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Surface transverse linear momenta accompanying the reflection
and refraction of a paraxial light beam
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The reflection and transmission of a paraxial light beam carrying the spin and intrinsic orbital angular momenta
(IOAMs) at a plane interface between two isotropic transparent media is considered. The surface transverse linear
momenta (STLMs), i.e., the momenta that are localized near the interface and whose direction is perpendicular
to the plane of incidence, are investigated. The IOAM-dependent and spin-dependent STLMs of the beams
of homogeneous and inhomogeneous plane waves as well as the interference STLMs in the first medium are
calculated. A detailed comparison of these STLMs is made. The way of experimental investigation of STLMs
based on the relation between the global STLM and the transverse shift of the center of gravity of the global
electromagnetic field is discussed.
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I. INTRODUCTION

The purpose of the present paper is to investigate elec-
tromagnetic transverse linear momentum (TLM), which can
be generated during reflection and transmission of a paraxial
light beam at a plane interface between two isotropic homo-
geneous and transparent media. The term “transverse” denotes
the direction perpendicular to the plane of incidence.

In the main part of the paper, LM defined in the sense of
Abraham is considered. It is assumed that the light velocity
in vacuum is equal to unity. Under such an assumption, the
density of the Abraham LM is equal to the Poynting vector
(see, e.g., [1]); as a consequence, TLM per unit length in
the transverse direction is equal to the transverse power flow
(TPF) of the electromagnetic energy that is generated in the
course of the aforementioned process.

As for TPF, its investigation has a long and dramatic
history. Already a century ago, TPF inside the evanescent field
generated in the reflecting medium at total reflection of a plane
wave was calculated [2]. Later it was shown that such a TPF
occurs when the evanescent plane wave is elliptically polar-
ized [3,4]. It has also been pointed out that the appearance
of such a TPF is connected to transformation of the spin at
reflection and transmission of the plane wave [5]. Therefore,
TPFs as well as TLMs depending on the polarization of the
incident wave (more generally, on the polarization of the
incident beam) will be called the spin-dependent ones.

Initially it was believed that the generation of the spin-
dependent TPF is inseparable from the generation of inho-
mogeneous (evanescent) waves in the reflecting medium that
takes place at total reflection or at reflection from a lossy
medium [2–7]. However, it was later shown that the spin-
dependent TPFs of the incident, reflected, and transmitted
homogeneous plane waves can also occur [8], their values
being of the same order of magnitude as the values of TPF
inside the evanescent field. Again, the interference TPF in
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the first medium can also be of the same order of magnitude
[8,9].

Besides spin, the beam of electromagnetic waves can also
carry an intrinsic orbital angular momentum (IOAM) [10].
The latter is now of significant interest; a number of papers
have been devoted to the investigation of IOAM and IOAM-
dependent phenomena; see, e.g., [11–13]. In the present paper
the calculations of the IOAM-dependent TLMs generated
during reflection and transmission of a light beam are carried
out. For the sake of completeness, the spin-dependent TLMs
are also considered, and the comparison of two TLMs is made.

TLMs confined in the domains adjacent to the interface
whose dimensions are large in comparison with the incident
beam’s width are calculated. They are divided into the parts
that are independent of and dependent on the domains’ dimen-
sions. The former TLMs, which are called the surface TLMs
and denoted as STLMs, are investigated in detail. As for the
latter TLMs, the conditions are clarified under which these can
be ignored when investigating STLMs.

The particular IOAM-dependent and spin-dependent
STLMs of the beams of homogeneous and inhomogeneous
plane waves as well as the interference STLMs in the first
medium are calculated. STLMs in the incident and reflecting
media as well as STLMs in the total space are also considered.
It can be said that the complete investigation of STLMs
that can be generated under the aforementioned conditions
imposed on the incident beam and on the media is carried out
in this paper. The TPF phenomenon is also discussed.

Only such STLMs are investigated in detail whose val-
ues are independent of the incident beam’s width and are
left finite as the width tends to infinity. The scale of these
STLMs is LM confined in the sector of the incident beam
whose length is (2π )−1 times the wavelength. It is shown
that all aforementioned particular spin-dependent STLMs but
only the particular IOAM-dependent STLMs of the beams
of homogeneous plane waves can be on such a scale. The
explanation of such a distinction between the spin-dependent
and IOAM-dependent STLMs is given.
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FIG. 1. Geometry of reflection and transmission. The character-
istics of the incident, reflected, and transmitted beams are represented
in red, green, and blue, respectively. n(1) > n(2), θ (i) < θ (iC).

The geometrical interpretation of the particular IOAM-
dependent STLMs is presented.

It was pointed out long ago that the appearance of TPF in
the reflecting medium should lead to the transverse shift (TSh)
of the totally reflected light beam [3,4,6,7,9]. In [14,15] the
general relation between the global Abraham TLM and TSh
of the center of gravity (TShCG) of the global secondary field
has been established. On the basis of such a relation, in this
paper the possibility of the experimental investigation of the
spin-dependent and IOAM-dependent STLMs through mea-
suring respective TShCGs of secondary beams is discussed.
Note that the TSh phenomenon has been intensively studied
during the last decades; see, e.g., the review article [16] and
the references therein.

In the end of the body of the paper, STLMs defined in the
sense of Minkowski are considered, and the comparison of
these STLMs with Abraham ones is made. The distinction
between the Abraham and Minkowski STLMs is discussed
from the point of view of the Abraham-Minkowski dilemma;
for the latter, see, e.g., the review articles [17–20].

II. GEOMETRY OF REFLECTION AND TRANSMISSION

Let us consider the reflection and transmission of a
monochromatic paraxial light beam at a plane interface be-
tween two semi-infinite transparent, isotropic, nondispersive,
and nonmagnetic media. The scheme of this process is shown
in Fig. 1.

Throughout the paper, the superscripts i, ρ, and τ will be
used in order to label the characteristics of the incident, re-
flected, and transmitted beams, respectively. The superscripts
a or a′ will label the characteristic of an arbitrary beam, i.e.,
a ∈ {i, ρ, τ } and a′ ∈ {i, ρ, τ }. The superscript α will label the
characteristics of secondary beams, i.e., α ∈ {ρ, τ }.

The dielectric constants of the first (upper in Fig. 1) and of
the second media will be denoted by ε (1) and ε (2), respectively.
We will also use the notation ε (a) for the dielectric constant of
the medium in which the ath beam propagates; i.e., we will
assume that ε (i) = ε (ρ) = ε (1) and ε (τ ) = ε (2). The refractive

indices of the first and of the second media will be denoted by
n(1) and n(2), respectively; n(1,2) = √

ε (1,2).
The position of the interface is defined by the equation

x̂ · r = 0, where r is a 3D radius vector, and x̂ is the unit
normal to the interface. Four Cartesian frames will be em-
ployed. Three frames are attached to the incident, reflected,
and transmitted beams, and the last one will be in use when
considering the partial reflection. The basis of the ath frame
is given by the unit vectors x̂(a), ŷ, and ẑ(a), which are defined
below.

The z(i) axis is assumed to coincide with the incident
beam’s axis; its rigorous definition will be given later. The
z(i) axis and the vector x̂ define the orientation of the beam’s
plane of incidence. The angle between −x̂ and ẑ(i) is the
beam’s angle of incidence θ (i); see Fig. 1. θ (i) = − arccos(x̂ ·
ẑ(i) ). We will consider the partial-reflection as well as the
total-reflection regimes. The latter takes place if n(2) < n(1)

and θ (i) > θ (iC), where θ (iC) = arcsin(n(2)/n(1) ) is the critical
angle for total reflection; in this case the inhomogeneous
(evanescent) plane waves are generated in the second medium.

The y axis (the transverse one) is common for all frames; it
is perpendicular to the plane of incidence and is characterized
by the unit vector ŷ = ẑ(i) × x̂/|ẑ(i) × x̂|. The coordinate ori-
gin O in every frame is taken to be the point of intersection of
the z(i) axis with the interface.

The z(ρ) and z(τ ) axes, whose directions are characterized
by the unit vectors ẑ(ρ) and ẑ(τ ), will be assumed to coincide
with the geometric-optical axes of the reflected and transmit-
ted beams. They are defined as the rays that are intersected
by the interface at the coordinate origin. θ (ρ) and θ (τ ) are the
angles of reflection and refraction; see Fig. 1. θ (ρ) = π − θ (i),
while θ (τ ) is defined by the relation n(2) sin θ (τ ) = n(1) sin θ (i).

Every x(a) axis lies in the plane of incidence; its direction
is given by the unit vector x̂(a) = ŷ × ẑ(a).

In the frame attached to the ath beam, 3D radius vector r
can be written as

r = r(a)
p + z(a)ẑ(a), (1)

where r(i)
p , r(ρ)

p , and r(τ )
p are 2D planar radius vectors lying in

the planes perpendicular to the axis of the incident beam or to
the geometric-optical axis of the respective secondary beam,

r(a)
p = x(a)x̂(a) + yŷ. (2)

The fourth frame is attached to the interface; its basis is x̂, ŷ,
and ẑ = x̂ × ŷ.

III. THE ELECTROMAGNETIC FIELDS OF THE
INCIDENT, REFLECTED, AND TRANSMITTED BEAMS

The complex amplitudes of electric and magnetic field
vectors in the ath beam will be denoted by E(a)(r) and H(a)(r);
their harmonic time dependence will be suppressed. Let us
represent these vectors as superpositions of plane waves,

E(a)(r) = 1

2π

∫
E (a)(κ) exp[−ik(a)(κ) · r]d2κ, (3)

H(a)(r) = 1

2π

∫
H(a)(κ) exp[−ik(a)(κ) · r]d2κ, (4)
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where k(a)(κ) is the 3D wave vector of the particular plane
wave in the ath beam, E (a)(κ) and H(a)(κ) are the electric
and magnetic amplitudes of this wave, and κ is a 2D variable
vector.

The wave vectors of the plane waves in the ath beam.
Every wave vector k(α)(κ) is related to k(i)(κ) as follows:
k(ρ)(κ) = k(i)(κ) − 2[x̂ · k(i)(κ)]x̂, while k(τ )(κ) can be ex-
pressed through k(i)(κ) by means of Snell’s law.

Let us denote by � the reverse wave vector of the incident
plane wave,

� = λ/2π, (5)

where λ is the wavelength of light in the first medium. Then
[k(a)(κ)]2 = (ε (a)/ε (1) )�−2. The direction of k(a)(κ) can be
characterized by the vector

z(a)(κ) = (n(1)/n(a) )�k(a)(κ). (6)

The vectors z(i)(κ) and x̂ define the orientation of the plane
of incidence for the particular plane wave. The unit vector
perpendicular to this plane is as follows:

ŷ(κ) = z(i)(κ) × x̂
|z(i)(κ) × x̂| . (7)

The vector x(a)(κ) is parallel to the plane of incidence of
the particular plane wave and orthogonal to z(a)(κ); it is

x(a)(κ) = ŷ(κ) × z(a)(κ). (8)

The vectors z(i)(κ) [x(i)(κ)] and z(ρ)(κ) [x(ρ)(κ)], as well
as z(τ )(κ) [x(τ )(κ) ] in the partial-reflection regime, are real;
these are the unit vectors. Further on, when only these vec-
tors are under consideration, they will be labeled by the
“hat” symbol (ˆ). In the total-reflection regime the vectors
z(τ )(κ) and x(τ )(κ) are complex. In both regimes [z(a)(κ)]2 =
[x(a)(κ)]2 = 1.

