
in Ref. [93].

Practical optical communication via satellites is impossible
without acquiring and tracking the received signal. Both beam
wandering due to atmospheric turbulence [41] or satellite
vibrations [94] cause changes in the direction of the received
beam that result in misalignment between the communication
parties. Moreover, the velocity aberration point ahead and
the atmospheric dispersion effects [95] should be taken into
account. The compensation of these disturbances requires
an active beam steering that is accomplished by mechanical
means. Quantum key exchange with low mean intensities
requires especially precise beam tracking and stable pointing
[96,97]. Applying coarse and fine tracking and pointing strate-
gies, one can achieve a tracking accuracy of approximately
θtr ∼ 1.2 μrad for LEO-ground communication links [98].
We incorporate the tracking procedure in the PDT model (55)
by replacing

σBW → σtr = θtrLr (Za) (66)

in Eq. (56). Finally, we note that the parameters (60) and (63)
still contain the beam-wandering variance, and we calculate
σ 2

BW by means of Eq. (52).

VI. APPLICATION: DECOY-STATE PROTOCOL

We apply the developed theory of satellite-mediated quan-
tum atmospheric channels for the calculation of the secret key
rate when decoy states are in use [99,100]. Conventionally, we
refer to communication parties Alice and Bob as to the sender
and the receiver, respectively. Based on the BB84 protocol
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[14], the decoy-state method estimates channel parameters by
sending two types of states. While one type of states (signal
states) is used for transmission of quantum keys, the other is
called the decoy state, which is used for the estimation of
the number of transmitted single-photon states. Ideally, the
single-photon states are most suitable to be used as the signal.
Practically perfect single-photon sources are hard to attain
and one uses weak coherent states instead. In the security
analysis of the decoy-state method, both signal and decoy
states possess equal properties except for their intensity.

Usually, only a few decoy states are needed for practi-
cal implementations. A simple two-decoy-state protocol with
vacuum+weak decoy states gives an optimal key generation
rate which is the same as having an infinite number of decoy
states [101]. On the first stage of the protocol, Alice, who has
a phase-randomized source of coherent states, encodes the bits
in the X or Z basis as in the standard BB84 scheme, e.g., by
utilizing polarization degrees of freedom. Additionally to the
signal field, she generates decoy states in vacuum and weak
coherent states. The phase randomization makes the source
statistically equivalent to a Poissonian distribution of Fock
states such that, when the average photon number from the
light source is μ, the probability to send an n-photon pulse
is e−μμn/n!. We denote the mean photon numbers as μ j ,
j = s, d, v for signal, weak-decoy, and vacuum states. The
following conditions are satisfied: μd < μs < 1, μv = 0. Af-
ter transmission through the free-space channel, Bob performs
measurement of transmitted bits in a randomly chosen X or Z
basis. The conditional probability of a detection event at Bob’s
side given that Alice sends an i-input state is referred to as the
yield Yi of an i-photon state. The vacuum state is used for the
estimation of the background detection probability Y0 while
the weak-decoy state allows one to estimate the single-photon
yield Y1 and the error rate of the single-photon state e1. Since
both signal and weak-decoy states propagate through the same
channel, the single-photon yield would be the same for these
states. Due to this property, the security of the decoy-state
protocol against the photon-number splitting attacks [15,102]
or the Trojan-horse attacks [103] can be verified.

As the next step, the parties perform the sifting of the raw
key, its error correction, and privacy amplification. Finally, if
these steps were successful, Alice and Bob share a shorter
but more secure key. Defining the averaging over channel
fluctuations with the applied beam tracking procedure (66) as

〈 f (η)〉tr =
∫ 1

0
dη f (η)P (η)

∣∣
σBW→σtr

, (67)

we find for the lower bound of the average secure key rate

R = q

(
−〈Qμs

〉
tr f (QBER)H[QBER]

+
∑
γ=x,z

〈
Qγ L

1

〉
tr

{
1 − H

[〈
eγU

1 Qγ L
1

〉
tr

/〈
Qγ L

1

〉
tr

]})
. (68)

Here, q depends on the implemented protocol, H (x) =
−x log2(x) − (1 − x) log2(1 − x) is the binary Shannon in-
formation function, Qμs is the gain of the signal states, Q1

is the gain of single-photon states, and f (x) � 1 is the bidi-
rectional error correction efficiency [ f (x) = 1 corresponds to

the perfect error correction case]. The quantum bit error rate,
QBER, is estimated as

QBER =
〈
Eμs Qμs

〉
tr〈

Qμs

〉
tr

. (69)

The gain Qμs represents the ration between the number of
events where Bob observes a click under the condition that
Alice sends a certain number of signal states. This overall
gain with respect to an ideal threshold detector [104] can be
evaluated as [101]

Qμs =
∞∑

i=0

Qs
i =

∞∑
i=0

Yi
μi

s

i!
e−μs = 1 − e−ηdημs (1 − Y0), (70)

where the yield of the i-photon state is

Yi = 1 − (1 − Y0)(1 − ηdη)i. (71)

Here,

ηd = ηdetχextχopt (72)

accounts for deterministic losses such as detector efficiency,
channel losses due to atmospheric extinction (10), and ab-
sorption by optical components, while η is the random trans-
mittance of the free-space channel [cf. Eq. (28)]. Similarly,
defining the error rate of the i state as

eiYi = e0Y0 + edet[1 − (1 − ηdη)i](1 − Y0), (73)

one derives for the overall error gain

Eμs Qμs =
∞∑

i=0

eiYi
μi

s

i!
e−μs

= e0Y0 + edet (1 − e−ηdημs )(1 − Y0). (74)

Here, edet is the probability that an incorrect bit value oc-
curred that depends on the alignment and the stability of
the optical system. The background error rate is e0 = 1

2 for
randomly occurring dark and background counts. The dark
count contribution to Y0 is of order 10−6 for a commercially
available Geiger-mode APD at room temperature and can
be further decreased with proper cooling. The contribution
from transmitted vacuum decoy states with the accounting
of finite-size effects is given in Appendix G. The total value
Y0 can be further enhanced due to sky-noise photodetection
[35,105,106]. In this article we assume that the background
error rate is constant with the value taken from Ref. [6].

For the determination of the single-photon gain Q1, and the
single-photon error rate e1, in Eq. (68) the statistical fluctua-
tions must be considered. Indeed, since the communication
link with a LEO satellite can be established for only several
minutes, only a finite set of data can be transmitted. In the
security analysis the accounting for possible deviations from
most probable values must be taken into account. Moreover,
statistical fluctuations tend to become more important as
the distance of the QKD increases, i.e., for large values of
the zenith angle. In Ref. [101] the Gaussian model and in
Refs. [107,108] the Chernoff-Hoeffding method have been
applied for deriving finite-key security bounds. We adopt
the statistical fluctuation analysis of Ref. [109] that uses the
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TABLE III. Parameters for a QKD system.

