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Dark states are eigenstates or steady states of a system that are decoupled from the radiation. Their use, along
with associated techniques such as stimulated Raman adiabatic passage, has extended from atomic physics,
where it is an essential cooling mechanism, to more recent versions in the condensed phase where it can
increase the coherence times of qubits. These states are often discussed in the context of unitary evolution
and found with elegant methods exploiting symmetries, or via the Morris-Shore transformation. However, the
link with dissipative systems is not always transparent, and distinctions between classes of coherent population
trapping are not always clear. We present a detailed overview of the arguments to find stationary dark states
in dissipative systems, and examine their dependence on the Hamiltonian parameters, their multiplicity, and
purity. We evidence the class of dark states that depends not only on the detunings of the lasers but also on their
relative intensities and phases. We illustrate the criteria with the more complex physical system of the hyperfine
transitions of 87Rb and show how a knowledge of the dark-state manifold can guide the preparation of pure
states.
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I. INTRODUCTION

The concept of dark states is at the heart of various
atomic and optical processes. The most important are coherent
population trapping (CPT) [1,2], electromagnetically induced
transparency (EIT) [3,4], and stimulated Raman adiabatic
passage (STIRAP) [5]. These three processes have been most
studied in the so-called � three-level atomic systems, con-
sisting of two ground states and one excited state. The two
ground-excited transitions can be independently driven by
coherent laser fields. In such � systems, the dark state consists
of a coherent superposition of both ground states, which is not
coupled to the excited state. Hence, the atom in a dark state
can neither absorb nor emit light, hence its name.

In CPT, it is the optical pumping which, through sponta-
neous emission, will populate the dark state. The EIT process
can be seen as the direct manifestation of the dark state since
once the atoms constituting the medium have been completely
pumped to the dark state, the medium becomes transparent.
The CPT and EIT processes are generally considered in a
stationary regime, whereas for the STIRAP process, both laser
fields are pulsed in such a way as to adiabatically transfer the
population from one of the ground states to the other. The
STIRAP process can be seen as an adiabatic following of the
instantaneous dark state of the Hamiltonian [6].

Originating in atomic and molecular physics [7,8], the
preparation of dark states has been exploited for several
purposes. It is extensively used for atomic cooling [9–11]
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by means of the temperature-dependent Doppler shift. Using
counterpropagating laser beams, the necessary detuning con-
dition that both lasers must fulfill for the existence of a dark
state is only fulfilled by atoms with no velocity component in
the propagation direction of the laser beams. Optical pumping
will thus populate the dark state corresponding to these zero-
velocity atoms.

In metrology, CPT can be incorporated in a variant of Ram-
sey interferometry where it provides the notable advantages of
replacing magnetic fields and microwave pumping by optical
pumping [12–14]. Recently, the preparation of an initial dark
state was used to obtain a lower limit for the electric dipole
moment of the electron [15].

It has been used for testing QED and extended to state
initialization in quantum information [16,17] including qubit
gates, on solid-state systems such as spin systems in nitrogen
vacancies [18], in superconducting circuits [19], and in semi-
conductor heterostructures [20–23]. Using CPT, the coher-
ence lifetimes of qubits have been successfully extended by
orders of magnitude [24,25]. Some recent proposals suggest
its use in plasmonic systems [26]. Multiple-level systems
are also quite common in atomic and solid-state devices
[5,17,24,25,27–29].

There are two viewpoints of dark states depending on
whether dissipation processes are included or not. In a Hamil-
tonian system with unitary evolution, coherent superposition
of the ground states decouples from a radiation field provided
some conditions are met for the field frequencies. In a dissi-
pative system, this superposition becomes the stationary state
regardless of the initial conditions.

In order to find the possible dark states an atomic or
molecular system can support, various approaches have been
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FIG. 1. N-level system consisting of a ground-state manifold
coupled radiatively to an excited-state manifold. The excited state
can also relax dissipatively to the ground state.

followed. An analysis based on symmetries and constants
of the motion has permitted the generalization to multilevel
systems, as long as the system preserves some symmetries
notably with respect to the decouplings [30,31]. The Morris-
Shore (MS) transformation separates a set of Ng degenerate
ground states and Ne degenerate excited states into pairs
of bright states, dark states, and spectator states [32–34],
recently extended to the case of small detunings [35]. The
transformation relies on having a number of ground states
in excess in order to result in dark states. There are other
instances, however, where certain states might decouple from
the radiation that fall outside of these considered cases
(for example, for an equal number of ground and excited
states).

Beyond the symmetry considerations and MS transforma-
tion, it is common to calculate numerically the time evolution
of the density matrix equations using a Lindblad operator
as the generator of the dynamics. As such, dark states can
be confirmed and their departure thereof studied whenever,
for example, ground-state decoherence is present. However,
such a numerical approach can sometimes miss some of the
dark-state conditions at the same time that it fails to provide
a comprehensive framework such as the MS transformation
provides in the case of spectator states. As such a more
direct and more efficient method to find dark states is desired.
Furthermore, given the recent clarifications on the properties
of dissipative steady states [36]—their unicity and purity—a
review of dark states in light of these advances is needed.

In this work, we give an overview for the conditions to
find dark states in dissipative systems whose dynamics is
described by a Lindblad equation [37,38], and systemati-
cally study the multiplicity of dark stationary states, their
purity, and their dependence on laser field detunings and Rabi
frequencies.

II. GENERAL CONSIDERATIONS

A. System and definitions

We consider an N-level system which can be divided into
Ng ground states |gi〉 with energy E (g)

i (i = 1, 2, . . . , Ng),
and Ne = N − Ng excited states |e j〉 with energy E (e)

j ( j =
1, 2, . . . , Ne), that decay to the ground states via spontaneous
emission or coupling to a bath, at rate γi j (see Fig. 1). The

Hamiltonian of the system can be written as

H (t ) =
Ng∑

i=1

E (g)
i |gi〉〈gi| +

Ne∑
j=1

E (e)
j |e j〉〈e j |

+
∑
i, j

Fi j (t )(|gi〉〈e j | + |e j〉〈gi|), (1)

where Fi j (t ) = 2Fi j cos(ωi jt + φi j ) represent the coherent
laser beams with frequencies ωi j coupling the manifold of
ground states to the manifolds of excited states.

We restrict our attention to the case where each transition
gi ↔ e j is driven by at most one laser, so that the problem can
be reduced to a time-independent one (see Appendix A). We
assume no spectral overlap between the transitions.

We suppose that there exists an interaction picture such
that in the rotating-wave approximation (RWA) the system
evolution is described by a Lindblad equation [37,38] ρ̇ = Lρ,
with a time-independent Lindblad operator L. The operator L
can be written as

L(ρ) = −i[H, ρ] +
∑
{i j}

γi jDi j (ρ). (2)

We set h̄ = 1 throughout the paper, and consider that energy
and frequency are equivalent. The Hamiltonian H is now time
independent and can be written in terms of the operators σ z

i j =
|gi〉〈gi| − |e j〉〈e j | (see Appendix A) as

H =
Ng∑

i=1

Ne∑
j=1

[
�i jσ

z
i j + (Vi j |gi〉〈e j | + H.c.)

]
, (3)

where Vi j = Fi jeiφi j are the complex Rabi frequencies and

�i j = E (e)
j − E (g)

i − ωi j (4)

is the detuning between the atomic transition energy E (e)
j −

E (g)
i and the laser frequency ωi j . γi jDi j (ρ) describes the decay

of excited state |e j〉 to ground state |gi〉. According to the
Lindblad equation [37,38],

Di j (ρ) = − 1
2 {σ †

i jσi j, ρ} + σi jρσ
†
i j, (5)

where {A, B} is the anticommutator of A and B and σi j =
|gi〉〈e j |.