Let us assume that the wave vector k(i)(0) is directed along
the axis of the incident beam; then ẑ(i)(0) = ẑ(i), ẑ(ρ)(0) =
ẑ(ρ), and, at partial reflection, ẑ(τ )(0) = ẑ(τ ) as well. Every
vector k(a)(κ) can be represented as follows:

k(a)(κ) = k(a)
p (κ) + k(a)

z (κ)z(a)(0), (9)

where k(a)
p (κ) is a 2D planar vector lying in the plane perpen-

dicular to z(a)(0); it is

k(a)
p (κ) = k(a)

x (κ)x(a)(0) + k(a)
y (κ)ŷ. (10)

Let us take the components of the vector k(i)
p (κ) as the

variables; i.e., let us assume that

κx ≡ k(i)
x , κy ≡ k(i)

y . (11)

It is evident that

k(ρ)
y (κ) = k(τ )

y (κ) = κy. (12)

As for the components k(ρ)
x (κ) and k(τ )

x (κ), their dependence
on κx and κy will be discussed below.

The amplitudes of the plane waves in the ath beam. Every
vector E (a)(κ) is orthogonal to the vector k(a)(κ), so,

E (a)(κ) = E (a)
x (κ)x(a)(κ) + E (a)

y (κ)ŷ(κ). (13)

The components of the vectors E (ρ)(κ) and E (τ )(κ) are related
to the respective components of the vector E (i)(κ) by means
of the Fresnel laws; they can be written as follows:

E (α)
x (κ) = q(α)

x (κ)E (i)
x (κ), E (α)

y (κ) = q(α)
y (κ)E (i)

y (κ), (14)

where q(ρ)
y (κ) [q(τ )

y (κ)] and q(ρ)
x (κ) [q(τ )

x (κ)] are the well-
known field reflection (refraction) coefficients of the x̂(i)(κ)-
or ŷ(κ)-polarized plane wave with the wave vector k(i)(κ); see,
e.g., [1].

The refraction coefficients are

q(τ )
y (κ) = 2 cos[θ (i)(κ)]

cos[θ (i)(κ)] +
√

n2 − sin2[θ (i)(κ)]
(15)

and

q(τ )
x (κ) = 2n cos[θ (i)(κ)]

n2 cos[θ (i)(κ)] +
√

n2 − sin2[θ (i)(κ)]
, (16)

where n = n(2)/n(1), and θ (i)(κ) is the angle of incidence
of the plane wave with the wave vector k(i)(κ), θ (i)(κ) =
− arccos[x̂ · ẑ(i)(κ)]. The reflection coefficients q(ρ)

y (κ) and
q(ρ)

x (κ) are related to q(τ )
y (κ) and q(τ )

x (κ) by

q(ρ)
y (κ) = q(τ )

y (κ) − 1 (17)

and

q(ρ)
x (κ) = nq(τ )

x (κ) − 1. (18)

The polarization of every plane wave in the incident beam
will be characterized by a complex parameter

m(κ) = E (i)
y (κ)

E (i)
x (κ)

. (19)

By the use of Eq. (19) as well as of Eqs. (13) and (14), the
vector E (a)(κ) can be written as follows:

E (a)(κ) = C f (κ)q(a)(κ)e(a)(κ). (20)

Here f (κ) is a dimensionless function, which represents a
form factor of the incident beam; we suppose that∫

| f (κ)|2 d2κ = 1, (21)

C is the normalization factor of this beam,

e(a)(κ) = q(a)
x (κ)x(a)(κ) + q(a)

y (κ)m(κ)ŷ(κ)√∣∣q(a)
x (κ)

∣∣2 + |q(a)
y (κ)m(κ)|2

, (22)

and

q(a)(κ) =
√∣∣q(a)

x (κ)
∣∣2 + ∣∣q(a)

y (κ)m(κ)
∣∣2

|1 + |m(κ)|2 . (23)

It is assumed in Eqs. (20), (22), and (23) that q(i)
x (κ) =

q(i)
y (κ) = 1; as a consequence, q(i)(κ) = 1 as well. Under such

an assumption, these equations represent the vectors E (ρ)(κ)
and E (τ )(κ) as well as the vector E (i)(κ). e(i)(κ) and e(ρ)(κ),
as well as e(τ )(κ) in the partial-reflection regime, are the unit
vectors. [e(a)(κ)]2 = 1.

Further on, the characteristics of the central plane wave
will be written without the argument 0. In particular, the
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following denotations will be used: m ≡ m(0), q(a)
x ≡ q(a)

x (0),
q(a)

y ≡ q(a)
y (0), e(a) ≡ e(a)(0), and E (a) ≡ E (a)(0).

In the special case of well-defined IOAM of the incident
beam,

f (κ) = φ(κ ) exp(−ilϕ), (24)

where ϕ is the azimuth in the frame attached to the inci-
dent beam, ϕ = arctan(κy/κx ), and l is the azimuthal index,
l = 0,±1,±2,±3, . . .. In this case the amplitude φ(κ ) is
independent of ϕ.

The vector H(a)(κ) is related to the vector E (a)(κ) by

H(a)(κ) = n(a)z(a)(κ) × E (a)(κ). (25)

The global electromagnetic field. Let us denote the electric
and magnetic vectors of the global field by the letters E(r) and
H(r) without the superscripts:

E(r) = E(1)(r) + E(2)(r), H(r) = H(1)(r) + H(2)(r), (26)

where E(1)(r)[H(1)(r)] and E(2)(r)[H(2)(r)] are the electric
(magnetic) field vectors in the first and the second medium,
respectively. It is evident that

E(2)(r) = E(τ )(r), H(2)(r) = H(τ )(r), (27)

while

E(1)(r) = E(i)(r) + E(ρ)(r), H(1)(r) = H(i)(r) + H(ρ)(r).

(28)

The average rates of changes of the functions f (κ), k(a)
x (κ),

q(α)
x (κ), q(α)

y (κ), and m(κ). Let us denote by b the characteris-
tic dimension of the incident beam in the plane perpendicular
to its axis [21]. As the beam is assumed to be paraxial, then

b � �. (29)

Next, let us denote by κx and κy the intervals of κx

and κy, where | f (κ)| significantly differs from zero. As the
characteristic dimension of the incident beam is b, then

κx ∼ b−1, κy ∼ b−1. (30)

Consider the average rates of changes of the functions
k(a)

x (κ), q(α)
x (κ), q(α)

y (κ), and m(κ) in the intervals κx and
κy. Using Snell′s law, k(a)

x (κ) can be written as follows:

k(a)
x (κ) = κx(ζ (a) + δaτO(�|κ|)), (31)

where

ζ (i) = 1, ζ (ρ) = −1, ζ (τ ) = cos θ (i)

cos θ (τ )
, (32)

and δaa′ is the Kronecker delta.
The average rates of change of the functions q(α)

x (κ) and
q(α)

y (κ) can be defined on the basis of Eqs. (15)–(18). It
follows from these equations that in the regular region of θ (i)

[22],

κx

∣∣∣∣dq(α)
x (κ)

dκx

∣∣∣∣
κ=0

= O

(
�

b

)
(33)

and

κx

∣∣∣∣∣dq(α)
y (κ)

dκx

∣∣∣∣∣
κ=0

= O

(
�

b

)
, (34)

see, e.g., Eqs. (17), (18), and (20) in [23], while the average
rates of change of these functions in the interval κy are much
smaller.

Let us proceed to the parameter m(κ). Its rate of change,
like that of q(α)

x (κ) and q(α)
y (κ), can be characterized by the

first derivatives. Let us use the following denotation:

ηx =
∣∣∣∣dm(κ)

dκx

∣∣∣∣
κ=0

, ηy =
∣∣∣∣dm(κ)

dκy

∣∣∣∣
κ=0

. (35)

As the incident beam is paraxial, then ηx and ηy must be
small in comparison with b. However, this requirement can
be specified, because in the actual cases the scale of ηx and ηy

is �. For instance, it is known that if the polarization of the
incident beam is constant across its cross section, then

ηxκx = O

(
�

b

)
, ηyκy = O

(
�

b

)
; (36)

see, e.g., [24,25]. In view of this, we will assume for the sake
of simplicity that for every incident beam under consideration,
the average rate of change of the function m(κ) is similar to
that of the function q(α)

x (κ) or q(α)
y (κ), i.e., that the conditions

(36) are satisfied.

IV. THE DENSITIES OF THE LINEAR
AND ANGULAR MOMENTA

The local densities of LMs. In the main part of the body of
the paper and in every Appendix we will assume that LM is
defined in the sense of Abraham. In this case the local density
of the global LM

g(r) = 1

8π
Re[E(r) × H∗(r)], (37)

where Re denotes the real part of an expression, and the
asterisk denotes complex conjugation. The vector g(r) is
assumed to be circle-averaged,

g(r) = g(1)(r) + g(2)(r), (38)

where g(1)(r) and g(2)(r) are the LM densities in the first and
the second medium, respectively. It is evident that

g(2)(r) = g(ττ )(r), (39)

while

g(1)(r) = g(ii)(r) + g(ρρ)(r) + g(iρ)(r). (40)

Here g(aa)(r) is the LM density in the ath beam,

g(aa)(r) = 1

8π
Re[E(a(r) × H(a)∗(r)], (41)

and g(iρ)(r) is the density of the interference LM in the first
medium,

g(iρ)(r) = 1

8π
Re[E(i)(r) × H(ρ)∗(r) + E(ρ)(r) × H(i)∗(r)].

(42)

Let us substitute Eqs. (3), (4) into Eqs. (41), (42) and use
the relation (25). Then, after some vector algebra the vector
g(aa′ )(r) can be represented as the sum of two terms, see [26]:

g(aa′ )(r) = g(aa′ )
‖ (r) + g(aa′ )

⊥ (r). (43)
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Every vector g(aa′ )
β (r) (β ∈ {‖,⊥}) is

g(aa′ )
β (r) = 2 − δaa′

26π3
n(1)�Re

∫∫
u(aa′ )
β (κ, κ′)

× exp[iK(aa′ )
− (κ, κ′) · r] d2κ d2κ′, (44)

where

u(aa′ )
‖ (κ, κ′) = K(aa′ )

+ (κ, κ′)[E (a′ )(κ′) · E (a)∗(κ)], (45)

u(aa′ )
⊥ (κ, κ′) = K(aa′ )

− (κ, κ′) × E (a′ )(κ′) × E (a)∗(κ), (46)

and

K(aa′ )
± (κ, κ′) = k(a)∗(κ) ± k(a′ )(κ′). (47)

Note that the decomposition of the LM density or the
Poynting vector similar to one given by Eqs. (43)–(47) was
used in many previous works, where the rotation energy
motion in the beams of homogeneous plane waves was consid-
ered (see, e.g., [27–32]); in application to the wave packet, a
similar procedure has been realized in [14] [see Eqs. (15) and
(15a) therein]. On the other hand, in the limiting case f (κ) →
δ(κ), where δ(κ) is the 2D delta function, the above expression
for g(ττ )(r) at total reflection coincides with the expression
for the Poynting vector in the solitary inhomogeneous plane
waves, which has been derived in [3,7].

The following distinction between the vectors u(aa′ )
‖ (κ, κ′)

and u(aa′ )
⊥ (κ, κ′) should be mentioned: the former is parallel

to the vector K(aa′ )
+ (κ, κ′), while the latter is perpendicular to

the vector K(aa′ )
− (κ, κ′). In particular, the y component of the

vector u(aa′ )
‖ (κ, κ′), which will be denoted as u(aa′ )

‖,y (κ, κ′), is
proportional to (κy + κ ′

y), while the y component of the vector

u(aa′ )
⊥ (κ, κ′) is proportional to the component of the vector

K(aa′ )
− (κ, κ′), which is perpendicular to the y axis.
We will also divide LMs according to another criterion.