Parameter Notation Value

Detector efficiency ηdet 60%
Extinction due to optics χopt 84%
Background yield (dark count) Y DC

0 5.89 × 10−7

Erroneous detector prob. edet 1%
Background error rate e0 50%
Failure probability ε 10−5

Mean intensity of signal μs 0.8
weak-decoy state μd 0.1

Number of sent bits N 1011

Pulse repetition rate rN (MHz) 150
Generation prob. signal bits ps 65%

weak-decoy bits pd 25%
Generation prob. of x-basis bits px

a, (a = s, d ) 60%
Error correction efficiency f (QBER) 1.16
Tracking precision σtr (μrad) 1

Chernoff bound for establishing the lower bound for single-
photon gain

Qγ L
1 (η) = Y γ L

1 (η)μse
−μs , γ = x, z (75)

and the relation between the upper bounds for single-photon
error rates

ezU
1 (η) = exU

1 (η) + θU (76)

in X and Z bases. Appendix G summarizes the method for
obtaining θU [cf. Eq. (G17)], the lower bound for the single-
photon yield Y γ L

1 [cf. Eq (G9)] and the upper bound for the
bit-flip error rate exU

1 [cf. Eq. (G10)].
We calculate the secure key rate for the downlink commu-

nication scenario. Table III lists the values of parameters used
in the calculation, whereas Table I gives parameters of the
atmospheric link and communication system. With the source
of repetition rate 150 MHz, the total number of generated
bits by Alice during 14 minutes of communication session is
N = 1011. We estimate the mean number of sifted key bits

Ma ≈ ηsiftηdηNa, a = s, d, v (77)

where ηsift = 0.5 is the sifting efficiency for conventional
sifting protocols. The number of sifted key bits is averaged
over the fluctuations of the channel transmittance and de-
pends on the zenith angle (e.g., for zenith orbit 〈Ms〉tr =
1.46×105, 〈Md〉tr = 5.64×104 for Za = 0◦, and 〈Ms〉tr =
1.93×104, 〈Md〉tr = 7.43×103 for Za = 70◦).

Figure 7 shows the QBER and the lower bound of the
secure key rate calculated for several inclination angles of
satellite orbits relative to the observer’s meridian plane. For
small zenith angles, scintillations, atmospheric refraction,
and absorption have minimal impact on the performance
of decoy-state protocols. The QBER has almost constant
value, the phenomenon that was theoretically predicted for
satellite links in Ref. [110] and experimentally observed in
Refs. [6,39,98]. Figure 7(a) shows a similar behavior for
the zenith angles where the aperture-averaged scintillation
index has the asymptotic behavior (27) and satisfies the con-
dition σ 2

η < 1. In the region of saturated scintillations the
QBER grows, making quantum communication impossible
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FIG. 7. Quantum bit error rates (a) and lower bounds of averaged
secure key rates (b) as functions of the communication time for
several inclination angles.

for large zenith angles. In this region the wavefront distortions
are maximal. These distortions together with the extinction
losses lower the signal-to-noise ratio and correspondingly the
QBER is inflated by the larger relative contributions from the
background. The flat region of the QBER diminishes with
the growing inclination angle of the satellite orbit allowing
smaller time windows for the secure key exchange as shown
in Fig. 7(b).

It is worth to note that by placing the observer at high
altitudes above sea level, this time window can be increased.
Indeed, the thickness of the dense ground layer, which is
responsible for scintillation, is different at sea level and at
high altitudes. This causes a shift of the region with saturated
scintillations to higher zenith angles. This phenomenon can
be observed if one compares the curves of Fig. 4 calculated
for the observer at sea level with the experimental curve
of Fig. 5 with observer’s elevation of 602 m above sea
level. The saturation region may even vanish at particularly
high altitudes, the phenomenon which is known in optical
astronomy [62,67,68]. This observation makes observatories
in mountains especially attractive as a OGS node for quantum
free-space communication with satellites.

VII. CONCLUSIONS

In this article we have presented the theoretical analysis
of satellite-mediated quantum links. We have discussed the
influence of regular refraction, extinction, and turbulence on
the transmission properties of optical signals through the
Earth’s atmosphere. Since in satellite-mediated communica-
tion scenario the position of the satellite changes rapidly for
the observer located on the Earth’s surface, the thoughtful
analysis is presented of how atmospheric disturbances depend
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on the observer’s geographical position, observer’s zenith
angle, and the orbit inclination angle.

We focus our analysis on low orbit satellites with perfect
polar orbit. In particular, we considered the case when the
satellite orbit is inclined to the observer meridian and derived
the corresponding slant range. The orbit inclination restricts
the definition range of the zenith angle by introducing the
lower bound of the angle. As a consequence, the most fa-
vorable satellite trajectory corresponds to the zenith orbit that
passes through the observer meridian. In this case, the smallest
zenith angle is zero and the slant range is the shortest one at
the observer zenith.

The effect of regular atmospheric refraction increases the
optical slant range and changes the value of the true zenith
angle to the apparent one. This effect is especially pronounced
near the horizon where it can increase the propagation path
of the optical signal up to 30%. Based on the standard atmo-
sphere model we derived the corresponding path elongation
factor as a function of the apparent zenith angle and gave the
corresponding analytical fit formula. The resulting slant range
has been used for the calculation of the atmospheric extinction
factor due to absorption and scattering on atmospheric gases
and aerosols.

Another important factor that deteriorates the optical per-
formance of satellite-ground links is the atmospheric turbu-
lence. It appears that the second- and the fourth-order optical
field correlation functions play a central role in the description
of light propagation through the turbulent media. These func-
tions allow one to derive the aperture-averaged scintillation
index, as well as the mean beam-spot radius and the beam-
wandering variance of the transmitted beam. Based on the
properties of intensity covariance function, we have derived
an analytical expression for the aperture-averaged scintillation
index. For large zenith angles these scintillations saturate
and decrease; this effect is well observed in experiment. It
arises due to multiple scattering in most turbulent air layers
near the ground, the process that degrades the performance
of the receiver telescope and leads to the additional aperture
averaging of scintillations. Based on this simple model of
aperture-averaged scintillations, we have developed the rig-
orous approach for calculating field correlation functions and
their moments.

The developed description of atmospheric channels has
been adopted for the description of quantum-light propagation
through the Earth’s atmosphere. For this sake we use the
input-output relations for optical field operators, rewritten in
terms of Glauber-Sudarshan P function. Fluctuations of the
channel transmittance due to atmospheric turbulence are ac-
counted with the help of the probability distribution of trans-
mittance. We have obtained the latter for satellite-mediated
quantum links using the law of total probability.