We show in Appendix A that in the RWA this time-
independent formulation is possible if and only if there is at
most one laser coupling associated to each transition gi ↔ e j ,
as we have mentioned above, but also if, to each such coupled
transition, we can assign two real numbers εi, ε j such that

εi − ε j = ωi j . (6)

This condition cannot always be met for arbitrary frequencies
and can impose a relation between the laser frequencies.

There are also important cases of interest where control
fields are added within the ground or excited manifolds. These
can be resolved by block-diagonalizing them and redefining
the ground states |gi〉 or excited states |e j〉 so that the problem
is brought back to the desired form. Some of these schemes
have been shown to be desirable, for example, in the acceler-
ation of cooling of trapped ions [39–42].
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B. General conditions for the existence of dark states

We say that a stationary state is dark when it involves
only the ground-state manifold (there is no population in
the excited states). In general the steady state has nonzero
density on both the ground-state {|gi〉} and excited-state {|e j〉}
manifolds, and only fulfills the conditions of dark states for
specific values of the parameters. The problem of tuning to
dark states consists in finding the set of parameters, that is,
the laser intensities and frequencies, for which the steady state
belongs to the ground-state manifold {|gi〉}.

It is convenient to rewrite the Lindblad operator as a non-
Hermitian Hamiltonian part LH̃ , and a quantum jump operator
J , as it has been written often, for example, in the study of
blinking or quantum trajectory theory [43]:

Lρ = LH̃ρ + J (ρ), (7)

where LH̃ρ = −i(H̃ρ − ρH̃†) with H̃ = H − i
 with 
 =∑
{i j} γi j (σ

†
i jσi j ) and J (ρ) = ∑

{i j} γi jσi jρσ
†
i j .

Our general method to obtain the conditions for dark states
relies on the following theorem.

Theorem 1. The N-level system whose evolution is gov-
erned by the Lindblad operator L given by Eq. (2) has a dark
state ρd if and only if LH̃ρd = 0.

In other words, a dark state is an eigenstate of LH̃ with
a zero eigenvalue. The proof is given in Appendix B; we
just give the heuristic of the proof here. It is based on two
observations:

(1) In general the eigenvalues of LH̃ have a real part
which is strictly negative, which is related to the fact that the
eigenvalues of H̃ have a strictly negative imaginary part due
to the total decay rate

∑
i γi j of excited states {|e j〉}. The only

way to have a zero eigenvalue is such that the corresponding
eigenstate ρd has no component on these decaying excited
states {|e j〉}.

(2) If LH̃ρd = 0 then also Lρd = 0 as the jump operator
gives zero, J (ρd ) = 0, on any state in the subspace spanned
by {|gi〉}.

In that way, when LH̃ρd = 0, we ensure that the corre-
sponding eigenvector is a steady state of L with no component
in the excited states. Hence, it is a dark state. The reverse is
also true: all dark state ρd fulfill LH̃ρd = 0.

As dark states belong to the subspace spanned by the
ground states only, it is thus convenient to define the pro-
jection operator on this subspace P = ∑Ng

i=1 |gi〉〈gi| and its
orthogonal complement Q = 1 − P = ∑Ne

j=1 |e j〉〈e j |, where 1
is the identity operator in the Hilbert space H spanned by the
N states. We also define superprojectors P and Q = 1 − P ,
where here 1 means the identity operator on the Liouville
space of linear operators on H. These superprojectors act as
superoperators in the following way: Pρ = PρP and Qρ =
PρQ + QρP + QρQ.

By inserting the identity P + Q = 1 between LH̃ and ρ in
the equation LH̃ρ = 0, and projecting the resulting equation
with the two superprojectors, we obtain the following two
equations:

PLH̃Pρ + PLH̃Qρ = 0,

QLH̃Pρ + QLH̃Qρ = 0. (8)

As dark states belong entirely to the ground-state manifold,
we can enforce the condition Pρ = ρ and thus Qρ = 0. In
Appendix C we show that using these conditions, Eqs. (8)
become

[PHP, ρ] = 0, (9)

QHPρ = 0. (10)

From the first equation, Eq. (9), we infer that there exists
a common orthonormal basis of PH in which the matrix
representation of ρ and PHP is diagonal. But PHP is diagonal
in the {|gi〉} basis,

PHP =
Ng∑

i=1

Ei|gi〉〈gi|, (11)

where we have defined [see Eqs. (3) and Eq. (4)]

Ei =
∑

j

�i j . (12)

Therefore, if the PHP spectrum is nondegenerate then the
only solutions to Eq. (9) are matrices ρ which are also
diagonal in this basis. But this is a trivial solution and in
this case Eq. (10) implies that Vi j = 0. Hence, nontrivial
solutions can arise if and only if PHP has a degenerate
spectrum. This degeneracy condition translates to a constraint
on the laser frequencies. For instance, the requirement that
two PHP eigenvalues are equal, Ei = Ei′ , consists in a relation
between the detunings

∑
j (�i j − �i′ j ) = 0 [by Eq. (12)],

which translates into a relation between laser frequencies [see
Eq. (4)].

Let us denote Ps, the orthogonal projectors on the eigen-
subspace of dimension ds, associated to the ds − 1 times
degenerate eigenvalue Es. We have

∑
s Ps = P, PsPs′ = δss′Ps,

and
∑

s ds = Ng. Then PHP can be written as

PHP =
∑

s

EsPs, (13)

and the dark states ρ must have a block-diagonal form:

ρ =
∑

{s;ds>1}
PsρPs =

∑
{s;ds>1}

psρs, (14)

where ρs = PsρPs/Tr[PsρPs] is a ds × ds normalized density
matrix, and ps = Tr[PsρPs].

The second constraint given by Eq. (10) can now be written
as

∀s; ds > 1 QHPsρs = 0. (15)

We deduce that ρs can in principle be any positive, Hermitian,
with trace-one linear operator defined on ker[QHPs], the
kernel of QHPs ⊂ PsH.

To conclude this section, we summarize: To have a dark
state, PHP must have a degenerate spectrum; this puts a con-
straint on the laser frequencies. The dark state is a statistical
superposition of states ρs, defined on ker[QHPs], where Ps

are the orthogonal projectors on the eigensubspaces of PHP,
corresponding to degenerate eigenvalues of PHP. Depending
on the dimension of ker[QHPs] this last condition may or may
not impose a condition on the Rabi frequencies Vi j ; this is the
subject of the next section.
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Notice that including dissipation or dephasing within the
ground-state manifold destroys the interference of the transi-
tion amplitudes to the excited states, and it leads the system
to a bright state where it partially populates the excited states.
These scenarios have been considered in previous work where
the fluorescence intensity has been proposed as a measure of
the ground-state decoherence rate [44].

C. Dimension, unicity, and purity

In addition to the constraint on laser frequencies,
the condition that ρs must be defined on ker[QHPs]
can be satisfied if and only if the ker[QHPs] is not
empty, dim[ker[QHPs]] � 1. By the rank-nullity theorem,
dim[ker[QHPs]] + rank[QHPs] = rank[Ps] = ds. Hence, a
dark state can exist if and only if for at least one of the
eigensubspace PsH of dimension ds,

rank[QHPs] � ds − 1. (16)

As rank[QHPs] � rank[Q] = Ne, then two different cases are
in order:

Case 1. Ne � ds − 1. In this case, Eq. (16) is always ful-
filled, regardless of the values taken by the Rabi frequencies
Vi j . The constraint on the laser frequencies ωi j , giving the
degeneracy of PHP and determining the dimension ds of the
eigensubspace is necessary and sufficient for the existence of
a dark state. We have supposed that the constraint imposed by
the RWA [Eq. (6)] has already been fulfilled. The �, the M
systems, and the so-called fan [34] or multipod systems [28]
belong to this case. They are discussed in more detail in the
next section.