LMs in the beams of homogeneous plane waves will be called
LMs of the first class; LM in the inhomogeneous plane waves
and the interference LM will be called LMs of the second
class. The reason for such a division of LMs is elucidated
in Sec. V and Appendix A. LMs of the first and the second
classes will be marked by one dot and two dots over the
respective letters. So, ġ(aa)

β (r) denotes g(ii)
β (r) and g(ρρ)

β (r) as

well as g(ττ )
β (r) at n(2) > n(1) or n(2) < n(1) and θ (i) < θ (iC),

while g̈(aa′ )
β (r) denotes g(ττ )

β (r) at n(2) < n(1) and θ (i) > θ (iC)

and g(iρ)
β (r).

LM per unit length (pul) of the beam of homogeneous
plane waves. Let us denote LM pul of the beam of homo-
geneous plane waves by �̇

(aa)
(z(a) ). According to Eq. (43),

�̇
(aa)

(z(a) ) = �̇
(aa)
‖ (z(a) ) + �̇

(aa)
⊥ (z(a) ), and every

�̇
(aa)
β (z(a) ) =

∫ ∞

−∞
dy

∫ γ
(a)
+

γ
(a)
−

dx(a) ġ(aa)
β (r), (48)

where

γ
(i,ρ)
+ = −γ

(τ )
− = ∞, (49)

while

γ
(i,ρ)
− = z(i,ρ) cot θ (i,ρ), γ

(τ )
+ = z(τ ) cot θ (τ ). (50)

Let consider the beam’s cross section that is situated far
from the point O where the condition

|z(a)| � b| tan θ (a)| (51)

is fulfilled. In this region of z(a) the finite limit of integration
with respect to x(a) can be replaced by the infinite one; so,
�̇

(aa)
(z(a) ) approximately coincides there with LM pul of

the beam whose field vectors are given by Eqs. (3) and (4)
but which propagates in the homogeneous medium with the
dielectric constant ε (a). Let us substitute Eq. (45) or (46) into
the right-hand side of Eq. (44) and the result into the right-
hand side of Eq. (48). Then, let us carry out the integrations
over x(a) and y, both from −∞ to ∞, and after that the
integration with respect to κ′. Let us also use the relations (20)
and (21). We obtain that the vector �̇

(aa)
(z(a) ) is approximately

independent of z(a) in the region (51); when considered in the
region (51), this vector will be written as �̇

(aa)
without the

argument z(a). We also obtain that �̇
(aa)
⊥ = 0, so

�̇
(aa) = �̇

(aa)
‖ . (52)

Bearing in mind the aim of this paper, only the axial
and transverse components of the vector �̇

(aa)
will further

be considered; they are �̇
(aa)
‖,z = ẑ(a) · �̇

(aa)
‖ = ẑ(a) · �̇

(aa)
, and

�̇
(aa)
‖,y = ŷ · �̇

(aa)
‖ = ŷ · �̇

(aa)
.

�̇
(ii)
‖,z can be expressed through the normalization coefficient

C. In the zero-order approximation, when the dependence of
m(κ) on κ is ignored,

�
(ii)
‖,z = n(1)

8π
|C|2. (53)

When the dependence of q(α)(κ) on κ is also ignored, then the
expression for every �̇

(aa)
‖,z can be written as follows:

�̇
(aa)
‖,z = Q(a)�

(ii)
‖,z , (54)

where

Q(a) = n(a)

n(1)

1

|ζ (a)| |q
(a)|2. (55)

Q(ρ) and Q(τ ) are the reflectivity and transmissivity for the
incident plane wave with the wave vector k(i), while Q(i) = 1,
because q(i) = 1.

As for the transverse component of the vector �̇
(aa)
‖ , it can

be expressed in terms of �̇(ii)
‖,z as follows:

�̇
(aa)
‖,y = �

(ii)
‖,z

∫
�κy

|ζ (a)(κ)| |q
(a)(κ)|2| f (κ)|2 d2κ, (56)

where

ζ (a)(κ) = dk(a)
x (κ)

dκx
. (57)

�
(ii)
‖,y as well as the x(a) component of the vector �

(ii)
‖ must

be equal to zero. This requirement together with the choice of
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the point O defines the frame attached to the incident beam.
The condition

�
(ii)
‖,y = 0 (58)

means that the incident beam’s axis is parallel to the plane
of incidence. Using Eq. (56) and taking into account that
ζ (i)(κ) = 1, q(i)(κ) = 1, one can conclude that this condition
is equivalent to the following constraint on the function f (κ):∫

κy| f (κ)|2 d2κ = 0. (59)

If the condition (59) is fulfilled, then at total reflection
�

(ρρ)
‖,y = 0. In the partial-reflection regime �(ρρ)

‖,y and �̇
(ττ )
‖,y can

have nonzero values. If �̇(αα)
‖,y = 0, then the angular TShCG

of the αth beam occurs [23,25,31,33–36]. In this case the
actual axis of the secondary beam is inclined to the plane of
incidence, the angle of inclination being approximately equal
to �̇

(αα)
‖,y /�̇

(αα)
‖,z .

From the point of view of the TLM phenomenon, it is
essential that nonzero value of �̇

(αα)
‖,y gives rise to the bulk

TLM of the respective secondary beam, i.e., to TLM that is
proportional to the length of the beam. The detailed analysis
of this effect is not the aim of the present paper. Further on,
the condition will be established when the bulk TLMs are
small in comparison with STLMs; the establishment will be
based on the estimation the scale of �̇(αα)

‖,y . The value of the
dimensionless integral on the right-hand side of Eq. (56) can
be estimated by the use of the relations (30), (31), (33), (34),
(36), and (59). Taking into account these relations one can
conclude that in the partial-reflection regime∣∣�̇(αα)

‖,y
∣∣

�
(ii)
‖,z

= O

(
�2

b2

)
. (60)

This estimation is in agreement with the results of calcula-
tions of the specific angular TShCGs of secondary beams
[23,25,33].

The spin and IOAM of the beam of homogeneous plane
waves. Further on, we will analyze the relationships between
IOAMs and STLMs of the beams as well as the relationships
between the spins and STLMs. In view of that, IAM pul
of the ath beam of homogeneous plane waves will later be
considered; it will be denoted by İ(aa)(z(a) ). Like previously,
here we assume that the z(a) coordinate of the ath beam is
restricted by the condition (51); in this region of z(a) the vector
İ(aa), like the vector �̇

(aa)
, is approximately independent of

z(a) and is directed along the axis of the ath beam, i.e., İ(aa) =
İ (aa)ẑ(a).

İ (aa), like g(aa′ )(r) and �(aa), is the sum of two terms,

İ (aa) = İ (aa)
‖ + İ (aa)

⊥ . (61)

Every term İ (aa)
β , in turn, is also the sum of two terms,

İ (aa)
β = İ (aa)

β,[yx] + İ (aa)
β,[xy], (62)

where İ (aa)
β,[yx] is defined as follows:

İ (aa)
β,[yx] =

∫ ∞

−∞
dx(a)

∫ ∞

−∞
dy x(a)g(aa)

β,y (r), (63)

while İ (aa)
β,[xy] is given by the right-hand side of Eq. (63) pro-

vided that x(a) in the integrand is replaced by −y and g(aa)
β,y by

g(aa)
β,x .

We begin with calculating İ (aa)
‖ and first consider its

part İ (aa)
‖,[yx]. Let us substitute Eq. (45) into the right-

hand side of Eq. (44) and the result into the right-
hand side of Eq. (63). Next, let us take into ac-
count that k(τ )

x (κ) ∼= ζ (τ )κx and that x(a) exp(−iζ (a)κ ′
xx(a) ) =

i(1/ζ (a) )d/dκ ′
x exp(−iζ (a)κ ′

xx(a) ). Then, the integration by
parts over κ ′

x and after that the integrations over the other
variables leads to

İ (aa)
‖,[yx] = n(1)

n(a)
Q(a)L(aa)

[yx] ϒ. (64)

Here

ϒ = ��
(ii)
‖,z ; (65)

this factor defines the scale of İ (aa)
‖,[yx]. The other factors on the

right-hand side of Eq. (64) are dimensionless,

L(ii)
[yx] = −i

∫
f ∗(κ)κy

d

dκx
f (κ) d2κ, (66)

while L(αα)
[yx] is related to L(ii)

[yx] by

L(αα)
[yx] = 1

ζ (a)
L(ii)

[yx]. (67)

İ (aa)
‖,[xy] is given by Eqs. (64)–(67) provided that the follow-

ing replacements are made: L(aa)
[yx] → L(aa)

[xy] in Eqs. (64), (66),
and (67); κy → −κx and d/dκx → d/dκy in Eq. (66); and
1/ζ (a) → ζ (a) in Eq. (67).

Note that the quantities L(aa)
[yx] and L(aa)

[xy] are not always equal.
The equality takes place when IOAM of the ath beam is well
defined, e.g., when the beam is the Laguerre-Gaussian one. It
should be mentioned that IOAMs of all three beams consid-
ered cannot be well defined simultaneously. For instance, if
IOAM of the incident beam is well defined, i.e., if the function
f (κ) is given by Eq. (24), and L(ii)

[yx] = L(ii)
[xy] = l/2, then IOAM

of the reflected beam is also well defined, as ζ (ρ) = −1;
therefore, L(ρρ)

[yx] = L(ρρ)
[xy] = −l/2. On the other hand, L(ττ )

[yx] =
L(ττ )

[xy] , as ζ (τ ), unlike |ζ (ρ)|, is not an integer in the general
case.

The way of calculating İ (aa)
⊥ is similar to the way of

calculating İ (aa)
‖ , but Eq. (46) instead of Eq. (45) should be

substituted into the right-hand side of Eq. (44). Let us use the
identity

K(aa′ )
− exp(iK(aa′ )

− · r) = −i
d

dr
exp(iK(aa′ )

− · r) (68)

and carry out the integration by parts over x(a) or y when
calculating İ (aa)

⊥,[yx] or İ (aa)
⊥,[xy], respectively. The integrations with

respect to the other variables are straightforward. If the afore-
mentioned integrations have been carried out, we get

İ (aa)
⊥,[yx] = İ (aa)

⊥,[xy] = n(1)

n(a)
Q(a) ν

(a)

2
ϒ, (69)
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FIG. 2. The bases of the prisms Ṗ (aa) and P (iρ ). P (ii), the thick
red lines; P (ρρ ), the thick green lines; Ṗ (ττ ), the thick blue lines;
P (iρ ), the thick brown lines. The thin colored lines mark the symbolic
borders of the respective beams. The thick black line is the side of the
basis of every prism adjusted to the interface. n(2) > n(1).

where

ν (a) = −iẑ(a) · ê(a) × ê(a)∗ = 2Im
[
q(a)

x

(
q(a)

y m
)∗]

∣∣q(a)
x

∣∣2 + ∣∣q(a)
y m

∣∣2 ; (70)

the sign Im denotes the imaginary part of an expression. Note
that the right-hand sides of the relations (64) and (69) are
similar.

V. THE CALCULATIONS OF STLMs

The ways of calculating particular STLMs. Let us consider
the (aa′)th TLM confined in a domain adjacent to the interface
and assume that the domain is the same for β ∈‖ and β ∈⊥.
The volume of the (aa′)th domain will be denoted by V (aa′ ),
and TLM confined in it by G(aa′ )

β,y (V (aa′ ) ),

G(aa′ )
β,y (V (aa′ ) ) =

∫
V (aa′ )

g(aa′ )
β,y (r) d3r. (71)

Let every V (aa′ ) be the volume of a right prism whose base
faces are parallel to the plane of incidence, their y coordinates
being equal to ±Dy. Next, let the bases of the prisms, which
will be used in order to calculate TLMs of the first and
the second classes, be triangles and rectangles, respectively.
Such prisms will be denoted by Ṗ (aa) and P̈ (aa′ ) and their
volumes by V̇ (aa) and V̈ (aa′ ). The bases of Ṗ (aa) and P (iρ) are
depicted in Fig. 2; this figure is applied to the partial-reflection
regime. One side of every triangle or rectangle is the segment
(−Dz,Dz ) of a line, adjusted to the z axis. Two other sides
of the (aa)th triangle are parallel and perpendicular to the
z(a) axis; their lengths are evidently equal to 2Dz sin θ (a) and
2Dz| cos θ (a)|, respectively. D(1)

x is the length of every side of
the base of P (iρ) that is parallel to the x axis.