Finally, the security of quantum decoy-state communica-
tion protocols is analyzed with realistic channel parameters
and communication conditions. In this connection, the inclu-
sion of the finite-key effects plays an important role. Scintil-
lation phenomena at large zenith angles influence greatly the
performance of quantum channels, leading to a growth of the
quantum bit error rate. In the region of saturated scintillations
that appears close to the horizon, no secure quantum key can
be obtained. For small zenith angles the quantum bit error

rate has minor variation that allows one to obtain secure key
bits within a certain time window. This window increases
with the decrease of the satellite inclination angle relative to
observer’s meridian plane. We also expect that the increase of
the observer’s altitude relative to the sea level will lead to a
decrease of the region with saturated scintillations and hence
to a better communication performance.

We have omitted several aspects affecting the perfor-
mance of the satellite-mediated quantum communication.
Background radiation from the Sun, Moon, stars, or light
reflected from the satellite introduce additional noise. This
noise is detected by photodetectors and, therefore, it increases
the quantum bit error rate. The use of light buffers, time gate,
frequency, and spatial filters can partially mitigate the problem
of background noise. In this study we have neglected the
parallax-connected errors due to the Earth’s rotation during
one communication session. For observers at small geograph-
ical latitudes and for the satellites with small altitude, such
parallax effects should be included in the rigorous analysis.
On the other hand, for the analysis of realistic communication
scenarios not only the instantaneous position of a satellite rel-
ative to the observer is important, but also the relative position
of the Sun or of the Moon. We refer to extensive literature that
study the influence of background noise and dark counts on
the satellite-mediated quantum key distribution.

Much less studied is the influence of random scattering on
atmospheric aerosols and dust particles on the performance
of satellite-based communication. Especially in overcast con-
ditions the dominance of Mie scattering makes the optical
quantum communication with satellites impossible. We have
included in the model atmospheric extinction effects due to
absorption and scattering on molecules and aerosols which
correspond to average communication conditions. Under the
conditions of low visibility and overcast skies, the performed
analysis is not applicable.

Finally, here we have considered fundamental spatial
modes for the light beams that have Gaussian profiles of the
intensity distributions. The efficient generation of diffraction-
free beams will allow one to reduce losses associated with
regular and random diffraction in free space and may extend
the range of satellite-mediated quantum communication.
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APPENDIX A: SLANT RANGE

In this Appendix we derive the length of geometrical
distance between the satellite and the optical ground station.

1. Geometry of satellite communication links

The geometric path length for a specific communication
scenario is determined from the value of the zenith angle Z ,
which in turn is a function of the satellite orbit inclination,
the instant position of the satellite, and geometric latitude of
the observer. In the Earth’s surface coordinate system of the
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ϕ

FIG. 8. Geometric representation of the surface and geocentric
coordinate systems. The Earth’s surface coordinate system for the
observer showing the azimuth A and the zenith Z angles. The
geocentric coordinate system is defined in terms of the declination
angle δ and the inclination angle �ι. The geographical position of
the observer is given by the latitude � while the parallax correction
caused by the finiteness of the satellite altitude H is determined by
the angle ϕ.

observer the position of the satellite is given by the zenith
angle Z and the azimuth angle A. The latter we measure from
the north point eastward. In the Earth’s center (geocentric)
coordinate system the satellite position is determined by its
declination angle and its orbit inclination angle. For circular
orbits the declination angle is given by

δ = ωsat (t − tpole ), (A1)

where ωsat = 2π/Tsat is the angular speed of the satellite with
orbiting period Tsat and tpole is the reference time associated
with the trajectory crossing either the north or south pole.
During a single communication session the declination angle
changes from δ0 to δ0 + δcom with δ0 being the initial decli-
nation of the satellite when it appears on the observer horizon
and

δcom = ωsattcom = 2 arctan

[√
H2 + 2R⊕H

R⊕

]
. (A2)

Here, tcom is the maximal duration of the communication
session, H is the satellite altitude above the ground, and R⊕
is the Earth’s radius. Finally, the inclination angle �ι we
define as the angle between the observer meridian plane and
the satellite orbit plane and the geographical latitude of the
observer we denote as �. The set {�, δ,�ι} determines the
instantaneous position of the satellite relative to the observer
in the geocentric coordinate system and is the alternative
parameter set to the set {A, Z} in the Earth’s surface coordinate
system.

The following relation between angles Z , δ, �ι, � shown
in Fig. 8 can be established using spherical trigonometry:

cos Z = sin � sin δ + cos � cos δ cos �ι. (A3)

N

˜

˜

FIG. 9. Geometry of a typical satellite-ground communication.
Initially, the ground observer Õ establishes the communication link
with the satellite whose trajectory lies within the meridian plane of
the observer Õ. At a later time, due to Earth’s rotation, the observer
is translated to the point O while the satellite trajectory is inclined
by an angle �ι relative to the new observer meridian plane (or
fictitious orbit plane). Circles H̃ and H denote the local horizons of
the observers Õ and O, respectively. The communication between the
observer O and the satellite S can be established provided the satellite
trajectory S′S lies above the horizon H.

Here, δ changes during the communication session from δ0 =
− arctan(cos �ι cot �) to δ0 + δcom. We note that the finite
value of the inclination angle �ι in (A3) restricts the definition
domain of Z to [Z�ι

min, π/2] for the observer located at the
geographical latitude �. The minimal value of Z can be found
from Eq. (A3) as

Z�ι
min = arccos[

√
1 − cos2 � sin2 �ι], (A4)

which corresponds to the satellite declination angle (counted
from the Equator)

δ�ι
min = arccos

[
cos � cos �ι√

1 − cos2 � sin2 �ι

]
. (A5)

The knowledge of the satellite declination angle, the orbit
inclination angle, and geographical position of the observer
allows one to determine the instantaneous values of zenith
angle from Eq. (A3) as well as to determine the slant range.