Case 2. Ne � ds. In this case, rank[QHPs] � Ne − 1 <

Ne = rank[Q]. Lowering the rank of QHPs to a lower value
than rank[Q] cannot be obtained for all values of the Rabi
frequencies. In other words, the Vi j must satisfy some relations
such that the kernel QHPs be nonempty. Therefore, in this
case, the existence of a dark state requires that, in addition
to the laser frequencies ωi j , the Rabi frequencies Vi j must
fulfill some constraints. The specific case Ng = Ne = 2 which
belongs to this case is discussed in more detail in the next
section.

In general, we see that when dim[ker[QHPs]] > 1, or when
there is more than one eigenvalue of PHP which is degen-
erate, then multiple dark states may exist. More specifically,
the stationary dark state can be represented by any density
operator ρ defined on

⊕
{s;ds>1} ker[QHPs] [see Eqs. (14) and

(15)]. That is, if Ns = dim[ker[QHPs]], then a stationary dark
state can be represented by any block-diagonal M × M den-
sity matrix, where M = ∑

{s;ds>1} Ns, where the sum runs over
all degenerate eigensubspaces PsH of H , and each block is an
Ns × Ns positive, Hermitian matrix. Therefore, the stationary
dark state which is reached asymptotically in time will depend
on the initial state. The dark state will be unique if and only
if there is only one eigenvalue Es which is degenerate, and
dim[ker[QHPs]] = 1. We note that in this case the dark state
is a pure state. We conclude that, for dark states, unicity
implies purity. Hence, if there is a mixed dark state then it
is not unique. Indeed, suppose that the dark state is a mixed
state ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2|, where p1 and p2 are the
eigenvalues of ρ and |ψ1〉, |ψ2〉, are the two corresponding

orthonormal eigenvectors. Because ρ is a dark state, its two
eigenstates must belong to ker[PHP]. But then any linear
combination or any statistical superposition of two states will
fulfill the dark-state condition in Eq. (10). Then, there is not a
unique dark state.

A simple way to achieve a unique dark state is to tune the
frequencies such that the dimension of the unique degenerate
subspace ds fulfills the equality Ne = ds − 1. As we are in
case 1 (Ne � ds − 1), there is a dark state regardless of the
values of the Vi j , but in addition, dim[ker[QHPs]] = ds −
rank[PHQ] = ds − Ne = 1. In this case, rank[PHQ] = Ne =
ds − 1 because we suppose that each considered excited state
|e j〉 is coupled to at least one ground state |gi〉 by a Rabi
frequency Vi j .

This is why such M systems [34] have attracted attention
as a generalization of the very well-known � systems where
ds = Ng = 2 and Ne = 1. Specific examples illustrating these
general considerations are given in the next section.

III. EXAMPLES

In this section we illustrate the preceding discussion with
four examples that show the different cases from Sec. II C:
a case with a unique stationary dark state, a case with a dark
stationary subspace, and a case that is overspecified and whose
dark state depends on the Rabi frequencies. The fourth exam-
ple is the more complex system of the 11 hyperfine levels of
87Rb. For each case, we review the necessary condition to have
a degenerate subspace and a nonzero kernel for QHP, and
the resulting dark-state subspaces. We numerically calculate
the time evolution of the density matrix by evolving a single
initially populated ground level with the Lindbladian of the
system ρ(t ) = eLtρ(0).

A. Example 1: Unique stationary state for zigzag systems
(Ng = Ne + 1)

We refer to zigzag or M systems as those where the
connectivity given by the laser fields follows the pattern
ground-(excited-ground)n [Fig. 2(a)]. We consider in partic-
ular the M system with Ng = 3 and Ne = 2 which has been
discussed elsewhere [29]. It is a system where Ng = Ne + 1
so that dim[ker[QHP]] = 1 and dim[ker[L]] = 1, provided
that all detunings are equal. Figure 2(a) shows the evolution
of the populations with initial conditions ρ(t = 0) = |e1〉〈e1|
in the site basis {|gi〉; i = 1, 2, 3}, {|e j〉; j = 1, 2} and in the
eigenstate of the H basis {|φn〉; n = 1, . . . , 5}. As expected,
the system evolves towards a pure dark state, which here is
|φ5〉.

Variations on the zigzag systems can be obtained by in-
troducing additional coupling between ground and excited
states. These modify the configuration of the stationary state
over the ground-state sites but do not change its existence,
uniqueness, or purity. Because these additional couplings cre-
ate connectivity loops, the frequency of these additional laser
fields cannot be independently chosen if we want to satisfy the
RWA [Fig. 2(b) and Appendix A]. In the particular case we
are considering [see Fig. 2(b)], the additional Rabi frequency
V31 must correspond to a laser frequency ω31 fulfilling ω31 =
ω21 + ω32 − ω22. The maximum number of couplings is NgNe,
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(a)

(b)

FIG. 2. Populations of the M system as a function of time in the
(a) diagram of the M system connectivity and probability amplitudes
of the pure, dark, stationary state (red is positive probability ampli-
tude, blue is negative). The dynamics of the system is plotted in the
site basis and in the eigenstate basis. The system evolves towards a
pure state occupying only the ground states. Parameters are V21 =
0.56, V22 = 0.23, V32 = 0.45, γ11 = 0.04, γ12 = 0.01, γ13 = 0.09,
γ21 = 0.14, γ22 = 0.02, and γ23 = 0.04. (b) Same as in (a) in the
presence of the coupling V31 = 0.57. In both cases the dark state is
φ5 (all values in units of V11).

one for each couple (gi, e j ). Other control fields that fall
beyond the scope of this article are worth mentioning. For
example, Cerrillo et al. [39–42] proposed the addition of a
control field between the ground states of a � system as a
means for accelerating the cooling rate. While the ground
state can be prediagonalized and the magnitude of the ground-
excited couplings redefined (thus leading to the starting point
of this article), this has as a consequence to mix the restriction
on detunings with restrictions on Rabi frequencies, resulting
in dark states that depend on the intensity of the laser field as
well. This point is retaken in example 3, where other examples
of intensity-dependent dark states are illustrated.

B. Example 2: Dark stationary subspace for fan systems
(Ng � 2, Ne = 1)

Fan or multipod systems consist of Ng ground states and
a single excited state (the � configuration is also an instance
of a fan system although it has a unique stationary state). In
general the stationary states of fan systems can be arranged in
a number of degenerate subspaces, generated by pure states
|φn〉 = ∑ds

i=1 cni|gi〉 where from Eq. (10), the coefficients cni

must fulfill

ds∑
i=1

Vi1cni = 0, (17)

where Vi1 are the Rabi frequencies of the laser coupling
ground state |gi〉 and the unique excited state |e1〉. Fan systems
have stationary states of high multiplicity: for each subspace
of dimension ds the kernel of the Liouvillian will have a

dimension (ds − 1)2 as well as (ds − 1)2 conserved quantities
(obtained as the left eigenvalues of the Liouvillian [36,45]).