In the case of the total reflection, the shapes of the bases
of P (ii), P (ρρ), and P (iρ) are the same as in the previous case.
On the other hand, the base of P̈ (ττ ), unlike of Ṗ (ττ ), is the
rectangle with the shape similar to the shape of the base of

P (iρ), but it is situated in the lower half plane. The length of
the side of this rectangle that is parallel to the x axis will be
denoted as D(2)

x .
Let us assume that

Dy � b, Dz � b, D(1)
x � b, D(2)

x � �, (72)

and that θ (i) is not close to 0 or π/2 and, when n(2) < n(1),
to θ (iC).

Generally speaking, G(aa′ )
β,y (V (aa′ ) ) can be separated into two

parts that are independent of and dependent on the value of
V (aa′ ); the former and the latter parts describe STLM and
the bulk TLM, respectively. The present paper is devoted to
investigation of STLMs; this part of the (aa′)th TLM will be
denoted as G(aa′ )

β,y without the argument V (aa′ ). It will later be
shown that the bulk TLMs of the first class can be ignored if
the following constraint on every z(a) is imposed:

|z(a)| � b2/�. (73)

Therefore, we will consider only the near-field regions of
the beams of homogeneous plane waves, where the condition
(73) is fulfilled. According to this condition, the following
constraint should be imposed on Dz:

Dz � b2

sin(θ (a) )�
. (74)

Note that this relation is compatible with the second inequality
in (72). As for the particular TLMs of the second class, their
values are independent of the dimensions of P (iρ) and P̈ (ττ ) if
the conditions (72) are fulfilled.

The particular spin-dependent STLMs. We begin with cal-
culating the particular TLMs G(aa′ )

⊥,y (V (aa′ ) ). Let us substitute
Eq. (46) into the right-hand side of Eq. (44) and then Eq. (44)
into the right-hand side of Eq. (71). Let us also use the identity
(68). By means of this identity and the rotor theorem, the
integral of g(aa′ )

⊥,y (r) over the volume V̇ (aa) or V̈ (aa′ ) can be
converted into the sum of the surface integrals over N sides of
the respective prism: five sides of Ṗ (aa) or six sides of P̈ (aa′ ).
Then carrying out the integrations with respect to κ and κ′ and
taking into account Eq. (3), we get

G(aa′ )
⊥,y (V (aa′ ) ) =

∑
N

∫
ŷ · N̂(aa′ ) × μ(aa′ )(r(aa′ )

N

)
d2r(aa′ )

N ,

(75)
where r(aa′ )

N is a 2D vector lying on the N th side of the prism
P (aa′ ), N̂(aa′ ) is the unit outer-pointing normal to this side, and

μ(aa′ )(r) = 2 − δaa′

16π
n(1)� Im[E(a)(r) × E(a′ )∗(r)]. (76)

Let us first consider the particular spin-dependent TLMs
of the second class. In this case 2D integrals over all sides
of the prism P (iρ) or P̈ (ττ ) except for one adjacent to the
interface can be ignored. This is because the amplitudes of
inhomogeneous waves at the aforementioned sides of P̈ (ττ )

as well as the field of at least one beam, incident or re-
flected, at the respective sides of P (ir) are negligible, if the
conditions (72) are fulfilled [37]. For the same reason, when
calculating the particular spin-dependent TLM of the first
class, the surface integrals over all sides of the prism Ṗ (aa),
except the sides adjacent to the interface and situated in the
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beam’s cross section, can be ignored. However, the latter
can also be ignored, at least in the zero-order approximation.
This is because N̂(aa) = ∓ẑ(a) on this side, while the vector
e(a) × e(a)∗ is also parallel to the vector ẑ(a). Hence, we get
that every

G(aa′ )
⊥,y (V (aa′ ) ) = ±

∫ Dy

−Dy

dy
∫ Dz

−Dz

dz ẑ · μ(aa′ )(±ε, y, z). (77)

Here and in Eqs. (78) and (82) the signs “+” and “−” stand
for aa′ ∈ {ii, ρρ, iρ} and aa′ ∈ ττ , respectively; ε → 0+.

Let us substitute Eq. (76) into the right-hand side of
Eq. (77) and use the expression (3). Due to the conditions
(72), the limits of integration over y and z can be replaced by
±∞. Then, carrying out these integrations, we get that every
G(aa′ )

⊥,y (V (aa′)
) is independent of the dimensions of V (aa′)

; i.e., it
has no bulk part. As for the surface part, it is as follows:

G(aa′ )
⊥,y = ± tan θ (i) Im(m∗� (aa′ ) )

1 + |m|2 ϒ, (78)

where

� (aa) = n(1)

n(a)
q(a)

x q(a)∗
y (79)

and

� (iρ) = q(ρ)
x + q(ρ)∗

y . (80)

The quantity ϒ is given by Eq. (65). It defines the scale
of STLM, like the scale of IAM pul of the incident beam;
compare Eq. (78) with Eqs. (64) and (69). It is also worth
mentioning that ϒ is LM confined to the sector of the incident
beam of � length.

G(aa′ )
⊥,y depends on the polarization of the incident beam

through the parameter m; therefore, it can be called the spin-
dependent STLM. Equations (78)–(80) give the particular
spin-dependent STLMs of both classes. Taking into account
the expression (69) for İ (aa)

⊥,[yx] as well as the expressions
(55) and (70) for Q(a) and ν (a), the particular spin-dependent
STLM of the first class can be represented as follows:

Ġ(aa)
⊥,y

∼= ± tan θ (a)İ (aa)
⊥,[yx]

∼= ± 1
2 tan θ (a)İ (aa)

⊥ . (81)

Here the signs “+” and “−” stand for a ∈ i and a ∈ α,
respectively. The expression (81) clearly indicates how Ġ(aa)

⊥,y
is related to the spin of the ath beam.

Every G(aa′ )
⊥,y is independent of the space structure of the

incident beam. In view of that, the relation (78) can be
applied to the process of reflection and transmission of a
plane electromagnetic wave. When a plane-wave approach is
employed, it is more convenient to operate with PFs than with
LMs. In order to turn to the plane-wave approach, let us denote
the dimensions of the incident beam in the x(i) and y directions
as b(i)

x and by. Next, let us assume that the incident beam
is approximately homogeneous in the transverse direction.
Then, dividing the left and right part of Eq. (78) by by and
then making passages by → ∞, b(i)

x → ∞, we get

P(aa′ )
⊥,y = ± tan θ (i) Im(m∗� (aa′ ) )

1 + |m|2 P(ii)
z , (82)

where P(aa′ )
⊥,y is the (aa′)th TPF through a infinite plane, and

P(ii)
z is PF falling on the infinite strip in the cross section of the

incident beam of� length in the transverse direction (compare
with the results presented in Ref. [8]).

The particular IOAM-dependent STLMs. The way of cal-
culating G(aa′ )

‖,y (V (aa′ ) ) is different. Let us first consider these

TLMs of the first class. When calculating Ġ(aa)
‖,y (V̇ (aa) ), it is

convenient to use the coordinates x(a), y, and z(a). In this frame

Ġ(aa)
‖,y (V̇ (aa) ) =

∫ D(a)
z

−D(a)
z

dz(a)
∫ Dy

−Dy

dy
∫ γ́

(a)
+

γ́
(a)
−

dx(a) ṡ(aa)
‖,y (r), (83)

where

D(a)
z = Dz sin θ (a). (84)

One limit of integration with respect to x(a) is proportional
to z(a), namely, γ́

(i,ρ)
− = γ

(i,ρ)
− and γ́

(τ )
+ = γ

(τ )
+ , where γ

(a)
±

is given by Eq. (50); the other limit is constant: γ́
(i,ρ)
+ =

Dz| cos θ (i,ρ)| and γ́
(τ )
− = −Dz cos θ (τ ).

According to the conditions (72), both limits of integration
with respect to y and one limit of integration with respect to
x(a), γ́ (i,ρ)

+ or γ́ (τ )
− , can be replaced by ±∞. In order to make

such a replacement for the other limit of the latter integration,
let us multiply the integrand in Eq. (83) by the Heaviside
step function �(±v(a) ), where v(a) = (x(a) − z(a) cot θ (a) ); the
signs “+” and “−” stand for a ∈ {i, ρ} and a ∈ τ , respectively.
It is convenient to use the following integral representation of
this function:

�(±v(a) ) = i

2π

∫ ∞

−∞

exp(−iκ̃v(a) )

±κ̃ + iε
d κ̃ .

Let us subsequently substitute Eq. (45) into the right-hand side
of Eq. (44) and the expression for ġ(aa)

‖,y (r) obtained into the
right-hand side of Eq. (83). Then, carrying out the integration
over x(a) and y, both from −∞ to +∞, and after that the
integration with respect to κ ′

x, we get

Ġ(aa)
‖,y (V̇ (aa) ) = −n(1)�

16π2
Im

∫ ∞

−∞
dκy

∫ ∞

−∞
dκx

∫ ∞

−∞

d κ̃

±κ̃ + iε

×
∫ D(a)

z

−D(a)
z

dz(a)�(κ, κ̃ ) exp(iκ̃ z(a) cot θ (a) ),

(85)

where

�(κ, κ̃ ) = κyE (a)(κa
x , κy

) · E (a)∗(κx, κy)∣∣ζ (a)
(
κa

x , κy
)∣∣ , (86)

and where κa
x is a function of the variables κx, κy, and κ̃ , it

is defined by the equation k(a)
x (κa

x , κy) − k(a)
x (κx, κy) + κ̃ = 0;

note that κa
x → κx as κ̃ → 0. ζ (a)(κa

x , κy) is given by Eq. (57).
Let us decompose Ġ(aa)

‖,y (V̇ (aa) ) into two parts as follows:

Ġ(aa)
‖,y (V̇ (aa) ) = Ġ(aa,S)

‖,y (V̇ (aa) ) + Ġ(aa,B)
‖,y (V̇ (aa) ), (87)

where Ġ(aa,S)
‖,y (V̇ (aa) ) and Ġ(aa,B)

‖,y (V̇ (aa) ) are given by the right-
hand side of Eq. (85), if the factor �(κ, κ̃ ) in the integrand
is replaced by the factors �(κ, κ̃ ) − �(κ, 0) and �(κ, 0),
respectively.
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Let us first consider the term Ġ(aa,S)
‖,y (V̇ (aa) ). Note that once

the aforementioned replacement in Eq. (85) is done, then the
integrand does not contain a singularity, because �(κ, κ̃ ) −
�(κ, 0) → 0 as κ̃ → 0. Bearing in mind this fact as well as
Eq. (84) and the second relation (72), the passage D(a)

z → ∞
can be made when calculating Ġ(aa,S)

‖,y (V̇ (aa) ). When such a
passage is made, let us first carry out the integration over z(a)

from −∞ to ∞ and after that the integration with respect to
κ̃ . Next, let us take into account Eqs. (20)–(23) and (53)–(55).
Then we get that Ġ(aa,S)

‖,y (V̇ (aa) ) is approximately independent

of V̇ (aa), so, it represents the (aa)th IOAM-dependent STLM.
In the nearest-order approximation, when the dependence of
the quantities m(κ) and q(α)(κ) on κ is ignored,

Ġ(aa,S)
‖,y = ± tan θ (a)İ (aa)

‖,[yx], (88)

where İ (aa)
‖,[yx] is given by Eq. (64); the signs “+” and “−” stand

for a ∈ i and a ∈ α, respectively.
By comparing Eqs. (88) and (81), one can see that Ġ(aa,S)

‖,y
is related to IOAM of the ath beam, like Ġ(aa)

⊥,y is related to the
beam’s spin. The scale of both STLMs is ϒ .