2. Inclined and zenith orbits

In most practical cases the satellite trajectory is inclined
relative to the observer zenith direction. For example, the
initial trajectory with zero inclination to the observer’s zenith
becomes inclined when the satellite makes one or more rev-
olutions. Let us consider the satellite whose orbit initially
has zero inclination relative to the meridian plane of the
observer Õ (see Fig. 9). Let us also assume that initially the
satellite is positioned at observer’s zenith, i.e., at point S′.
For simplicity, we consider the ideal polar orbit that passes
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through both Earth’s celestial poles. After time Tsat, i.e., the
satellite orbiting period, the satellite is positioned again in the
point S′. Meanwhile the observer position Õ is moved to the
point O due to Earth’s rotation. The resulting inclination angle
reads as

�ι = Tsatv⊕
R⊕

, (A6)

where v⊕ is the speed of Earth’s rotation at the Equator.
Here and in the following, we assume that the change of the
inclination angle during the satellite transition over the ob-
server horizon is relatively small, so that we can approximate
it being constant during the whole communication session.
The negative values of �ι refer to situations when the visible
satellite trajectory is positioned eastward to the observer. We
calculate the slant range between O and S along the satellite
orbit provided the trajectory S′S of the moving satellite lies
above the observer horizon H.

The instantaneous position of the satellite relative to the
observer is determined by zenith Z and azimuth A angles
as shown in Fig. 8. For satellite tracking purposes both
these angles are of importance. In the context of optical
satellite-based communication we are interested primarily in
the instantaneous value of the slant range as a function of
zenith angle. Indeed, by assuming that tracking systems point
correctly the telescope toward the flying satellite, we can
can ignore the dependence of the slant range on the azimuth
angle. Then, the slant range L for the inclined orbit can be
determined from the triangle OSC in Fig. 2 using the law of
cosines

L2 + R2
⊕ − 2LR⊕ cos(π − Z ) = (R⊕ + H )2. (A7)

Solving this equation with respect to L we obtain

L(Z ) =
√

H2 + 2HR⊕ + R2⊕ cos2 Z − R⊕ cos Z. (A8)

The root of the quadratic equation (A7) is chosen to
yield the non-negative slant range. At the observer’s hori-
zon the slant range reaches its maximal value L(90◦) =√

(R⊕ + H )2 − R2⊕ ≈ √
2HR⊕. The shortest slant range is

determined as L(Z�ι
min), where the minimal zenith angle is

given by Eq. (A4).
The special case of the slant range (A8) corresponds to

the zenith satellite orbit with zero inclination angle �ι. Some
authors refer to this orbit as to the “best pass” [42] since the
slant range, that we denote as L0, gives the shortest distance
between the observer and the satellite at zenith, namely,
L0(0◦) = H . This fact makes the zenith orbit as well as the
orbits with small inclination angle �ι most attractive for
the optical communication. Denoting the zenith angle within
the zenith orbit plane (observer’s meridian plane) as Z0, it
follows from Eq. (A3) that Z0 = � − δ. Consequently, we
have L0(Z0) = L(Z )|�ι=0.

APPENDIX B: STANDARD ATMOSPHERE

The standard atmosphere is an idealized model of the
Earth’s atmosphere for heights ranging from the surface to
1000 km [52]. The model yields the air density, viscosity,
etc., for various altitudes. For our purposes, the most useful

TABLE IV. The reference altitudes and values and gradients
of the linearly segmented temperature-height and pressure-height
profiles from the Earth’s surface up to altitude of 85 km.

Temperature
Subscript Height gradient Temperature Pressure
b Hb (km) λb (K/km) Tb (K) Pb (mb)

0 0 −6.5 288 1 013
1 11 0.0 217 226
2 20 +1.0 217 54.7
3 32 +2.8 229 8.68
4 47 0.0 271 1.11
5 51 −2.8 271 0.67
6 71 −2.0 215 0.04
7 84.8 188 0.004

values calculated within the standard atmosphere model are
the temperature T and the pressure P. These variables are
important for the calculation of the refractive-index variation
with altitude.

The altitude dependence of the temperature is approxi-
mated with linear segments

T (h) = Tb +
(

dT

dh

)
b

(h − Hb). (B1)

Each segment lies within an atmospheric layer bounded by the
surfaces with the altitudes Hb−1 and Hb. Table IV summarizes
the reference values Tb and the vertical gradient values of
temperature (lapse rates)

λb = (dT/dh)b, (B2)

which enter Eq. (B1). The altitude dependence of pressure
can be found from the gas law and hydrostatic equation and
reads as

P = Pb

{
1 + λb

Tb
(h − Hb)

}−g/λbR

(B3)

for constant lapse rate and

P = Pb exp[−(h − Hb)g/RTb] (B4)

for isothermal layers (λb = 0). Here, g = 9.8 m/s2 is the
gravitational acceleration and R = 287.053 J/kg · K is the gas
constant for air. The reference values of pressure Pb are given
in Table IV.

Following Birch and Downs [54] we adopt the revised form
of the Edlén equation for the atmospheric refractive index n:

(n − 1) = (P/Pa)(n − 1)s

96095.43

× 1 + 10−8(0.601 − 0.00972T/◦C)P/Pa

1 + 0.0036610 T/◦C
, (B5)

where (n − 1)s is given by the dispersion equation

(n − 1)s × 108 = 8342.54

+ 2406147[130 − (1/λ)2]−1

+ 15998[38.9 − (1/λ)2]−1. (B6)

Here, λ is the optical wavelength given in μm. Since the
values of the refractive index are distinct from the vacuum
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FIG. 10. Temperature, pressure, and refractive index as functions
of altitude. Dots represent the standard atmosphere values and lines
show the linear approximation of temperature and refractive-index
curves used in this article, as well as the functional dependence (B3),
(B4) for the pressure.

value n = 1 up to the mesosphere, we restrict our attention
only to altitudes ranging from 0 to 85 km.

Figure 10 shows the variation of temperature, pressure, and
refractive index with altitude. The temperature profile shows
several layers where temperature dependence on altitude can
be approximated by linear relations. We use these specific
altitudes for the calculation of the refractive-index profile
using linear segmentation. Such a procedure simplifies the
calculation of atmospheric refraction but introduces errors that
grow for large zenith angles Z ∼ 90◦. The altitude dependence
of the refractive index within the ith segment reads as

ni(h) = ni +
(

dn

dh

)
i

(Hi − h). (B7)

Table V summarizes the corresponding values of the
refractive-index values and gradients for the corresponding
segments.

For the calculation of the deterministic atmospheric extinc-
tion, the number density of absorbing and scattering particles
is required. The standard atmosphere model gives the follow-
ing dependence of the relative number density on altitude h
(given in meters) [58]:

N (h)/N0 = exp[−h/H0]. (B8)

Here, N0 is the number density at the observer level (N0 =
2.55 × 1025 m−3 at sea level) and H0 = 6600 m.

APPENDIX C: PATH ELONGATION DUE TO
ATMOSPHERIC REFRACTION

In the presence of the Earth’s atmosphere, the slant path
L is elongated due to refraction on interfaces of atmospheric

TABLE V. The defined reference levels, gradients, and values of
the linearly segmented refractive-index height profiles from surface
to 85 km.