We specifically consider the case Ng = 4. We begin with
all four ground states forming a degenerate manifold and
detune them one by one to assess its effect on the steady
state—whether it remains dark, pure, and how its multiplicity
changes. We choose equal couplings to the excited state
for ease of visualization, and unequal relaxations back to
the ground state (V11 = V21 = V31 = V41 = 1, and γ11 = 0.1,
γ12 = 0.2, γ13 = 0.3, γ14 = 0.4).

a. Fully degenerate (d1 = 4). The fully degenerate fourfold
ground-state case has dim[ker[QHP]] = 3 and dim[ker[L]] =
9 [Fig. 3(a)]. A system initially in the excited state will
evolve towards a mixed 3 × 3 density matrix (Tr(ρ2) = 0.38)
determined by the conserved quantities that depend on the
relaxation rates. Thus, although the condition to have the
dark states depends exclusively on the Rabi frequencies and
frequency detunings, the steady-state density matrix also de-
pends on the relaxation rates and on the initial state.

b. One detuned ground state (d1 = 3). The system qual-
itatively similar to case (a) has dim[ker[QHP]] = 2 and
dim[ker[L]] = 4 [Fig. 3(b)]. The evolution converges to-
wards a 2 × 2 density matrix corresponding to a mixed state
(Tr(ρ2) = 0.51).

c. Pairwise degenerate states ((d1 = 2) and d2 = 2). De-
tuning a second ground state to the same value as the one
of case (b) results in pairwise degenerate levels [Fig. 3(c)].
We must separately consider the degenerate subspaces, so
we have dim[ker[QHP1]] = 1 and dim[ker[QHP2]] = 1, and
dim(ker(L)) = 12 + 12 = 2. The evolution converges to the
mixture of two pure states p1|φ1〉〈φ1| + p2|φ2〉〈φ2|, where
each |φn〉 (n = 1, 2) is the stationary state of a � system. The
weights pn (n = 1, 2) depend on the dissipation rates. These
are larger for the second manifold (|g3〉, |g4〉) than for the first
one (|g1〉, |g2〉) and so the second manifold is more heavily
populated.

d. Minimum degenerate manifold (d1 = 2). The final detun-
ing scheme keeps only a degenerate pair of levels [Fig. 3(d)].
Then, dim(ker(QHP1)) = 1 and dim(ker(L)) = 1. Because
the dark state is unique, it is also pure (as shown in Sec. II C).
By properly choosing the detunings an experimentalist can
localize in energy or space (if each energy level is spatially
separated) via pumping.

We also note that because the excited states relax to the
ground state, any dark state will accumulate all population and
become the steady state of the system. This is why in case (d)
the detuning of the other ground states does not render the
state bright.

C. Example 3: A Rabi frequency conditioned dark state:
Pairs of two-level systems (Ng � Ne)

We consider a system with two levels in the excited state
and two levels in the ground state (Fig. 4). As ds = 2, we have
dim[ker[QHP]] = 2 − rank[QHP]. The generic case corre-
sponds to rank[QHP] = rank[Q] = 2 and in this case the ker-
nel is empty—no dark state can exist in general, in contrast to
the previous two examples. We see that a dark state may exist
but not for all values of the Rabi frequencies Vi j . Furthermore,
the existence of a loop in the connectivity constrains the laser
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(a)

(b)

(c)

(d)

FIG. 3. Tripod system with four ground-state levels in different detuning configurations. Below the systems are shown the wave functions
that span the dark-state subspace (blue means negative coefficient, red positive coefficient, and the size of the circle is proportional to the
coefficient). On the left side are shown the evolution of the populations for an initially excited state. The purity of the steady state is evaluated
by calculating Tr(ρ2

SS). Parameters of the simulations are V21 = V31 = V41 = 1, and γ11 = 0.1, γ12 = 0.2, γ13 = 0.3, γ14 = 0.4 (all values in
units of V11).

frequencies to fulfill the relation ω21 = ω11 + ω22 − ω12, such
that the RWA results in a time independent Hamiltonian (see
Appendix A).

The Hamiltonian is (after a convenient referencing of the
zero point energy)

H =

⎡
⎢⎣

0 0 V11 V12

0 E2 V21 V22

V ∗
11 V ∗

21 E3 0
V ∗

12 V ∗
22 0 E4

⎤
⎥⎦. (18)

The degeneracy condition implied by Eq. (9) requires that
E2 = 0. The constraint given by Eq. (15) results in a relation
between Rabi frequencies:

V11V22 = V12V21. (19)

Figures 5(a) and 5(b) show the dynamics for a � system
and an Ng = 2, Ne = 2 system, respectively, to compare the
effect of an additional excited state tuned to the dark-state
condition. Although the dynamical evolution differs slightly,
the stationary state is identical. Increasing one of the Rabi fre-
quencies gets the system out of the dark-state condition onto
a mixed stationary state where all four states are occupied, as
shown in Fig. 5(c).

We can understand the setup and restrictions on the Rabi
frequencies by viewing the system as a pair of � geometries
on the same ground states. Because only one excited level is
enough to fully specify the dark-state condition (in general
to fully specify a unique dark state in an Ng degenerate state
one needs at least Ng − 1 excited states), the second � system
must be adapted to the ground-state population specified by
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FIG. 4. Excited-state population as a function of detuning and
field intensities for a pair of two-level systems. Parameters of the
simulations are V12 = 2, V12 = 1, and γ11 = 0.2, γ12 = 0.5, γ21 =
0.44, γ22 = 0.7 (all values in units of V22).

the first � system. This involves not only the intensities but
also the phases of the fields. It is important to remark that it
is not the photons of the field but the transition amplitudes
which interfere destructively (or not), and which depend on
the phase of the wave function in the ground state. The first
pair of fields (acting on the same excited state) determines
all the coefficients of the ground state. For the transition

(a)

(b)

(c)

FIG. 5. Excited-state population for a pair of two-level systems
in the case of (a) only coupling to one excited state (V21 = 1),
(b) coupling to both excited states in the dark-state condition (V21 =
1, V12 = 1, and V22 = 1), and (c) coupling to both excited states not
fulfilling the dark-state condition (V21 = 1, V12 = 1, and V22 = 2).
The relaxation rates are γ11 = 0.2, γ12 = 0.5, γ21 = 0.44, γ22 = 0.7
(all values in units of V11) and all detunings have been set equal.

dipole amplitudes of the second pair of pulses to interfere
destructively, these must have both the correct intensity and
phase. Not doing so imposes a second set of conditions on the
phase and amplitude of the wave-function coefficients which
does not result in the destructive interference of the transition
amplitudes induced by the first pair of fields.

The map of excited-state population vs Rabi frequency and
detuning (see Fig. 4) reveals a dark state in frequency detuning
as well as in Rabi frequency. The asymmetry in the map
between positive and negative values of the Rabi frequency
illustrates the phase sensitivity of the dark state.

Given a complex coupling Vi j = Fi jeiφi j , the requirement
(19) separates into a constraint on the magnitudes of the fields
|F11||F22| = |F12||F21| and on the relative phases φ11 + φ22 =
φ12 + φ21. Such a dependence of the dark state on the Rabi
frequencies could result in new metrology tools. Such phase-
sensitive dark states were initially investigated theoretically
in a double-� system [46] and experimentally [47]. They are
currently one of the newest research avenues [48] due to their
possibility of shifting the laser phase without a cavity [49].