Ġ(aa,B)
‖,y (V̇ (aa) ) is calculated in a different way. The inte-

grand in Eq. (85), which is obtained after the replacement
�(κ, κ̃ ) → �(κ, 0), contains the singularity; however, the
factor �(κ, 0) is independent of the variable κ̃ . Taking into
account this fact, let us first carry out the integration with
respect to κ̃; this gives the Heaviside step function �(±z(a) )
in the integrand. After that, carrying out the integration with
respect to z(a), we get

Ġ(aa,B)
‖,y (V̇ (aa) ) = �̇

(aa)
‖,y D(a)

z , (89)

where �̇
(aa)
‖,y and D(a)

z are given by Eqs. (53) and (54) and
Eq. (84), respectively.

Ġ(aa,B)
‖,y (V̇ (aa) ) is proportional to the length of the part of

the ath beam confined in the prism Ṗ (aa), so, it represents the
bulk TLM. �(ii)

y = 0 [see Eq. (58)]; hence, G(ii,B)
‖,y (V (ii) ) = 0.

In the total-reflection regime G(ρρ,B)
‖,y (V (ρρ) ) = 0 as well. In the

partial-reflection regime Ġ(αα,B)
‖,y (V̇ (αα) ), like �̇

(αα)
‖,y , can have

nonzero values. Let us estimate the greatest possible scale of
Ġ(αα,B)

‖,y (V̇ (αα) ) in the latter regime; the estimation can be done
on the basis of Eq. (89) and the relation (60). Using these
equations and taking into account the expressions for D(a)

z and
ϒ given by Eqs. (84) and (65), we get that∣∣Ġ(αα,B)

‖,y
∣∣�

ϒDz
= O

(
�2

b2

)
. (90)

One can see that |Ġ(αα,B)
‖,y (V̇ (αα) )| � ϒ when the condition

(74) is fulfilled. So, in the near-field regions of the secondary
beams the bulk TLMs can be ignored if TLMs on the order of
ϒ are under investigation.

Let us now consider TLMs of the second class G(iρ)
‖,y (V (iρ) )

and G̈(ττ )
‖,y (V̈ (ττ ) ). When integrating the TLM densities g(iρ)

‖,y (r)

or g̈(ττ )
‖,y (r) over the volume V (iρ) or V̈ (ττ ), it is convenient

to use the coordinates x, y, and z. In this case, the passage
Dx,y,z → ∞ can be made; see the comment [37]. Carrying out
after such a passage the integrations first over y and z and then
over κ′ and x, we get that G̈(aa′ )

‖,y (V̈ (aa′ ) ), like Ġ(aa,S)
‖,y (V̇ (aa) ), is

approximately independent of V̇ (aa), and

G̈(aa′ )
‖,y = ϒ

δaτ − 2

2 cos θ (i)
Im

∫
κy

x̂ · k(a)(κ)
| f (κ)|2

× q(a′ )(κ)q(a)∗(κ)[e(a′ )(κ) · e(a)∗(κ)]d2κ. (91)

In the partial-reflection regime the reflection and refraction
coefficients as well as x̂ · k(i)(κ) are real; therefore G(iρ)

‖,y =
0 in this regime. In the total-reflection regime q(α)

x (κ) and
q(α)

y (κ) are complex, while x̂ · k(τ )(κ) is imaginary, so, G̈(ττ )
‖,y

and G(iρ)
‖,y can take nonzero value. Let us estimate their mag-

nitudes. The integral on the right-hand side of Eq. (91) is a
dimensionless quantity. Note that the magnitude of the factor
κy/[x̂ · k̈(a)(κ)] is on the order of �/b in the actual region
of the function | f (κ)|2. On the basis of this fact, one can
conclude that the greatest possible scale of the above integral
cannot exceed �/b; as a consequence, the greatest possible
scales of every G̈(aa′ )

‖,y in the total-reflection regime cannot
exceed ϒ�/b. But actually the scales of these TLMs are
even less than ϒ�/b. Indeed, in the zero-order approxima-
tion, when the dependence of the quantities ζ (τ )(κ), q(a)

x (κ),
q(a)

y (κ), and x̂ · k(a)(κ) on κ is ignored, G̈(aa′ )
‖,y = 0; this relation

follows from Eq. (59). And meanwhile, the corrections to
the aforementioned quantities are small in the actual region
of the function | f (κ)|2; see the relations (30), (31), (33),
(34), and (36). Hence, unlike the spin-dependent STLMs, the
IOAM-dependent STLMs only of the first class can be on the
order of ϒ .

STLM in the total space. STLMs in the first and second
media will be denoted by G(1)

β,y and G(2)
β,y, respectively. Bearing

in mind the definition (71) and taking into account Eqs. (39)
and (40), we get

G(1)
β,y = G(ii)

β,y + G(ρρ)
β,y + G(iρ)

β,y (92)

and

G(2)
β,y = G(ττ )

β,y . (93)

Therefore, the spin-dependent or IOAM-dependent STLMs
in the second medium are given by Eqs. (78) or (88) for
aa′ ∈ ττ . These STLMs in the first medium, G(1)

⊥,y and G(1)
‖,y,

can be calculated by the use of Eqs. (78)–(80) and Eqs. (88),
(64)–(67), respectively. Let us also use the relations (17) and
(18) and the relations Q(ρ) + Q(τ ) = 1 when calculating G(1)

⊥,y

and G(1)
‖,y, respectively. Then, we get that the spin-dependent

or IOAM-dependent STLMs in the first and the second media
are related by [38]

ε (1)G(1)
β,y = −ε (2)G(2)

β,y. (94)

The spin-dependent or IOAM-dependent STLM in the total
space

Gβ,y = G(1)
β,y + G(2)

β,y. (95)

Substituting G(1)
β,y obtained by means of Eq. (94) into the right-

hand side of Eq. (95) and taking into account Eq. (93), we get

Gβ,y =
(

1 − ε (2)

ε (1)

)
G(ττ )
β,y . (96)
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The global STLM

Gy = G⊥,y + G‖,y. (97)

VI. THE RELATION BETWEEN STLM AND TShCGs
OF THE SECONDARY BEAMS

It is known that there is a relation between the global
STLM and TShCGs of the reflected and transmitted light
beams. Let us consider this relation.

TShCG of the αth secondary beam, which will be denoted
by h(α), is defined as follows:

h(α) = Y (α) − Y (i). (98)

Here Y (a) is the y coordinate of the center of gravity of the ath
beam of homogeneous plane waves, which is given by

Y (a) = 1

V̇ (aa)

∫ ∞

−∞
dy

∫ γ
(a)
+

γ
(a)
−

dx(a) yẇ(aa)(r), (99)

where ẇ(aa)(r) is the electromagnetic energy density in this
beam,

ẇ(aa)(r) = 1

16π
[ε (a)|E(a)(r)|2 + |H(a)(r)|2], (100)

and V̇ (aa) is the electromagnetic energy pul of the beam,

V̇ (aa) =
∫ ∞

−∞
dy

∫ γ
(a)
+

γ
(a)
−

dx(a) ẇ(aa)(r). (101)

The limits of integration γ
(a)
− and γ

(a)
+ are given by Eqs. (49)

or (50). If the condition (51) is fulfilled, then every finite γ (a)
±

can be replaced by ±∞; in this case Y (a) and V̇ (aa), like �̇
(aa)
β

and İ (aa), are independent of z(a). It is worth noting that Y (a)

represents the first normalized moment of the electromagnetic
energy distribution in the transverse direction inside the ath
beam.

TShCGs of secondary beams as well as STLMs are the
dynamical characteristics of the processes of the beam’s re-
flection and transmission. The relation between these quanti-
ties can be established, if one mentally selects a rather long
sector of the incident beam that is situated far enough from
the interface and traces the motion of the packet created in
such a way up to the time instant when the secondary packets
are far enough from the interface. On the basis of the equation
of motion of the center of gravity of the electromagnetic field
selected, the following relation can be obtained (see [14,15]
and Appendix B):

Gy = (Q(ρ)h(ρ) + Q(τ )h(τ ) )�(ii)
‖,z . (102)

VII. DISCUSSION OF THE RESULTS AND CONCLUSIONS

General remarks. In this paper the calculations of the
surface transverse linear momenta (STLMs) generated during
reflection and transmission of a paraxial light beam at a
plane interface between two isotropic transparent media have
been carried out. Throughout the body of the paper LM was
assumed to be the Abraham one.

In order to identify STLMs, TLMs confined in the suf-
ficiently large domains adjacent to the interface have been

calculated. STLMs represent the parts of TLMs that are inde-
pendent of the domains’ dimensions. The following particular
TLMs have been investigated: TLMs of the incident, reflected,
and transmitted fields as well as the interference TLM in the
first medium. They are labeled by the superscripts ii, ρρ, ττ ,
and iρ, respectively. An arbitrary particular TLM is labeled by
the superscript aa′. TLMs in the first and the second medium,
which are labeled by the superscripts 1 and 2, as well as TLMs
in the total space have also been considered.

Particular TLMs have been classified according two dif-
ferent criteria. First, every particular LM density g(aa′ )(r)
has been decomposed into two parts [see Eqs. (43)–(47)];
they are labeled by the subscripts ⊥ and ‖. TLMs created
by the transverse components of these vectors are denoted
by G(aa′ )

⊥,y and G(aa′ )
‖,y , respectively. The former is dependent

on the polarization of the incident beam while the surface
part of the latter is dependent on the beam’s IOAM. In view
of that, the respective STLMs are called spin-dependent and
IOAM-dependent STLMs.

Second, TLMs have been divided into the following
classes: the first class is represented by TLMs in the beams
of homogeneous plane waves, and the second class consists
of the interference TLM and TLM in inhomogeneous waves
that are generated in the second medium at total reflection.
Such a division has been made because the features of these
TLMs are different. In particular, the scales of effective x
dimension of the domains in which STLMs of the first and
the second classes exist are different: they are equal to b
and � = λ/(2π ), respectively, where b is the characteristic
dimension of the incident beam and λ is the wavelength in
the first medium; see Appendix A. TLMs of the first and
the second classes are labeled by one dot and two dots over
respective letters.

It has been shown that the greatest possible scale of every
particular STLM cannot exceed LM confined in the sector of
the incident beam of � length (the sector is assumed to be
situated far from the interface). This quantity was denoted by
ϒ ; STLMs on such a scale have been investigated in detail.
Note that, as the light velocity in vacuum is assumed equal to
unity, ϒ is equal to � times the intensity of the incident beam.

Every particular TLM is equal to zero at normal incidence.
Throughout the paper, it is assumed that the angle of incidence
θ (i) = 0.

The particular IOAM-dependent TLMs. The (aa)th IOAM-
dependent STLM of the first class Ġ(aa,S)

‖,y is given by Eq. (88).
This equation establishes the relationship between the part of
IOAM pul of the ath beam and Ġ(aa,S)

‖,y ; the former is given

by Eq. (64). Eventually, Ġ(aa,S)
‖,y is proportional to the factor

L(ii)
[yx] that is given by Eq. (66); if IOAM of the incident beam

is well defined [see Eq. (24)], then L(ii)
[yx] = l/2, where l is the

azimuthal index of the incident beam. The signs of Ġ(ρρ,S)
‖,y and

Ġ(ττ,S)
‖,y are opposite to the sign of Ġ(ii,S)

‖,y .