Refractive-index
Subscript Height gradient Refractive index
i Hi (km) (dn/dh)i×10−6 (km−1) (ni − 1) × 108

0 0 27 340
1 5 25.68 14 660
2 7 17.58 11 142
3 11 12.50 6 141
4 15 7.183 3 268
5 20 3.565 1 485
6 32 1.042 235
7 47 0.134 34
8 51 0.034 21
9 71 0.010 1
10 84.8 0.001 0.1

layers with different refractive indices (see Fig. 11). In the real
atmosphere the gradient of the refractive index is a continuous
function of height. We use the standard atmosphere model and
consider 10 atmospheric layers (cf. Appendix B, Table V).
The refractive index is linearly segmented, such that it is a
linear function of height within one layer [cf. Eq. (B7)].

As a consequence of atmospheric refraction, the apparent
zenith angle Za starts to deviate from the true zenith angle Z .

FIG. 11. The influence of atmospheric refraction on the elonga-
tion of the optical ray trajectory (a). The geometrical path of length
OS deforms into the curved path OP1P2 . . . PnS while the true zenith
angle Z changes to the apparent zenith angle Za. The magnified upper
part of the ray path shows the relevant refraction angles (b).
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These angles are related with each other as

Za = arcsin

(
1

n0
sin Z

)
, (C1)

where n0 = 1.000 27 is the refractive index of the lower layer
of atmosphere [54]. Near sea level the two zenith angles differ
by approximately a minute of arc at Z = 45◦ and half a degree
near the horizon.

Refraction of optical rays happens on the ith interface of
two adjoined ith and (i + 1)th layers of heights Hi and Hi+1,
correspondingly, and is characterized by the angle of inci-
dence π/2 − βi and the angle of refraction ψi (see Fig. 11).
If the ray enters the observer telescope at the zenith angle Za,
Snell’s law yields the geometric invariant

n0R⊕ cos α01 = ni(R⊕ + Hi ) cos βi = const, (C2)

where

α01 = π/2 − Za (C3)

is the elevation angle at the observer O and R⊕ is the Earth’s
radius. Using the notation

Ci = R⊕
R⊕ + Hi

, CH = R⊕
R⊕ + H

, (C4)

with H being the altitude of the satellite above the ground, we
derive from Eq. (C2)

βi = arccos

(
n0

ni
Ci sin Za

)
= arccos

(
Ci

ni
sin Z

)
,

βN = arccos (n0CH sin Za) = arccos (CH sin Z ), (C5)

where the index N corresponds to the last atmospheric layer at
altitude 85 km which is accounted in our calculations (in our
case N = 10). We also use the index i = 1, . . . , N to denote
the atmospheric layers above the ground level.

Using simple geometric considerations and Snell’s law, we
derive the following relations for the angles relevant for the
calculation of the ray path length,

αi = arccos

(
ni

ni−1
cos βi

)
, (C6)

α0i = αi − α0(i−1) + βi + χi + ψi − Za, i �= 1 (C7)

χi = ri − (αi − βi ), (C8)

ψ1 = π − Za − δ1 − α1 + α01 − χ1, (C9)

ψi = arcsin

(
Ci

Ci−1
sin[Za − βi−1 + α0(i−1)]

)
, i �= 1

(C10)

ψ = arcsin

(
CH

CN
sin[rN − δN + ψN ]

)
. (C11)

The remaining angles to be determined are δi and ri. The
former angle is associated with the local elevation angle error
and can be found from the law of sines

(R⊕ + Hi−1) cos α0i = (R⊕ + Hi ) cos αi, (C12)

(R⊕ + Hi−1) cos (α0i − δi )

= (R⊕ + Hi ) cos (αi + χi − δi ). (C13)

Solving these equations with respect to δi we derive

tan δi = cos αi − cos(αi + χi )

sin(αi + χi ) − Ci/Ci−1 sin α0i
, (C14)

tan δN = cos αN − cos(αN + χN )

sin(αN + χN ) − CH/CN sin α0N
. (C15)

The remaining angle ri is the bending angle within an ith layer
which is calculated from the refraction integral [48]

ri =
∫ Hi

Hi−1

dh
1

n

dn

dh

cos βi−1√
(nCi−1/ni−1Ci )2 − cos2 βi−1

. (C16)

The total angle r =∑i ri is known in optical astronomy as
atmospheric refraction. It can be shown that the refraction
integral (C16) can be simplified to the following approximate
analytical form:

ri ≈ 2
ni−1 − ni

tan βi + tan βi−1
, (C17)

provided that Hi − Hi−1  Hi−1 and if the refractive-index
gradient dn/dh is constant within the atmospheric layer.

The length of the optical ray path inside the ith layer can be
found from the triangle CPi−1Pi applying the law of cosines

Li = {(R⊕ + Hi−1)2 + (R⊕ + Hi )
2

− 2(R⊕ + Hi−1)(R⊕ + Hi ) cos [�(Za, ri )]}1/2, (C18)

�(Za, ri ) = αi − α0i + χi. (C19)

For the optical path length in vacuum we find from the triangle
CPN S

LN+1 = {(R⊕ + HN )2 + (R⊕ + H )2

− 2(R⊕ + HN )(R⊕ + H ) cos [�(Za, rN )]}1/2.

(C20)

Herein, we need the angle

�(Za, rN ) = rN − δN + ψN − ψ. (C21)

The ratio of the total length of the ray trajectory to the
geometric path length [cf. Eq. (1)] reads as

εr = 1

L

N+1∑
i=1

Li, (C22)

which is the elongation factor due to atmospheric refraction.
The elongation factor (C22) is calculated without taking

into account the finite radius of curvature of optical rays.
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Actually, the beam curvature near the ground is the smallest
one, i.e., the ray bending is the greatest. In this case the
empirical function for ray curvature K is given by [55,56]

K = R⊕

{
670.87

P

T 2
[0.034 + λ(h)10−3] sin Za

}−1

, (C23)

where T is the temperature in K, P is the pressure in mb,
λ(h) = dT/dh is the lapse rate in K/km. For the standard
atmosphere at Za = 90◦ the curvature reaches its minimum
value of 4.4R⊕. Since this value is still larger than the
Earth’s radius, we can assume that the optical rays within
each atmospheric layer can be considered to be straight
lines.