D. Hyperfine splittings of 87Rb atoms

The characteristics of dark states outlined here allow a
shortcut to establish their presence in more complex systems.
As an example we take the study of CPT in multi-Zeeman-
sublevel 87Rb atoms, as considered by Ling et al. [50]. In
their publication, Ling et al. investigated the possibility of ob-
taining CPT using only two copropagating linearly polarized
lasers addressing the two transitions that connect the higher
energy level P1/2, F ′ = 1 to the two lower levels S1/2, F = 2
and S1/2, F = 1, respectively. The main point is that each of
these three levels has a hyperfine sublevel structure. Indeed,
the S1/2, F = 2 is composed by five degenerated sublevels
(mF = −2,−1, . . . , 2), and both P1/2, F ′ = 1 and S1/2, F = 1
are composed by three degenerated sublevels each (mF =
−1, 0, 1). Taking the quantization axis as the propagation
direction results in σ+, σ− transitions with equal strength, as
both lasers are linearly polarized [50]. The energy levels as
well as all possible transitions (σ+, σ−, and s) are shown in
Fig. 6 (boxed scheme).

We expand the scope of possible transitions beyond those
considered by Ling et al. by introducing additional lasers
that can induce �mF = 0 and �mF = ±1 transitions. The
selected schemes are shown in Fig. 6. We apply to these cases
the criteria developed in this article to obtain the number,
dimension, and purity of dark states without the need for
expensive numerical simulations.

As a first step we identify the number of degenerate
subspaces that can independently sustain dark states [see
Eq. (13)]. These degenerate subspaces can occur on account of
different detunings (see, e.g., Fig. 3), or because the connec-
tivity results in two decoupled (ground-excited) systems such
as in schemes 1, 3, 6, and 7 of Fig. 6. For simplicity we assume
in our analysis that all detunings are equal. The next step is to
calculate the kernel of QHPs [see Eq. (15)]. The dimension
of the resulting dark-state manifold is dim[ker(QHPs)] =
ds − dim[rank(QHPs)]. For the connectivities considered, if
Ng > Ne + 1, there will always be a dark state for any field
intensity, provided that the detuning condition is met (we
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FIG. 6. Possible connectivities for the hyperfine levels of 87Rb
atoms. In the case of multiple manifold of dark states these are
labeled by different colors (blue (solid) corresponds to d1 and red
(dashed) corresponds to d2 of Table I). The case investigated in
Ref. [50] corresponds to case 3.

note that Ng and Ne are only defined with respect to coupled
states so that, for instance, Ng = 5 in scheme 1 of Fig. 6
and the sublevels of the F = 1 manifold do not contribute
to Ng). These are the cases of all schemes except scheme
5. In this case, we need that dim[rank(QHPs)] < Ne, which
can be obtained in the case by adjusting the intensities. The
conditions are −V11V23V32 = V12V21V33, where we have used
the nomenclature of this paper where the first index labels a
ground state and the second an excited state. In the specific

case of the hyperfine transitions of 87Rb this transforms into
−VsVσ+Vσ− = Vσ+Vσ−Vs, which has no solution given that
different �mF = ±1 transitions cannot be independently con-
trolled (this might be different for other physical systems of
three ground-excited pairs). We gather in Table I our results.
The existence of a dark state, its dimension, and its purity are
indicated, as well as the levels spanned by the state. From this
table more involved calculations such as have been carried out
for � systems can more seamlessly be extended [51–54].

Having such a summary can be of further use since one
can imagine preparing a pure dark state in the red (dashed)
subsystem of scheme 1 (population in levels F = 2, mF =
−1,+1) by first preparing the dark state of scheme 2 (F = 1,
mF = −1,+1), and adiabatically turning on the F ′ = 1 to
F = 2 transition to transfer populations adiabatically to the
F = 1, M = −1,+1 levels, and turning off the laser for the
F = 1 to F ′ = 1 transition to result in a pure state of scheme 1
(F = 2, M = −1,+1), without any population in the F = 2,
M = −2, 0,+2 dark state. Such a state is not obvious to
prepare, but becomes more transparent from our analysis.
We remark that for several of these cases nonidealities play
different roles. Collisional relaxation among the ground-state
manifold induces a small population in the excited states.
We also remark that in the cases where certain states are
uncoupled by light but coupled by dissipative pathways (cases
1 and 4–7), some of the population might be lost to them (i.e.,
sink states).

IV. CONCLUSIONS

We have presented an overview of dark-state conditions
on dissipative systems classified as a function of the number
of ground and excited states. The condition can be reduced
to a condition on the Hamiltonian part of the evolution.
The number of excited and ground states naturally separates
the systems into a case where CPT depends only on the
detunings, and one where CPT appears only when conditions
on the detunings, the Rabi frequencies, and their phases are
met. When the kernel has multiplicities higher than one, the
stationary states are mixed and the term “coherent population
trapping” becomes less apt. Conserved quantities determine
the final state and these depend on the dissipative rates of the
system.
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APPENDIX A: ROTATING WAVE APPROXIMATION

We use throughout the article the RWA to turn the time-
dependent Hamiltonian into a time-independent Hamiltonian.
For N-level systems with arbitrary connectivity this may
impose important constraints on the wavelengths or detunings
that can be used.

Let us start from the original time-dependent Schrödinger
equation for the unitary evolution operator generated by the
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time-dependent Hamiltonian H (t ), iU̇ (t ) = H (t )U (t ), where
H (t ) can be written as

H (t ) =
N∑

i=1

Ei|i〉〈i| +
N∑

i> j=1

Fi j (t )(|i〉〈 j| + | j〉〈i|) (A1)

and Fi j (t ) = 2Fi j cos(ωi jt + φi j ), where the Fi j, ωi j and φi j

are time-independent constants.
We look for a diagonal operator H0 = ∑N

i=1 εi|i〉〈i|, such
that after applying the unitary operator U0 = e−iH0t , the origi-
nal time-dependent Schrödinger equation becomes time inde-
pendent within a good approximation.

Specifically, let us write U (t ) = U0(t )UI (t ); then UI (t )
fulfills the Schrödinger iU̇I = HI (t )UI (t ), where HI =∑N

i=1 (Ei − εi )|i〉〈i| + V (t ) and V (t ) is given by

V (t ) =
N∑

i> j=1

Fi j (t )(ei(εi−ε j )t |i〉〈 j| + H.c.), (A2)

where H.c. means the Hermitian conjugate of the preceding
term.

Using the explicit expression of Fi j (t ) as Fi j (t ) =
(Vi jeiωi j t + V ∗

i j e
−iωi j t ), where Vi j = Fi jeiφi j , we obtain

V (t ) =
N∑

i> j=1

(Vi je
i(εi−ε j−ωi j )t |i〉〈 j| + H.c.)

+ (Vi je
i(εi−ε j+ωi j )t |i〉〈 j| + H.c..) (A3)

The RWA consists in choosing a set of energies εi such that

εi − ε j = ωi j (A4)

and such that the terms oscillating at the frequencies εi − ε j +
ωi j = 2ωi j , corresponding to the third line of Eq. (A3), can be
safely neglected.

Within this approximation, UI (t ) fulfills a time-
independent Schrödinger equation, U̇I 	 HIUI (t ), where
HI is time independent and given by

HI =
N∑

i=1

(Ei − εi )|i〉〈i| +
N∑

i> j=1

(Vi j |i〉〈 j| + H.c.). (A5)

It is convenient to introduce the operators σ z
i j = |i〉〈i| − | j〉〈 j|

and take advantage of the condition Eq. (A4), in order to
rewrite HI as

HI =
N∑

i> j=1

[
�i jσ

z
i j + (Vi j |i〉〈 j| + H.c.)