It is necessary to explain why the value of Ġ(aa,S)
‖,y , provided

L(ii)
[yx] = 0, is left finite as b → ∞. Indeed, the greatest possible

scale of the density of the IOAM-dependent TLM is �/b
times the mean value of the density of the axial LM in the
incident beam, so, the ratio of these densities as well as the
former one tend to zero as b → ∞. However, the effective x
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dimension of the region in which STLM of the first class exists
is on the order of b, so, the scale of its volume is b/� times
the scale of the volume of the sector of the incident beam of
� length. The combination of the two above ratios enables
independence of Ġ(aa,S)

‖,y of b; see Appendix A.
The greatest possible scale of the density of every partic-

ular IOAM-dependent STLM of the second class is the same
as this scale of STLM of the first class. However, the scale of
the effective x dimension of the region in which the former
STLM exists is �. As a consequence, the greatest possible
scale of G̈(aa′ )

‖,y is ϒ(�/b); see Appendix A. Meanwhile, the
quantity ϒ(�/b) is to be considered as the upper estimate of
the scale of G̈(aa′ )

‖,y . The analysis of the rigorous expression

(91) for G̈(aa′ )
‖,y leads to the conclusion that G(iρ)

‖,y = 0 in the

partial-reflection regime, while the scales of G̈(ττ )
‖,y and G(iρ)

‖,y in
the total-reflection regime are much less than ϒ�/b.

On the basis of the relationship between İ (aa)
‖,[yx] and Ġ(aa)

‖,y ,
one can come to the conclusion that the appearance of the
IOAM-dependent STLM is stipulated by influence of the
interface on the rotational energy motion in the ath beam.
The detailed analysis of such a mechanism of generation
of the particular IOAM-dependent STLM is carried out in
Appendix C, where the geometrical interpretation of the
IOAM-dependent STLM is presented; the summary is below.

The distribution of 2D planar vector ġ(aa)
‖,p (r) [this vector

is defined by Eq. (C1)] in every cross section of the ath
beam can be represented by the congruence of the curves, the
vector ġ(aa)

‖,p (r) being the tangent to the respective curve. If the
beam’s cross section is situated far from the point O, these
curves in the actual region of the beam are approximately
closed, being circles when IOAM is well defined (O is the
point of intersection of the beams axes with the interface; see
Fig. 1). In this case, TLM confined in the upper half of the
ath beam where x(a) > 0 is compensated by TLM confined
in its lower half where x(a) < 0. Hence, far from the point O,
TLM pul of the ath beam is approximately equal to zero. On
the other hand, if the beam’s cross section is near the point O,
then a number of ġ(aa)

‖,p lines in the actual region of the beam
are cut by the interface, see Fig. 4, so, the aforementioned
compensation is missing. As a consequence, TLM pul of the
ath beam is nonzero in the vicinity of the point O; hence, Ġ(aa)

‖,y
is nonzero too.

The qualitative geometrical interpretation of the particular
IOAM-dependent STLMs that was discussed above can be
applied to the real beams. The respective quantitative analysis
of these STLMs has been carried out using the model of the
incident beam that has been represented by a square cylinder
whose axis coincides with the z(i) axis. It was assumed that
the electromagnetic field and, as a consequence, g(ii)

‖,p(r) are
localized on the cylinder’s surface. By the use of this model
of the incident beam, it can be clearly explained why Ġ(aa)

‖,y
is proportional to İ (aa)

‖,[yx]. What is surprising is that the expres-
sions for STLMs of the incident and secondary beams derived
by the use of such a crude model turned out to be quite similar
to ones derived rigourously.

In the partial-reflection regime, TLMs of secondary beams,
which are created by the LM densities g(ρρ)

‖,y (r) and ġ(ττ )
‖,y (r),

can also have bulk parts. These are proportional to the lengths

of the selected sectors of secondary beams; see Eq. (89). Note
that among all particular TLMs considered only G(ρρ)

‖,y and

Ġ(ττ )
‖,y can have the bulk parts; they are connected with the

angular transverse shifts of the centers of gravity (TShCGs) of
secondary beams [23,25,31,33–36]. In the near-field regions
of these beams, which are adjacent to the interface, the bulk
TLMs can be ignored, as their scales are much less than ϒ ;
see Eq. (90). On the other hand, the bulk TLMs can be on
the order of ϒ or even significantly exceed it in the far-field
regions.

The particular spin-dependent STLMs. Every particular
TLM created by the TLM density g(aa′ )

⊥,y (r) has no bulk part,
while its surface part is given by Eq. (78) and Eq. (79) or
(80). G(aa′ )

⊥,y can have nonzero value if Im(m∗� (aa′ ) ) = 0. The

factors m and � (aa′ ) are as follows: m, which is given by
Eq. (19), describes the polarization of the incident beam,
� (ii) = 1, while every other factor � (aa′ ) is the product or the
sum of the Fresnel reflection or transmission coefficients. If
the incident beam is elliptically polarized, i.e., if the parameter
m is complex, then Im(m∗� (aa′ ) ) = 0 for every combination
of the superscripts a and a′; in this case every G(aa′ )

⊥,y = 0 in
the total-reflection as well as in the partial-reflection regimes.
If the incident beam is linearly polarized and the polarization
vector is inclined to the plane of incidence, then all G(aa′ )

⊥,y ,

except G(ii)
⊥,y, are nonzero in the total-reflection regime, while

every G(aa′ )
⊥,y = 0 in the partial-reflection regime. If the incident

beam is x̂(i) or ŷ polarized, then every G(aa′ )
⊥,y = 0 in the both

regimes.
Unlike IOAM-dependent STLMs, the particular spin-

dependent STLMs of both classes can be on the scale of ϒ ;
this fact is explained in Appendix A. The particular spin-
dependent STLMs of the first class can be on this scale for
the same reason as the IOAM-dependent STLMs. Note that
Ġ(aa)

⊥,y is related to the spin of the ath beam in the same way

as Ġ(aa,S)
‖,y is related to the beam’s IOAM; compare Eqs. (81)

and (88). In view of that, the geometrical interpretation of
the IOAM-dependent STLMs presented in Appendix C and
summarized above can also be applied to the spin-dependent
STLMs of the first class.

The particular spin-dependent STLMs of the second class
G̈(aa′ )

⊥,y can be on the scale of ϒ for another reason. The scale of
the effective x dimension of the regions in which the particular
spin-dependent and IOAM-dependent STLMs of the second
class exist is the same. However, the greatest possible scale of
g̈(aa′ )

⊥,y is of the order of the mean LM density in the incident

beam. So, it is b/� times the greatest possible scale of g̈(aa′ )
‖,y

as well as of ġ(aa)
‖,y and ġ(aa)

⊥,y .
Another distinction between the particular spin-dependent

and IOAM-dependent STLMs is that the former, unlike the
latter, are independent of the space structure of the inci-
dent beam. This distinction is connected with the distinction
between the natures of the spin AM and IOAM; see, e.g.,
[10,12,13]. In view of that, the relation (78) can be applied,
in a proper way, to the process of reflection and transmis-
sion of a plane wave. In the plane-wave limit, this relation-
ship between LMs can be converted into the relationship
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between the respective power flows; see Eq. (82). Comparing
Eqs. (78) and (82), one can see that all conclusions made
about the particular spin-dependent STLMs can also be ap-
plied to the respective spin-dependent transverse power flows
(TPFs).

Note that a plane-wave approach has been used in many of
previous investigations of the spin-dependent TPFs. In such
an approach, P̈(ττ )

⊥,y and P(iρ)
⊥,y have been calculated in [2–7,9]

and [9], respectively. The results of these calculations coincide
with P̈(ττ )

⊥,y and P(iρ)
⊥,y given by Eq. (82). On the contrary, the

particular spin-dependent TPFs of the first class Ṗ(aa)
⊥,y cannot

directly be obtained in the plane-wave approach.
STLM in the total space. Both IOAM-dependent and spin-

dependent STLMs in the second medium, G(2)
‖,y and G(2)

⊥,y, are

STLMs of the transmitted field, G(ττ )
⊥,y and G(ττ )

‖,y , while every

STLM in the first medium, G(1)
β,y, is the sum of STLMs of

the incident and reflected beams as well as the interference
STLM. Every G(1)

β,y is related to G(2)
β,y by Eq. (94).

The IOAM-dependent or spin-dependent STLM in the total
space Gβ,y is related to G(ττ )

β,y by Eq. (96). It follows from

this relationship that the signs of Gβ,y and G(ττ )
β,y are the same

if ε (2) < ε (1), and they are opposite if ε (2) > ε (1). Otherwise,
the features of Gβ,y are similar to the features of G(ττ )

β,y that
have been analyzed above. In particular, it follows from this
analysis that G⊥,y can be on the scale of ϒ in both partial-
reflection and total-reflection regimes, while G‖,y can be on
such a scale only in the partial-reflection regime.

Let us discuss the features of G‖,y in more detail and begin
with the case of total reflection. In this case G‖,y, like G̈(ττ )

‖,y ,
is approximately equal to zero; nevertheless, both STLMs
in the first medium are nonzero if L(ii)

[yx] = 0. G‖,y = 0 in the

total-reflection regime because G(ii)
‖,y is compensated by G(ρρ)

‖,y .
In the partial-reflection regime there is no such compensation,
and the IOAM-dependent STLM in the first medium, which is
approximately equal to G(ii)

‖,y + G(ρρ)
‖,y , is nonzero if L(ii)

[yx] = 0.
Nevertheless, it can be affirmed that even in this regime only
the process of the beam’s transmission but not of the beam’s
reflection is related to the appearance of G‖,y. Indeed, the
intensity of the incident beam can be divided into the part that
is to be reflected and the part that is to be transmitted; they
are proportional to Q(ρ) and Q(τ ), respectively. It is easy to see
that the IOAM-dependent STLM related to the former part,
i.e., Q(ρ)G(ii)

‖,y , is compensated by G(ρρ)
‖,y .

The relationship between STLM in the total space and
TShCGs of secondary beams. Let us now turn to the prob-
lem of experimental investigation of STLM. In view of this
problem, the relation (102) between the global STLM and the
linear combination of TShCGs of the reflected and transmitted
light beams is of significant interest, as indirect investigation
of STLM is possible on the basis of this relationship. Let
us discuss its features. First of all, it should be mentioned
that Eq. (102) establishes the relationship between the global
STLM and the global TShCGs of secondary beams, the latter
being the sum of the spin-dependent and IOAM-dependent
TShCGs. However, the spin-dependent and IOAM-dependent
effects can easily be divided. For instance, only the former
or only the latter effect occurs when the incident beam is the

elliptically polarized Gaussian beam or the x̂(i)- or ŷ-polarized
Laguerre-Gaussian beam, respectively.

When one secondary beam is generated, i.e., in the case
of total reflection or total transmission, then there is an
unambiguous connection between Gβ,y and TShCG of the
secondary beam. TShCG of this beam is exclusively caused by
the electromagnetic energy motion in the transverse direction.
Hence, the detection of TShCG of a solitary beam means
also the detection of STLM in the total space and, according
to the relation (96), the detection of STLM in the second
medium. In view of that, it should be mentioned that exper-
imental investigations of the spin-dependent TShCG in the
total-reflection regime have been made in a number of works;
see, e.g., [6,39] and the references in [16]. On the contrary,
the IOAM-dependent TShCG of the totally transmitted light
beam has yet not been detected.