APPENDIX D: ATMOSPHERIC MODEL OF OPTICAL
TURBULENCE

Dewan et al. [111] proposed a simplified version of the
multiparameter VanZandt model [112] for the refractive-index
structure parameter variation with altitude. This so-called
Air Force Geophysics Laboratory (AFGL) model utilizes the
meteorological data derived from radiosondes and yields the
following analytic formula for the refractive-index structure
parameter profile:

C2
n (h) = 2.8[M(h)]2(0.1)

4
3 10Y (h). (D1)

Here, the factors (0.1)4/310Y (h) determine the outer scale
of turbulence in a statistical manner. The function Y (h) is
empirically related with the altitude-dependent wind shear
S(h) and the lapse rate λ(h) as [113]

Y (h) = 2.9767 + 27.9804S(h) + 2.9012λ(h) + 1.1843λ(h)2 + 0.1741λ(h)3 + 0.0086λ(h)4 (lower troposphere) (D2)

= 0.7152 + 30.6024S(h) + 0.0003λ(h) − 0.0057λ(h)2 − 0.0016λ(h)3 + 0.0001λ(h)4 (troposphere) (D3)

= 0.6763 + 8.1569S(h) − 0.0536λ(h) + 0.0084λ(h)2 − 0.0007λ(h)3 + 0.00002λ(h)4 (stratosphere). (D4)

The parameter M is connected with the gradient of the index
of refraction

M(h) = −79 × 10−6P(h)N2(h)

gT (h)
, (D5)

where P is the pressure in mb, the temperature T is given in
K, the buoyancy frequency (Brunt-Väisälä frequency) in s−1.
The buoyancy frequency reads as

N2 = g[λ(h) + γ ]

T (h)
, (D6)

where g is the acceleration of gravity, and γ = 9.8 K/km is
the dry air adiabatic lapse rate. The altitude dependencies of
pressure and temperature are governed by Eqs. (B1), (B3), and
(B4).

The altitude variation of the refractive-index structure
parameter can be determined from Eq. (D1), provided the
altitude variation of the wind shear S(h) is known. In this
study we assume horizontal homogeneity of the atmosphere,
which means that the mean wind properties do not de-
pend on the horizontal position of the observer. Thus, we
assume a flat terrain and neglect any spatial inhomogene-
ity of Earth’s surface. This assumption is equivalent to the
independence of the vertical wind component on altitude
[114]. For the determination of the vertical wind shear com-
ponents due to meridional and zonal winds we use the
HWM93 thermospheric wind model [115]. The examples
of winds and corresponding shear components are shown
in Fig. 12 for summer night and the observer located near
Munich [116].

For the atmospheric boundary layer close to the Earth’s
surface, the refractive-index structure parameter given by
Eq. (D1) is not applicable. We use the Walters and Kunkel
model (WK) [117] for the C2

n profile within the boundary

layer,

C2
n (h)

C2
n (h0)

= (h/h0)−2/3, h0, h � hi (D7)

for nighttime and

C2
n (h)

C2
n (h0)

=
(h/h0)−4/3, h0, h � 0.5hi

(0.5hi/h0)−4/3, 0.5hi � h � 0.7hi

2.9(0.5hi/h0)−4/3(h/hi )3, 0.7hi � h � hi

(D8)
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FIG. 12. Typical example of the mean meridional (solid line) and
the zonal (dashed) winds is shown together with the corresponding
vertical wind shear components. The HWM93 empirical wind model
[115] for the northern hemisphere (48◦ N, 11.5◦ E) summer (day 236)
at midnight has been used for the calculation.
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FIG. 13. Profiles of the refractive-index structure function:
AFGL, WK, and Hufnagel models are compared to the thermosonde
data adopted from Ref. [119]. The inset shows the refractive-index
structure parameter within the boundary layer with respect to the
inversion height.

for daytime. Here, hi is the height of the inversion layer above
the ground (hi ∼ 0.5 km at nighttime and ∼1 km at daytime),
h0 is the reference height referred to as the Monin-Obukhov
scale (h0 ∼ 10 m at nighttime and ∼5 m at daytime).

Figure 13 shows the profile of the refractive-index structure
parameter calculated using the AFGL and the WK models
[cf. Eqs. (D1), (D7), and (D8)]. For comparison, the widely
used Hufnagel model [118] as well as the estimation of C2

n
based on thermosonde data [119] are shown. The AFGL +
WK model agrees better with the experimental profile than
the Hufnagel model. The difference between nighttime and
daytime profiles is negligibly small for the altitudes above
the inversion layer height hi. Figure 12 shows the different
behavior of the wind shear for meridional and zonal winds.
However, this anisotropy has almost no influence on the C2

n
profile. As a consequence, we could neglect the dependence
of this turbulence characteristics on the direction of view of
the observer.

Finally, we relate the vertical profile C2
n (h) to the corre-

sponding profile along the slant range. For the uplink config-
uration, the relation between the height h of the certain point
along the slant path and the distance between this point and
the light source Lrξ , ξ ∈ [0, 1], can be found from the law of

cosines [cf. Ref. [61] and see Fig. 2(a)]

hUL(ξ ) = R⊕

√
1 + 2

Lξ

R⊕
cos Z + (Lξ )2

R2⊕
− R⊕

≈ R⊕

√
1 + 2

Lrξ

R⊕
cos Za + (Lrξ )2

R2⊕
− R⊕. (D9)

Similarly, for the downlink we derive by replacing ξ → 1 − ξ

hDL(ξ ) ≈ R⊕

√
1 + 2

Lr[1 − ξ ]

R⊕
cos Za + (Lr[1 − ξ ])2

R2⊕
− R⊕.

(D10)

Under the condition Lr/R⊕  1, these equations reduce to

hUL(ξ ) ≈ Lrξ cos Za, (D11)

hDL(ξ ) ≈ Lr (1 − ξ ) cos Za. (D12)

The refractive-index structure parameter given by Eqs. (D1),
(D7), and (D8) maps for the uplink slant range as
C2

n (h) → C2
n (hUL) = C2

n (Lr, ξ ) and for the downlink as
C2

n (h) → C2
n (Lr, 1 − ξ ).

APPENDIX E: APPROXIMATION OF EQ. (38) FOR
SATELLITE-MEDIATED LINKS

In this Appendix we give the approximation for the integral
kernel (38). We consider the downlink configuration and just
note that the formulas for uplink are obtained in the similar
footing with the variable replacement ξ → 1 − ξ . For the
case of strong turbulence or long propagation distances in
turbulence the coherence radius ρ0 [cf. Eq. (25)] is small. This
condition is well satisfied for satellite-mediated atmospheric
links. In this case, the exponential in Eq. (38), J (r, r′

1, r′
2, r′

3),
differs significantly from zero in the following regions:

|r′
2|ξ � ρ0, |r′

3|ξ, |r(1 − ξ ) + r′
1ξ | � ρ0; (E1)

|r(1 − ξ ) + r′
1ξ | � ρ0, |r′

2|ξ, |r′
3|ξ � ρ0; (E2)

|r′
2|ξ, |r′

3|ξ, |r(1 − ξ ) + r′
1ξ | � ρ0. (E3)

The function (38) can be approximated then as linear combi-
nation of three terms [76,120]

J = J1 + J2 − J3, (E4)

J1(r, r′
1, r′

2, r′
3) = exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

|r(1 − ξ ) + [r′
1 + (−1) jr′

3]ξ | 5
3

]

×
∞∑

n=0

ρ
− 5

3 n
0

n!

{∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

(|r(1 − ξ ) + [r′
1 + (−1) jr′

2]ξ | 5
3 − |[r′

2 + (−1) jr′
3]ξ | 5

3
)}n

, (E5)
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J2(r, r′
1, r′

2, r′
3) = exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

|[r′
2 + (−1) jr′

3]ξ | 5
3

]

×
∞∑

n=0

ρ
− 5

3 n
0

n!

{∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

(|r(1 − ξ ) + [r′
1 + (−1) jr′

2]ξ | 5
3 − |r(1 − ξ ) + [r′

1 + (−1) jr′
3]ξ | 5

3 )

}n

,

(E6)

J3(r, r′
1, r′

2, r′
3) = exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

{|[r′
2 + (−1) jr′

3]ξ | 5
3

+ |r(1 − ξ ) + [r′
1 + (−1) jr′

3]ξ | 5
3
}] ∞∑

n=0

ρ
− 5

3 n
0

n!

{∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

|r(1 − ξ ) + [r′
1 + (−1) jr′

2]ξ | 5
3

}n

.

(E7)

The first term (E5) accounts for the contributions from regions (E1) and (E3). The term (E6) accounts for the regions (E2) and
(E3), while the term (E7) eliminates the double counting of the region (E3) in the integral kernel J . In the first approximation
(n = 0) we have

J (r, r′
1, r′

2, r′
3)

≈ exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

|r(1 − ξ ) + [r′
1 + (−1) jr′

3]ξ | 5
3

]

+ exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

|[r′
2 + (−1) jr′

3]ξ | 5
3

]

− exp

[
−ρ

− 5
3

0

∫ 1

0
dξ

C2
n (Lr, 1 − ξ )

C2
n,0

∑
j=1,2

{|[r′
2 + (−1) jr′

3]ξ | 5
3 + |r(1 − ξ ) + [r′

1 + (−1) jr′
3]ξ | 5

3
}]

, (E8)

which already gives a good approximation to the kernel J (cf.
Ref. [76]).

APPENDIX F: PHENOMENOLOGICAL MODEL OF
APERTURE-AVERAGED SCINTILLATIONS

The rigorous analysis of satellite-mediated quantum com-
munication links should account for turbulent disturbances
for a wide range of the zenith angle. Here, we calculate
the aperture-averaged scintillation index with accounting for
saturation effects. The aperture-averaged scintillation index
can be obtained by substitution of Eq. (28) in Eq. (27), which
leads to [40]3

σ 2
η = 1

〈I〉2

∫
R2

d2κ FI (κ, Lr ) fA(κ), (F1)

where

fA(κ) =
∣∣∣∣ 1

A

∫
A

d2r eiκ·r
∣∣∣∣2 (F2)

is the aperture filter function, and 〈I〉 is the mean intensity.
The Fourier-transformed correlation function of the intensity

3Originally, the expression for the scintillation index for the log
transmittance σ 2

log η is derived in Chap. 13 of Ref. [40]. Equation (F1)
is then obtained from the relation σ 2

η = exp[σ 2
log η] − 1 (cf. Ref. [41]).

fluctuations is given by

FI (κ, Lr ) =
∫
R2

d2r BI (r, Lr )e−iκ·r,

(F3)
BI (r1 − r2, Lr ) = 〈[I (r1, Lr ) − 〈I〉][I (r2, Lr ) − 〈I〉]〉.

For a circular aperture of radius a the filter function (F2) is
easily evaluated to be

fA(κ) = fa(κ) =
[

2J1(κa)

κa

]2

, (F4)

where κ = |κ| and Jn(x) is a Bessel function of the first kind.
In the limiting case of the vanishingly small Fresnel num-

ber � = kW 2
0 /(2Lr ) → 0 the collimated beam with the initial

beam-spot size W0 can be considered as a plane wave. Indeed,
for the satellite-mediated link under consideration the slant
range Lr is large enough even at the zenith and � → 0. In this
limiting case, the intensity spectral density FI (κ, Lr ) can be
obtained by solving the equations of geometrical optics [40]4

FI (κ, Lr ) = 2π〈I〉2κ4
∫ Lr

0
dzz2�n(κ, z), (F5)

4Reference [40] derives the formula for the logarithmic amplitude
of the light wave χ = log(A/A0). Under weak fluctuation conditions,
the relation FI (κ, Lr ) = 4〈I〉2Fχ (κ, Lr ) is valid [41].
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where the turbulence spectrum �n is given in Eq. (16). For the
Kolmogorov turbulence spectrum (18) the intensity spectral
density FI (κ, Lr ) is proportional to κ1/3 in the inertial range.
Thus, for large values of the transverse wave number the
intensity spectral function diverges. In order to remedy this
nonphysical effect, we introduce the cutoff of higher spatial
frequencies �κ such that κ ∈ [0,�κ]. The specifical choice
of �κ will be discussed later in this Appendix. Taking into
account this cutoff effect, the aperture averaged scintillation
index is calculated straightforwardly:

σ 2
η = 16π2

a2

∫ Lr

0
dzz2

∫ �κ

0
dκ κ3�n(κ, z)[J1(κa)]2. (F6)

The obtained result shows that the intensity fluctuations are
directly related to spectrum of turbulent fluctuations of the
refractive index.

For the Kolmogorov turbulence spectrum (18), the integra-
tions can be performed, provided the altitude dependence of
structure constant is known. Here, we adopt a simple depen-
dence on the z variable assuming that the strongest turbulence
is near the Earth’s surface and decreases exponentially with
the height [71]

C2
n (z) = C2

n,0 exp

[
− z

H0 sec Za

]
. (F7)

Here, H0 is the characteristic length at zenith and the factor
sec Za accounts for the increase of this length for the slant
paths. The integral with respect to z in Eq. (F6) is evaluated as

I (Za) = 2(H0 sec Za)3 − exp

[
− Lr (Za)

H0 sec Za

]
H0 sec Za

× {
2(H0 sec Za)2 + 2H0 sec ZaLr (Za) + L2

r (Za)
}
.