]
, (A6)

where we have defined the detunings �i j = Ei − Ej − ωi j and
where we have ignored a term proportional to the identity
which corresponds to an arbitrary energy origin.

The unitary transform U0 does not affect the dissipa-
tive part of the Lindblad operator [Eq. (2)]. Indeed, ρI =
U †

0 ρU0 fulfills the Lindblad equation ρ̇I = −i[HI , ρI ] +∑
{i j} γi jDi j (ρ) as U †

0 Di j (ρ)U0 = Di j (ρ) [see Eq. (5)]. There-
fore, within the RWA, the Lindblad operator is time
independent.

We note that this is possible only if we can find a solution
of Eq. (A4), giving the N unknowns εi, as a function of the
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laser frequencies ωi j . We infer that in general the number
of equation must be less than N . But this constraint is not
sufficient. Even when the number of equations is less than
N , additional constraints on the laser frequencies ωi j may be
imposed to obtain a solution of Eq. (A4). This is always the
case when there is a closed cycle in the set of couple (i, j). For
example, consider an N-level system with N � 3, where the
transitions (i, j) = (1, 2), (2,3), and (1,3) are driven by three
different laser fields. Then, summing Eq. (A4), over i and j,
with i > j, gives ω12 + ω23 + ω13 = 0.

APPENDIX B: PROOF OF THEOREM 1

Proof. If det[LH̃ ] = 0, then LH̃ has a right eigenvector
ρd which fulfills H̃ρd − ρd H̃† = 0. ρd is a steady state of
the dynamics generated by LH̃ . We separate explicitly the
Hermitian and non-Hermitian parts of H̃ and this condition
becomes

[H, ρd ] − i{
, ρd} = 0, (B1)

where 
 is given by 
 = ∑
{i j} γi j (σ

†
i jσi j ) with σi j = |gi〉〈e j |

or


 =
Ne∑
j=1


 j |e j〉〈e j | (B2)

with 
 j = ∑M
i=1 γi j > 0 is the total decay rate of the excited

state | j〉. Hence, 
 is a completely positive diagonal matrix
and the ground-state manifold {|gi〉} is a subspace of its kernel,

|gi〉 = 0; ∀i = 1, 2, . . . , M.

Taking the trace of Eq. (B1) gives us Tr[
ρd ] = 0, as the
trace of the commutator gives zeros. Using Eq. (B2), this last
condition can be written as

Ne∑
j=1


 j〈e j |ρd |e j〉 = 0. (B3)

But each term of this sum is positive; therefore, each term
must be zero, thus 〈e j |ρd |e j〉 = 0; ∀ j = 1, 2, . . . , Ne. We con-
clude that ρd has no population in the excited-state manifold;
therefore, it cannot have coherence involving excited states,
〈e j |ρd |e j′ 〉 = 〈e j |ρd |gi〉 = 0. We conclude that ρd lies in the
ground-state manifold {|gi〉}.

Now we consider the original Lindblad operator L which
includes the quantum jump operator

∑
i j γi jσi jρdσ

†
i j , written

explicitly as

J (ρd ) =
∑

i j

|gi〉〈e j |ρd |e j〉〈gi| = 0, (B4)

where we have used 〈e j |ρd |e j〉 = 0. Therefore, Lρd = 0.
Finally ρd is a steady state of L with no component in the

excited-state manifold, hence it is a dark state. �

We have thus proved that if LH̃ρ = 0 then ρ is a dark state.
The converse is obviously true.

APPENDIX C: FROM SUPERPROJECTOR
TO PROJECTOR

Starting from the equations

PLH̃Pρ + PLH̃Qρ = 0,

QLH̃Pρ + QLH̃Qρ = 0, (C1)

we would like to prove their equivalence with the following
equations:

[PHP, ρ] = 0, (C2)

QHPρ = 0. (C3)

We first enforce ρ = Pρ and Qρ = 0. Then

PLH̃Pρ = 0, QLH̃Pρ = 0. (C4)

It is convenient to introduce the column form ρs of ρ,
which converts an n × n matrix ρ to an n2 column vector ρs. In
this transformation, the operation AρB† is mapped to B̄ ⊗ Aρs,
where B̄ denotes the conjugate of B [55].

The effect of this mapping on the superprojector is as
follows:

Pρ → P ⊗ Pρs,

Qρ → (P ⊗ Q + Q ⊗ P + Q ⊗ Q)ρs. (C5)

The superoperator LH̃ is mapped as

LH̃ρ → −i(1 ⊗ H̃ − H̃t ⊗ 1)ρs, (C6)

where H̃t is the transpose of H̃ . Using Eqs. (C5) and (C6), we
can map Eqs. (C4) as

(P ⊗ PHP − PHP ⊗ P)ρs = 0, (C7)

(P ⊗ QHP − QH̃t P ⊗ P)ρs = 0, (C8)

where we have used that PH̃P = PH̃t P = PHP and QH̃P =
QHP. By reversing the mapping, the first equation [Eq. (C7)]
gives

[PHP, PρP] = 0, (C9)

which is Eq. (9) of the main text.
For the second equation [Eq. (C8)], we use that the dark

state fulfills ρ = PρP. Therefore, the second term QH̃t P ⊗
Pρs = 0. Indeed, by reversing the mapping, it can be written
as PρPQH̃†P = 0. Hence, Eq. (C8) is equivalent to P ⊗
QHPρs = 0, which, by reversing the mapping, gives

QHPPρP = 0, (C10)

which is Eq. (10) of the main text.
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[3] K.-J. Boller, A. Imamoğlu, and S. E. Harris, Phys. Rev. Lett. 66,
2593 (1991).

[4] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 (2005).

053829-10

https://doi.org/10.1088/0022-3700/15/4/009
https://doi.org/10.1088/0022-3700/15/4/009
https://doi.org/10.1088/0022-3700/15/4/009
https://doi.org/10.1088/0022-3700/15/4/009
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/PhysRevLett.66.2593
https://doi.org/10.1103/PhysRevLett.66.2593
https://doi.org/10.1103/PhysRevLett.66.2593
https://doi.org/10.1103/PhysRevLett.66.2593
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633


CLASSIFICATION OF DARK STATES IN MULTILEVEL … PHYSICAL REVIEW A 99, 053829 (2019)

[5] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann,
Rev. Mod. Phys. 89, 015006 (2017).

[6] B. W. Shore, Adv. Opt. Photonics 9, 563 (2017).
[7] J. Vanier, A. Godone, and F. Levi, Phys. Rev. A 58, 2345 (1998).
[8] S. Sevinçli, C. Ates, T. Pohl, H. Schempp, C. S. Hofmann,

G. Günter, T. Amthor, M. Weidemüller, J. D. Pritchard, D.
Maxwell et al., J. Phys. B 44, 184018 (2011).

[9] M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
[10] G. Morigi, J. Eschner, and C. H. Keitel, Phys. Rev. Lett. 85,

4458 (2000).
[11] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C.

Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2112 (1989).
[12] J. Vanier, M. W. Levine, D. Janssen, and M. J. Delaney, IEEE

Trans. Instrum. Meas. 52, 822 (2003).
[13] J. Vanier, Appl. Phys. B 81, 421 (2005).
[14] S. Guerandel, T. Zanon, N. Castagna, F. Dahes, E. de Clercq, N.

Dimarcq, and A. Clairon, IEEE Trans. Instrum. Meas. 56, 383
(2007).

[15] T. A. Collaboration, J. Baron, W. C. Campbell, D. DeMille,
J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R.
Hutzler, E. Kirilov et al., Science 343, 269 (2014).