In the partial-reflection regime there is no one-to-one cor-
respondence between STLM and TShCG of every secondary
beam. In this case there are two mechanisms of genera-
tion of TShCGs; these mechanisms for the IOAM-dependent
TShCGs have been considered in [40]. So, the global STLM
in the partial-reflection regime can be detected if TShCGs of
both secondary beams are measured. Note that when STLMs
are under investigation in the partial-reflection regime, then
the possible appearance of the bulk TLMs should be taken into
account; see the discussion of the IOAM-dependent STLMs.

The detailed analysis of TShCGs of secondary beams is not
the aim of the present paper. However, in view of their relation
to STLMs, the following fact is to be mentioned. It has been
concluded that the dependence of m(κ), q(α)

x (κ), and q(α)
y (κ)

on κ can be ignored, when STLMs on the scale of ϒ are
under consideration. However, ignoring such a dependence is
impossible when calculating TShCGs of the partially reflected
and transmitted beams in the general case. In particular, the
spin-dependent TShCG of every secondary beam is the sum
of two terms; see Eq. (15) in [24]. The second term in this
equation is dependent on the quantity ηy given by Eq. (35).
Bearing in mind this fact, it is interesting to discuss the re-
sults of investigations of the spin-dependent TShCGs carried
out in [41] and [25] from the point of view of the STLM
phenomenon. In the aforementioned papers different results
for TShCGs of the secondary beams have been obtained. The
difference is caused by the fact that different models of the
incident beam have been used: ηx and ηy were assumed to be
equal to zero in [41], while it was assumed in [25] that the
polarization vector is constant across the cross section of the
incident beam. In the latter case, the values of ηx and ηy can
be nonzero. In view of this distinction, it is remarkable that,
as all particular spin-dependent STLMs are approximately
independent of ηy, see Eqs. (78)–(80), then they are the
same for both aforementioned models of the incident beam
provided that m is the same.

The IOAM-dependent TShCGs of the partially reflected
and transmitted beams have terms that are proportional to the
derivatives of the reflectivity or transmissivity with respect to
κx; see Eqs. (14)–(17) in [23]. Meanwhile, the former TShCG
has only such a term. These parts of the IOAM-dependent
TShCGs are not directly connected with the IOAM-dependent
STLMs; this statement is in agreement with the aforemen-
tioned analysis of the latter.
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If the way of the experimental investigation of the IOAM-
dependent STLM is discussed, then, in addition to TShCGs of
secondary beams, the transverse shifts of the optical vortexes
with respect to the geometrical optic axes of secondary beams
should be taken into account as well. Such a shift among
the other effects that accompany the reflection of the beam
carrying the vortex has been investigated theoretically and
experimentally in [42–44]. It is impossible to directly obtain
the relationships between STLMs and the transverse shifts of
the optical vortexes similar to the relation (102). In order to
do this, the relationship between the latter and the IOAM-
dependent TShCGs of the secondary beams should prelimi-
narily be established. Such a program would be of interest
because it is more easy to detect the transverse shift of the
optical vortex than TShCG of the beam; see, e.g., [42]. Note
that as for the partially reflected beam, the transverse shift of
the vortex, like the IOAM-dependent TShCG, is stipulated by
the derivatives of the reflectivity with respect to κ [42,44], so,
it can be said that the former, like the latter, is not connected
with generation of STLM. In view of this, the investigation of
the transverse shifts of the optical vortices in the transmitted
field and establishment of the relationship between these shifts
and the IOAM-dependent TShCG of the transmitted beam is
of particular interest.

The Minkowski STLM and the Abraham-Minkowski
dilemma. So far, the Abraham STLMs were under considera-
tion. Let us now briefly discuss the features of the Minkowski
STLMs. As is known, the density of the Minkowski LM is
ε(x)g(r), where ε(x) = ε (1) if x > 0, and ε(x) = ε (2) if x < 0
(see, e.g., [17–20]). So, the particular Minkowski STLM,
which will be denoted by G (aa′ )

β,y , is related to the respective par-

ticular Abraham STLM as follows: G (aa′ )
β,y = ε (a)G(aa′ )

β,y . Hence,

although the values of two particular STLMs, G(aa′ )
β,y and G (aa′ )

β,y ,
are different, their scales, provided that the dielectric constants
are not to small and not too large, are equal and their features
are similar. The same conclusion is valid for STLMs in the
first and the second media. On the contrary, the features of
the Abraham and Minkowski STLMs in the total space are
different. The Minkowski STLMs in the first and the second
media, unlike the Abraham ones, compensate each other; that
follows from the above relation and Eq. (94). Hence, the
Minkowski STLM in the total space Gβ,y is equal to zero in
any case.

The STLM phenomenon seems to be interesting in con-
nection with the Abraham-Minkowski dilemma; see, e.g.,
the review articles [17–20] and the references therein. The
contemporary point of view on this dilemma is as follows:
the Minkowski and Abraham LMs represent the canonical and
kinetic LMs, respectively; see, e.g., [19,20,45]. The results
of direct calculations of STLMs presented here illustrate this
point of view. Indeed, the relation Gβ,y = 0 represents, as a
matter of fact, the conservation law for the Minkowski TLM,
which is stipulated by the translation invariance of the system
under consideration in the transverse direction [14]; note that
the aforementioned relation controls the angular transverse
shifts of the secondary beams [34]. However, despite that the
global Minkowski STLM is zero, TShCG of the global field
can take a nonzero value, as it is the global Abraham STLM
that is related to the energy motion in the transverse direction
and, as a consequence, to TShCG of the global field. So, the

specific features of both LMs, the Abraham and Minkowski
ones, are manifested in the process under consideration.
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APPENDIX A: THE SPACE STRUCTURES
OF THE PARTICULAR STLMs

Equations (78)–(80) and (88), (64) represent the results
of rigorous calculations of the particular spin-dependent and
IOAM-dependent STLMs, respectively. One can see from
these equations that the greatest possible scale of all particular
STLMs of the first class as well as of the particular spin-
dependent STLMs of the second class is ϒ . On the contrary,
the scales of the particular IOAM-dependent STLMs of the
second class are much less than ϒ . In order to elucidate the
similarities and distinctions between particular STLMs, the
analysis of their space structures is given below.

In the body of the paper we operated with the well-defined
quantities. Unlike there, here we will operate with the scales
of these quantities, which can be estimated on the basis of the
expressions (44)–(47) for the LM densities. In so doing, the
following parameters will be used: �, b, and the mean value of
g(ii)

‖,z (r), which will be denoted as 〈g(ii)
‖,z〉. The greatest possible

scale of a quantity will be denoted by the same letter, which
denotes the quantity, but with a line above it.

Let us introduce 1D, 2D, and 3D characteristics of the
(aa′)th STLM X (aa′ )

β , �, and v
(aa′ )
β , respectively. They are

defined as follows: X (aa′ )
β is the effective x dimension of the

region in which the (aa′)th STLM exists, � is the mean area of
the spot on the interface, which is illuminated by the incident
beam, and v

(aa′ )
β is the effective volume of the (aa′)th STLM.

� is approximately the area of every particular STLM on the
interface, while X (aa′ )

β and v
(aa′ )
β of different STLMs can be

different. v
(aa′ )
β is related to � and X

(aa′ )
β by v

(aa′ )
β = �X

(aa′ )
β .

As � = b2, then

v
(aa′ )
β = b2X

(aa′ )
β . (A1)

The expression for the greatest possible scale of the (aa′)th
STLM can be written as follows: G

(aa′ )
β,y = v

(aa′ )
β g(aa′ )

β,y . Substi-
tuting Eq. (A1) into the right-hand side of the above equation
we get

G
(aa′ )
β,y = b2X

(aa′ )
β g(aa′ )

β,y . (A2)

G
(aa′ )
β,y is to be compared with the scale of ϒ . Note that the

effective area of the cross section of the incident beam, like
�, is on the order of b2, so, �

(ii)
‖,z = b2〈g(ii)

‖,z〉. ϒ is given by
Eq. (65); hence,

ϒ = b2�
〈
g(ii)

‖,z
〉
. (A3)
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Dividing the left-hand and right-hand sides of Eqs. (A2) and
(A3), we get the following relation:

G
(aa′ )
β,y

ϒ
= X

(aa′ )
β

�

g(aa′ )
β,y〈
gii

‖,z
〉 . (A4)

So, the greatest possible scale of G
(aa′ )
β,y is defined by two ratios

X
(aa′ )
β /� and g(aa′ )

β,y /〈g(ii)
‖,z〉.

Let us begin with the analysis of the former ratio. The

value of X
(aa′ )
β is mainly determined by the value of the scalar

product x̂ · K(aa′ )
− (κ, κ′) in the exponent in the right-hand side

of Eq. (44). It is the same for β ∈‖ and β ∈⊥; in view of

that, X
(aa′ )
‖ = X

(aa′ )
⊥ . On the other hand, Ẋ

(aa)

β and Ẍ
(aa′ )
β are

different, because

K̇(aa)
− (κ, κ′) ∼= ζ (a)(κx − κ ′

x )x̂(a) + (κy − κ ′
y)ŷ, (A5)

while

K̈(aa′ )
− (κ, κ′) ∼= 2x̂(x̂ · k(a)∗). (A6)

Consider first the values of Ẍ
(ττ )

β and X
(iρ)
β . Note that

|x̂ · K̈((aa′ )
− (κ, κ′)| is on the order of �−1 for both STLMs of

the second class; however, x̂ · K(iρ)
− (κ, κ′) is the real number,

while x̂ · K̈(ττ )
− (κ, κ′) is the imaginary number. So, g̈(ττ )

β,y (r)
attenuates in the −x direction, the attenuation rate being on
the order of �. In view of that, STLM in the second medium at
n(1) > n(2) and θ (i) > θ (iC) exists in the layer of the thickness
∼� adjacent to the interface, and the x dimension of this layer

evidently represents the value of Ẍ
(ττ )

β . So, Ẍ
(ττ )

β /� = 1.

The value of X
(iρ)
β , unlike of Ẍ

(ττ )

β , is not evident because

g(iρ)
β,y (r) oscillates in the x direction with the spatial frequency

on the order of �−1. Note that the interference STLM exists
in the space domain in which the incident and reflected fields
overlap; the actual x dimension of this domain is on the
order of b. However, b cannot be considered as X

(iρ)
β , because

the number of oscillations of g(iρ)
β,y (r) in the aforementioned

domain is large, being on the order of b/�. Note that Ẍ (ττ )
β

can rigorously be defined through the second moment of the
g̈(ττ )
β,y (r) distribution in the x direction. Let us define X (iρ)

β in

the same way, namely, as follows: if G(iρ)
β,y = 0, then

X (iρ)
β =

√
1∣∣G(iρ)
β,y

∣∣
∣∣∣∣
∫

x2g(iρ)
β,y (r)d3r

∣∣∣∣. (A7)

The integration on the right-hand side of Eq. (A7) is carried
out over the volume V (iρ). Substituting Eq. (44) into the
right-hand side of Eq. (A7) and carrying out the subsequent
integrations with respect to r and κ′ we get that X

(iρ)
β = �.

Hence, one can conclude that although the dependence of
the interference STLM on x differs from that of STLM in the
second medium at total reflection, nevertheless,

Ẍ
(aa′ )
β

�
= 1 (A8)

for both STLMs of the second class.