(F8)

In the limit of infinitely distant light source Lr → ∞, we get
I (Za) = 2(H0 sec Za)3. Consequently, the scintillation index
(F6) for �κ → ∞ has the same dependence on the zenith
angle as those obtained within the Rytov approximation [cf.
Eq. (27)].

The cutoff spatial frequency �κ in Eq. (F6) can be
estimated from the following considerations. The rigorous
asymptotic analysis shows [121] that for long propagation
paths, the covariance function BI (r, Lr ) in Eq. (F5) differs
from zero if |r| � �r, where

�r = 0.18λLturb/ρ0. (F9)

Here, λ is the optical wavelength, Lturb is the propagation
path length in turbulence, and ρ0 is the spatial coherence
length given by Eq. (25). According to Eq. (F7) the turbu-
lence is sufficient for heights h � H0. Hence, without loss
of generality we set Lturb = H0 sec Za. The finiteness of the
definition domain for the covariance function BI (r, Lr ) in-
troduces the cutoff frequency �κ for the spectral density
FI (κ, Lr ). Using the relation of Fourier analysis �κ�r � μ,
we may estimate �κ = μ/�r, where μ ∼ 1 is a phenomeno-
logical parameter. It is easy to see that �κ ∝ (sec Za)−8/5

and decreases while the zenith angle approaches the horizon.
For further insight into physical meaning of the parameters
�r and �κ we point the reader’s attention on Ref. [122].

Finally, performing the integration of (F6) over κ and over
z variable [cf. Eq. (F8)] we obtain Eq. (49), where only
the first term of I (Za) is accounted. At the cost of analytic
simplicity, the obtained result can be further generalized for
the case of Cassegrain-type apertures with the inner circular
obscuration [93].

APPENDIX G: DECOY STATE: STATISTICAL
FLUCTUATION ANALYSIS

In this Appendix, we summarize the method for estimation
the lower (upper) bounds of single-photon gain and error rate
taking into account the finite key effects [109]. On quantum
state preparation stage, Alice generates each bit in her raw
key by randomly choosing the encoding basis (X or Z) and
the intensity (corresponding to the vacuum state, weak-decoy
state, and signal state). The total number of bits sent by Alice
to Bob is given by

N = Ns + Nd + Nv, (G1)

where the superscripts correspond to signal (s), weak-decoy
(d), and vacuum (v) states. We denote qa = Na/N as the
rate with which Alice encodes a state with intensity μa,
a = s, d, v. The conditional probability that an i-photon
state corresponds to a coherent pulse with the intensity
μa is

pa
i ≈ Na

i

Ni
= Nae−μa (μa)i/i!∑

α∈{s,d,v} Nαe−μα (μα )i/i!
, (G2)

where the approximation sign is due to statistical fluctuations.
The finiteness of numbers of generated bits yields

q = Ns

2N
(G3)

for the q parameter in Eq. (68).
Bob measures the received states in X or Z basis chosen

randomly. After basis reconciliation and key sifting, Bob
possesses the total number of sifted bits

M = Ms + Md + Mv. (G4)

For the atmospheric quantum channel, the bit numbers N and
M are related as

M = 1
2ηdηN, (G5)

where the factor 1
2 is due to the sifting procedure, ηd is the

deterministic channel loss including the detector efficiency
given by Eq. (72), and η is the fluctuating channel transmit-
tance. The bit number corresponding to the i-photon state is
determined as

Ma
i ≈ pa

i Mi = pa
i

∑
α∈{s,d,v}

Mαe−μα (μα )i/i!, (G6)

where pa
1 is the same as the probability (G2) chosen by Alice.

After error correction and error verification, the secure key
rate depends on a lower bound, on the gain of single-photon
components of the signal state QL

1 , and an upper bound, on
the corresponding error rate eU

1 . The estimation of QL
1 and

eU
1 should be performed in each basis. The corresponding

components we denote by superscripts x and z referring to
the X and Z bases, correspondingly. For the Z basis the
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bounds on the single-photon gain and the error rate are
given by

QzL
1 = Y zL

1 μse
−μs , (G7)

ezU
1 = exU

1 + θU , (G8)

where

Y γ L
1 = μs

μsμd − μ2
d

(
Qγ L

μd
eμd − μ2

d

μ2
s

QγU
μs

eμs − μ2
s − μ2

d

μ2
s

Y U
0

)
,

γ = x, z (G9)

exU
1 =

(
Eμd Qx

μd

)U
eμd − e0Y L

0

μdY xL
1

. (G10)

Here, e0 = 1
2 and the lower and upper bounds

QzL
μd

= Qz
μd

1 + δ(Mdz )
= Qz

μd

1 + δ
(
NdzQz

μd

) , (G11)

QzU
μs

= Qz
μs

1 − δ
(
NszQz

μs

) , (G12)

Y L
0 = Y0

1 + δ(NvY0)
, Y U

0 = Y0

1 − δ(NvY0)
, (G13)

(
Eμd Qx

μd

)U = Ex
μd

Qx
μd

1 − δ
(
NdxEx

μd
Qx

μd

) (G14)

are estimated by using the Chernoff bound method and are
related to the overall gain (70), with the overall quantum bit
error rate (74) components, and with the counting rate for

vacuum decoy states and dark count contributions

Y0 = Mv

N (e−μs qs + e−μd qd + qv )
+ Y DC

0 . (G15)

The deviation function

δ(x) = −3 ln(ε/2) +
√

[ln(ε/2)]2 − 8 ln(ε/2)x

2[x + log(ε/2)]
(G16)

can be determined for the specified failure probability ε.
Finally, the upper bound θU in (G8) is obtained by numer-

ically solving

ε =
√〈

MxL
1

〉
tr + 〈MszL

1

〉
tr√〈

exU
1

〉
tr

(
1 − 〈exU

1

〉
tr

)〈
MxL

1

〉
tr

〈
MszL

1

〉
tr

(G17)

× 2−(〈MxL
1 〉tr+〈MszL

1 〉tr )ξ (θU )

with respect to θU [109,123]. Here, the averaging 〈. . .〉tr is
performed according to Eq. (67) and the lower bounds of
sifted key numbers are

Mγ L
1 = Y γ L

1 N (e−μsμsq
s + e−μd μd qd ), γ = x, z (G18)

MszL
1 = [1 − δ

(
ps

1MzL
1

)]
ps

1MzL
1 (G19)

with qa = Na/N . In Eq. (G17) the exponential function ξ (θ )
reads as [123]

ξ (θ ) ≈ ln 2

2

(1 − qx )qx(
1 − 〈exU

1

〉
tr

)〈
exU

1

〉
tr

θ2, (G20)

where qx = 〈MxL
1 〉tr/(〈MxL

1 〉tr + 〈MszL
1 〉tr ) is the bias ratio.
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