[16] A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, Phys.
Rev. Lett. 97, 023605 (2006).

[17] H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba,
B. D. DePaola, T. Amthor, M. Weidemüller, S. Sevinçli, and
T. Pohl, Phys. Rev. Lett. 104, 173602 (2010).

[18] C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal,
R. Beausoleil, J. Rabeau, P. Olivero, A. Greentree, S. Prawer
et al., Phys. Rev. Lett. 97, 247401 (2006).

[19] W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki,
J. S. Kline, and D. P. Pappas, Phys. Rev. Lett. 104, 163601
(2010).

[20] B. Michaelis, C. Emary, and C. W. J. Beenakker, Europhys.
Lett. 73, 677 (2006).

[21] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D.
Gammon, and L. J. Sham, Nat. Phys. 4, 692 (2008).

[22] M. Issler, E. M. Kessler, G. Giedke, S. Yelin, I. Cirac, M. D.
Lukin, and A. Imamoglu, Phys. Rev. Lett. 105, 267202 (2010).

[23] C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J.
Heremans, L. C. Bassett, and D. D. Awschalom, Proc. Natl.
Acad. Sci. USA 110, 7595 (2013).

[24] C. M. Chow, A. M. Ross, D. Kim, D. Gammon, A. S. Bracker,
L. J. Sham, and D. G. Steel, Phys. Rev. Lett. 117, 077403
(2016).

[25] G. Éthier-Majcher, D. Gangloff, R. Stockill, E. Clarke, M.
Hugues, C. Le Gall, and M. Atatüre, Phys. Rev. Lett. 119,
130503 (2017).

[26] B. Rousseaux, D. Dzsotjan, G. Colas des Francs, H. R. Jauslin,
C. Couteau, and S. Guérin, Phys. Rev. B 93, 045422 (2016).

[27] Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and
K. Peng, Phys. Rev. A 77, 023824 (2008).

[28] V. Ivanov and Y. Rozhdestvensky, Phys. Rev. A 81, 033809
(2010).

[29] Y. Gu, L. Wang, K. Wang, C. Yang, and Q. Gong, J. Phys. B 39,
463 (2006).

[30] F. T. Hioe and J. H. Eberly, Phys. Rev. Lett. 47, 838 (1981).
[31] J. Elgin, Phys. Lett. A 80, 140 (1980).
[32] J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983).
[33] A. A. Rangelov, N. V. Vitanov, and B. W. Shore, Phys. Rev. A

74, 053402 (2006).
[34] B. W. Shore, J. Mod. Opt. 61, 787 (2014).
[35] G. S. V. N. V. Vitanov, arXiv:1402.5673.
[36] V. V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
[37] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[38] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. 17, 821 (1976).
[39] H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch,

P. R. Hemmer, and M. O. Scully, Phys. Rev. A 80, 023820
(2009).

[40] B. Luo, H. Tang, and H. Guo, J. Phys. B 42, 235505 (2009).
[41] J. Cerrillo, A. Retzker, and M. B. Plenio, Phys. Rev. Lett. 104,

043003 (2010).
[42] J. Cerrillo, A. Retzker, and M. B. Plenio, Phys. Rev. A 98,

013423 (2018).
[43] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
[44] A. K. Patnaik, P. S. Hsu, G. S. Agarwal, G. R. Welch, and M. O.

Scully, Phys. Rev. A 75, 023807 (2007).
[45] E. S. Kyoseva and N. V. Vitanov, Phys. Rev. A 73, 023420

(2006).
[46] E. A. Korsunsky and D. V. Kosachiov, Phys. Rev. A 60, 4996

(1999).
[47] W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz,

Europhys. Lett. 31, 189 (1995).
[48] E. Arimondo, Appl. Phys. B 122, 293 (2016).
[49] M. Artoni and A. Zavatta, Phys. Rev. Lett. 115, 113005 (2015).
[50] H. Y. Ling, Y.-Q. Li, and M. Xiao, Phys. Rev. A 53, 1014

(1996).
[51] F. Renzoni, A. Lindner, and E. Arimondo, Phys. Rev. A 60, 450

(1999).
[52] F. Renzoni and E. Arimondo, Opt. Commun. 178, 345 (2000).
[53] H. Failache, L. Lenci, A. Lezama, D. Bloch, and M. Ducloy,

Phys. Rev. A 76, 053826 (2007).
[54] J. Choi and D. S. Elliott, Phys. Rev. A 89, 013414 (2014).
[55] T. F. Havel, J. Math. Phys. 44, 534 (2003).

053829-11

https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1364/AOP.9.000563
https://doi.org/10.1364/AOP.9.000563
https://doi.org/10.1364/AOP.9.000563
https://doi.org/10.1364/AOP.9.000563
https://doi.org/10.1103/PhysRevA.58.2345
https://doi.org/10.1103/PhysRevA.58.2345
https://doi.org/10.1103/PhysRevA.58.2345
https://doi.org/10.1103/PhysRevA.58.2345
https://doi.org/10.1088/0953-4075/44/18/184018
https://doi.org/10.1088/0953-4075/44/18/184018
https://doi.org/10.1088/0953-4075/44/18/184018
https://doi.org/10.1088/0953-4075/44/18/184018
https://doi.org/10.1103/PhysRevLett.69.1741
https://doi.org/10.1103/PhysRevLett.69.1741
https://doi.org/10.1103/PhysRevLett.69.1741
https://doi.org/10.1103/PhysRevLett.69.1741
https://doi.org/10.1103/PhysRevLett.85.4458
https://doi.org/10.1103/PhysRevLett.85.4458
https://doi.org/10.1103/PhysRevLett.85.4458
https://doi.org/10.1103/PhysRevLett.85.4458
https://doi.org/10.1364/JOSAB.6.002112
https://doi.org/10.1364/JOSAB.6.002112
https://doi.org/10.1364/JOSAB.6.002112
https://doi.org/10.1364/JOSAB.6.002112
https://doi.org/10.1109/TIM.2003.814687
https://doi.org/10.1109/TIM.2003.814687
https://doi.org/10.1109/TIM.2003.814687
https://doi.org/10.1109/TIM.2003.814687
https://doi.org/10.1007/s00340-005-1905-3
https://doi.org/10.1007/s00340-005-1905-3
https://doi.org/10.1007/s00340-005-1905-3
https://doi.org/10.1007/s00340-005-1905-3
https://doi.org/10.1109/TIM.2007.891124
https://doi.org/10.1109/TIM.2007.891124
https://doi.org/10.1109/TIM.2007.891124
https://doi.org/10.1109/TIM.2007.891124
https://doi.org/10.1126/science.1248213
https://doi.org/10.1126/science.1248213
https://doi.org/10.1126/science.1248213
https://doi.org/10.1126/science.1248213
https://doi.org/10.1103/PhysRevLett.97.023605
https://doi.org/10.1103/PhysRevLett.97.023605
https://doi.org/10.1103/PhysRevLett.97.023605
https://doi.org/10.1103/PhysRevLett.97.023605
https://doi.org/10.1103/PhysRevLett.104.173602
https://doi.org/10.1103/PhysRevLett.104.173602
https://doi.org/10.1103/PhysRevLett.104.173602
https://doi.org/10.1103/PhysRevLett.104.173602
https://doi.org/10.1103/PhysRevLett.97.247401
https://doi.org/10.1103/PhysRevLett.97.247401
https://doi.org/10.1103/PhysRevLett.97.247401
https://doi.org/10.1103/PhysRevLett.97.247401
https://doi.org/10.1103/PhysRevLett.104.163601
https://doi.org/10.1103/PhysRevLett.104.163601
https://doi.org/10.1103/PhysRevLett.104.163601
https://doi.org/10.1103/PhysRevLett.104.163601
https://doi.org/10.1209/epl/i2005-10458-6
https://doi.org/10.1209/epl/i2005-10458-6
https://doi.org/10.1209/epl/i2005-10458-6
https://doi.org/10.1209/epl/i2005-10458-6
https://doi.org/10.1038/nphys1054
https://doi.org/10.1038/nphys1054
https://doi.org/10.1038/nphys1054
https://doi.org/10.1038/nphys1054
https://doi.org/10.1103/PhysRevLett.105.267202
https://doi.org/10.1103/PhysRevLett.105.267202
https://doi.org/10.1103/PhysRevLett.105.267202
https://doi.org/10.1103/PhysRevLett.105.267202
https://doi.org/10.1073/pnas.1305920110
https://doi.org/10.1073/pnas.1305920110
https://doi.org/10.1073/pnas.1305920110
https://doi.org/10.1073/pnas.1305920110
https://doi.org/10.1103/PhysRevLett.117.077403
https://doi.org/10.1103/PhysRevLett.117.077403
https://doi.org/10.1103/PhysRevLett.117.077403
https://doi.org/10.1103/PhysRevLett.117.077403
https://doi.org/10.1103/PhysRevLett.119.130503
https://doi.org/10.1103/PhysRevLett.119.130503
https://doi.org/10.1103/PhysRevLett.119.130503
https://doi.org/10.1103/PhysRevLett.119.130503
https://doi.org/10.1103/PhysRevB.93.045422
https://doi.org/10.1103/PhysRevB.93.045422
https://doi.org/10.1103/PhysRevB.93.045422
https://doi.org/10.1103/PhysRevB.93.045422
https://doi.org/10.1103/PhysRevA.77.023824
https://doi.org/10.1103/PhysRevA.77.023824
https://doi.org/10.1103/PhysRevA.77.023824
https://doi.org/10.1103/PhysRevA.77.023824
https://doi.org/10.1103/PhysRevA.81.033809
https://doi.org/10.1103/PhysRevA.81.033809
https://doi.org/10.1103/PhysRevA.81.033809
https://doi.org/10.1103/PhysRevA.81.033809
https://doi.org/10.1088/0953-4075/39/3/001
https://doi.org/10.1088/0953-4075/39/3/001
https://doi.org/10.1088/0953-4075/39/3/001
https://doi.org/10.1088/0953-4075/39/3/001
https://doi.org/10.1103/PhysRevLett.47.838
https://doi.org/10.1103/PhysRevLett.47.838
https://doi.org/10.1103/PhysRevLett.47.838
https://doi.org/10.1103/PhysRevLett.47.838
https://doi.org/10.1016/0375-9601(80)90205-4
https://doi.org/10.1016/0375-9601(80)90205-4
https://doi.org/10.1016/0375-9601(80)90205-4
https://doi.org/10.1016/0375-9601(80)90205-4
https://doi.org/10.1103/PhysRevA.27.906
https://doi.org/10.1103/PhysRevA.27.906
https://doi.org/10.1103/PhysRevA.27.906
https://doi.org/10.1103/PhysRevA.27.906
https://doi.org/10.1103/PhysRevA.74.053402
https://doi.org/10.1103/PhysRevA.74.053402
https://doi.org/10.1103/PhysRevA.74.053402
https://doi.org/10.1103/PhysRevA.74.053402
https://doi.org/10.1080/09500340.2013.837205
https://doi.org/10.1080/09500340.2013.837205
https://doi.org/10.1080/09500340.2013.837205
https://doi.org/10.1080/09500340.2013.837205
http://arxiv.org/abs/arXiv:1402.5673
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1103/PhysRevA.80.023820
https://doi.org/10.1103/PhysRevA.80.023820
https://doi.org/10.1103/PhysRevA.80.023820
https://doi.org/10.1103/PhysRevA.80.023820
https://doi.org/10.1088/0953-4075/42/23/235505
https://doi.org/10.1088/0953-4075/42/23/235505
https://doi.org/10.1088/0953-4075/42/23/235505
https://doi.org/10.1088/0953-4075/42/23/235505
https://doi.org/10.1103/PhysRevLett.104.043003
https://doi.org/10.1103/PhysRevLett.104.043003
https://doi.org/10.1103/PhysRevLett.104.043003
https://doi.org/10.1103/PhysRevLett.104.043003
https://doi.org/10.1103/PhysRevA.98.013423
https://doi.org/10.1103/PhysRevA.98.013423
https://doi.org/10.1103/PhysRevA.98.013423
https://doi.org/10.1103/PhysRevA.98.013423
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/PhysRevA.75.023807
https://doi.org/10.1103/PhysRevA.75.023807
https://doi.org/10.1103/PhysRevA.75.023807
https://doi.org/10.1103/PhysRevA.75.023807
https://doi.org/10.1103/PhysRevA.73.023420
https://doi.org/10.1103/PhysRevA.73.023420
https://doi.org/10.1103/PhysRevA.73.023420
https://doi.org/10.1103/PhysRevA.73.023420
https://doi.org/10.1103/PhysRevA.60.4996
https://doi.org/10.1103/PhysRevA.60.4996
https://doi.org/10.1103/PhysRevA.60.4996
https://doi.org/10.1103/PhysRevA.60.4996
https://doi.org/10.1209/0295-5075/31/4/001
https://doi.org/10.1209/0295-5075/31/4/001
https://doi.org/10.1209/0295-5075/31/4/001
https://doi.org/10.1209/0295-5075/31/4/001
https://doi.org/10.1007/s00340-016-6568-8
https://doi.org/10.1007/s00340-016-6568-8
https://doi.org/10.1007/s00340-016-6568-8
https://doi.org/10.1007/s00340-016-6568-8
https://doi.org/10.1103/PhysRevLett.115.113005
https://doi.org/10.1103/PhysRevLett.115.113005
https://doi.org/10.1103/PhysRevLett.115.113005
https://doi.org/10.1103/PhysRevLett.115.113005
https://doi.org/10.1103/PhysRevA.53.1014
https://doi.org/10.1103/PhysRevA.53.1014
https://doi.org/10.1103/PhysRevA.53.1014
https://doi.org/10.1103/PhysRevA.53.1014
https://doi.org/10.1103/PhysRevA.60.450
https://doi.org/10.1103/PhysRevA.60.450
https://doi.org/10.1103/PhysRevA.60.450
https://doi.org/10.1103/PhysRevA.60.450
https://doi.org/10.1016/S0030-4018(00)00676-3
https://doi.org/10.1016/S0030-4018(00)00676-3
https://doi.org/10.1016/S0030-4018(00)00676-3
https://doi.org/10.1016/S0030-4018(00)00676-3
https://doi.org/10.1103/PhysRevA.76.053826
https://doi.org/10.1103/PhysRevA.76.053826
https://doi.org/10.1103/PhysRevA.76.053826
https://doi.org/10.1103/PhysRevA.76.053826
https://doi.org/10.1103/PhysRevA.89.013414
https://doi.org/10.1103/PhysRevA.89.013414
https://doi.org/10.1103/PhysRevA.89.013414
https://doi.org/10.1103/PhysRevA.89.013414
https://doi.org/10.1063/1.1518555
https://doi.org/10.1063/1.1518555
https://doi.org/10.1063/1.1518555
https://doi.org/10.1063/1.1518555