As for the (aa)th STLM of the first class, it occurs in the
region in which a part of the ath beam of homogeneous plane
waves is cut by the interface. The actual x dimension of this
region, like the actual x dimension of the interference domain,
is on the order of b. The scalar product x̂ · K̇(aa)

− (κ, κ′), like
x̂ · K(iρ)

− (κ, κ′), is real; however, as follows from Eq. (A5), the
scale of the former, unlike of the latter, is b−1 in the actual
region of κx and κ ′

x. Hence, the density of STLM of the first
class, unlike the density of the interference STLM, changes
smoothly in the x direction, the spatial frequency of a possible
oscillation being on the order of b−1. In view of that, the value

of Ẋ
(aa)

β is evidently equal to b, so,

Ẋ
(aa)

β

�
= b

�
. (A9)

Consider now the ratio g(aa′ )
β,y /〈g(ii)

‖,z〉. It can easily be verified

that the comparison of 〈g(ii)
‖,z〉 and g(aa′ )

β,y comes down to the
comparison of the scales of the respective components of the
vectors K(aa′)

+ (κ, κ′) and K(aa′)
− (κ, κ′) on the right-hand sides

of Eqs. (45) or (46). The components to be compared are as
follows: the z(i) component of the vector K(ii)

+ (κ, κ′) for 〈g(ii)
‖,z〉,

the y component of the vector K(aa′ )
+ (κ, κ′) for g(aa′ )

‖,y , and 2D

vector ŷ × K(aa′ )
− (κ, κ′) for g(aa′ )

⊥,y . Let us determine every ratio

g(aa′ )
β,y /〈g(ii)

‖,z〉 in such a way.
In the zero-order approximation with respect to �/b,

ẑ(i) · K(ii)
+ (κ, κ′) = 2k(i)

z = 2/�. (A10)

ŷ · K(aa′ )
+ (κ, κ′) = κy + κ ′

y in any regime, the partial-
reflection and total-reflection ones, and for any a and a′. Then,
taking into account the relations (A10) and (30), one can
conclude that

g(aa′ )
‖,y〈
g(ii)

‖,z
〉 = �

b
. (A11)

This relation is valid for the IOAM-dependent STLMs of both
classes.

The scale of ŷ × K(aa′ )
− (κ, κ′), unlike that of ŷ ·

K(aa′ )
+ (κ, κ′), is different for STLMs of the first and

second classes; as a consequence, the ratios ġ
(aa)
⊥,y /〈g(ii)

‖,z〉
and g̈

(aa′ )
⊥,y /〈g(ii)

‖,z〉 are different too. Taking into account the
aforementioned reasonings as well as Eqs. (A5), (A10), and
(30), we get

ġ
(aa)
⊥,y〈

g(ii)
‖,z

〉 = �

b
. (A12)

On the other hand, it follows from Eqs. (A6) and (A10) that

g̈
(aa′ )
⊥,y〈
g(ii)

‖,z
〉 = 1. (A13)

The greatest possible scale of every STLM can be deter-

mined if one substitutes the expression for the ratio X
(aa′ )
β /�

given by Eq. (A8) or Eq. (A9) and the expression for the ratio
g(aa′ )
β,y /〈g(ii)

‖,z〉 given by one of the equations (A11)–(A13) into
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the right-hand side of Eq. (A4). One can see that the greatest
possible scale of the spin-dependent STLMs of both classes is
ϒ , while the IOAM-dependent STLMs only of the first class
can be on such a scale. The values of these STLMs are left
finite as b → ∞. On the contrary, the greatest possible scale of
the IOAM-dependent STLMs of the second class is (�/b)ϒ ,
so, the values of these STLMs tend to zero as b → ∞.

Let us summarize the results of the analysis presented.
The aforementioned characteristics of the spin-dependent
and IOAM-dependent STLMs of the first class are similar.
ġ

(aa)
β,y /〈g(ii)

‖,z〉 = �/b for every β. Hence, ġ
(aa)
β,y → 0 as b → ∞;

however, STLMs of the first class are left finite because

Ẋ
(aa)

β → ∞ as b → ∞. As for STLMs of the second class,

both Ẍ
(aa′ )
⊥ and Ẍ

(aa′ )
‖ are independent of b, being equal to �.

However, g̈
(aa′ )
⊥,y and g̈

(aa′ )
‖,y are different: the former is equal to

〈g(ii)
‖,z〉, while the latter is equal to 〈g(ii)

‖,z〉�/b. Just due to this
difference, the greatest possible scales of the spin-dependent
and IOAM-dependent STLMs of the second class are differ-
ent, and the latter can be ignored, when STLMs that are on the
scale of ϒ are under consideration.

APPENDIX B: THE REFLECTION AND TRANSMISSION
OF A WAVE PACKET

Let us mentally separate a sector of the incident beam,
which is restricted with two cross sections. The sector’s length
will be denoted by D, and the axial coordinate of its center
by Z (i), Z (i) < 0. Let us assume that the values of D and Z (i)

satisfy the following conditions:

b2/� � |Z (i)| � D � b. (B1)

If these conditions are fulfilled, then the influence of the
second medium on the selected sector of the incident beam
can be ignored.

Being separated from the beam, the selected sector repre-
sents a wave packet. Let us investigate the motion of such a
packet during the time interval t f − t0, where t0 and t f are
the initial and final instants of time. This process is shown
schematically in Fig. 3.

The instant of time t0 will be set equal to n(1)Z (i). In such
a setting, the center of the packet would be at the point O at
t = 0, if the packet were in the homogeneous medium with
the refractive index n(1) (note that 1/n(1) is the group velocity
in the first medium). As for t f , this instant of time will be
assumed to obey the following constraints:

b2/� � t f /n(1) � D. (B2)

If these conditions, which are similar to the conditions (B1),
are fulfilled, then the influence of the second medium on the
reflected packet and of the first medium on the transmitted
packet can be ignored at t = t f . Again, due to the left relations
(B1) and (B2), the secondary packets approximately coincide
at this instant of time with the respective sectors of secondary
beams.

The packets’ characteristics will be denoted by the same
letters as the beams’ ones; however, these letters will be
marked by the tilde and their dependence on t will be pointed
out.

interface z

t

t0

f

t f

ξ(II)|t|< /2

x

FIG. 3. The scheme of evolution of the selected sector of the
incident beam. The red, green, and blue areas depict the sectors of the
incident, reflected, and transmitted beams, respectively. The brown
area is the interference region. The symbolic borders of the beams
are marked by the thin colored lines. n(1) > n(2), θ (i) < θ (iC).

The relationships between the complex amplitudes
of the packets’ field vectors Ẽ(a)(r; t )[H̃(a)(r; t )],
Ẽ(1,2)(r; t )[H̃(1,2)(r; t )], and Ẽ(r; t )[H̃(r; t )] are the same
as the respective relationships between the complex
amplitudes of the beams’ field vectors E(a)(r)[H(a)(r)],
E(1,2)(r)[H(1,2)(r)], and E(r)[H(r)]; see Eqs. (26)–(28). The
packets’ LM densities g̃(aa′ )(r; t ), g̃(1,2)(r; t ), and g̃(r; t ) are
defined by the right-hand sides of Eqs. (38)–(42), if the
vectors E(a)(r)[H(a)(r)] and E(1,2)(r)[H(1,2)(r)] in Eqs. (41)
and (42) are replaced by the vectors Ẽ(a)(r; t )[H̃(a)(r; t )] and
Ẽ(1,2)(r; t )[H̃(1,2)(r; t )].

Let us consider the motion of the center of gravity of the
electromagnetic field separated as above. Its y component is
defined as follows:

Ỹ (t ) = 1

W̃

∫
yw̃(r; t )d3r, (B3)

where w̃(r; t ) is the electromagnetic energy density given by

w̃(r; t ) = 1

16π
[ε(x)|Ẽ(r; t )|2 + |H̃(r; t )|2] (B4)

and

W̃ =
∫

w̃(r; t )d3r; (B5)

ε(x) = ε (1) if x > 0, and ε(x) = ε (2) if x < 0. The integration
on the right-hand sides of Eqs. (B3) and (B5) is carried out
over the whole space.

w̃(r; t ) obeys a continuity equation

∂w̃(r; t )

∂t
= −∇ · p̃(r; t ), (B6)

where ∇ is the gradient operator and p̃(r; t ) is the Poynting
vector. Carrying out the integration of the left-hand and right-
hand sides of Eq. (B6) over the whole space, one can verify
that the global electromagnetic energy W̃ is the invariant of
the motion.
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Let us denote by Ỹ (i)(t0) and Ỹ (α)(t f ) the transverse com-
ponents of the centers of gravity of the incident packet and of
the αth secondary packet at the initial and final time instants,
respectively. In what follows, the common denotation ta for
t0 and t f will be used: a ∈ {i, ρ, τ } and ti = t0, tα = t f . Then
every Ỹ (a)(ta) reads

Ỹ (a)(ta) = 1
˜̇W (aa)(ta)

∫
y ˜̇w(aa)(r; ta)d3r, (B7)

where ˜̇w(aa)(r; ta) is the electromagnetic energy density in the
ath packet of the homogeneous plane waves,

˜̇w(aa)(r; ta) = 1

16π
(ε (a)| ˜̇E(a)(r; ta)|2 + | ˜̇H(a)(r; ta)|2), (B8)

and ˜̇W (aa)(ta) is the packet’s energy at t = ta,

˜̇W
(aa)

(ta) =
∫

˜̇w(aa)(r; ta)d3r. (B9)

The integration on the right-hand sides of Eqs. (B7) and (B9)
is carried out over the upper half space if a ∈ {i, ρ}, or over
the lower half space if a ∈ τ .

At t = t0 only the incident packet exists; hence,

Ỹ (t0) = Ỹ (i)(t0). (B10)

At t = t f only secondary packets exist. At this instant of

time W̃ (ρρ)(t f ) + ˜̇W (ττ )(t f ) = W̃ , and Ỹ (t f ) can be expressed
through Ỹ (ρ)(t f ) and Ỹ (τ )(t f ) as follows:

Ỹ (t f ) = Q̃(ρ)Ỹ (ρ)(t f ) + Q̃(τ )Ỹ (τ )(t f ), (B11)

where Q̃(α) = ˜̇W (αα)(t f )/W̃ .
The motion of the center of gravity of the global elec-

tromagnetic field in the transverse direction is described by
the transverse component of the packet’s velocity, which is
dỸ (t )/dt . Let us substitute Eq. (B3) into this expression and
use Eq. (B6) as well as the relation p̃(r; t ) = g̃(r; t ). Then
carrying out the integration over y by parts and taking into
account the continuity of the component x̂ · g̃(r; t ) at the
interface, we get

dỸ (t )

dt
= G̃y(t )

W̃
, (B12)

where

G̃y(t ) =
∫

g̃y(r; t )d3r. (B13)

The integration in Eq. (B13), like in Eqs. (B3) and (B5), is
carried out over the whole space, so, G̃y(t ) is TLM of the
global electromagnetic field at the time instant t .

Let us carry out the integration of both parts of Eq. (B12)
over the time interval t f − t0 and take into account Eqs. (B10)
and (B11). Then we get the following relation:

Q̃(ρ)h̃(ρ) + Q̃(τ )h̃(τ ) = �̃y

W̃
, (B14)

where

h̃(α) = Ỹ (α)(t f ) − Ỹ (i)(t0) (B15)

and

�̃y =
∫ t f

t0

G̃y(t )dt . (B16)

h̃(α) is TShCG of the respective secondary packet, which the
packet has got by the time t f , and �̃y is the action of the global
TLM during the time interval (t f − t0).

Equation (B14) establishes the relation between the char-
acteristics of the dynamical field; however, it can be con-
verted into the relation (102) between the characteristics of
the statical field. In order to do this, let us consider three
time intervals: the interval I when the incident beam moves
in the first medium without contact with the interface, the
interval II when the electromagnetic field is in contact with the
interface, and the interval III when the secondary beams move
in the respective media without contact with the interface. The
durations of these intervals and the actions of G̃y(t ) during
them will be denoted by ξ (I ), ξ (II ), ξ (III ) and �̃(I )

y , �̃(II )
y , �̃(III )

y ,
respectively.

During the time intervals ξ (I ) and ξ (III ) the incident or
secondary packets move as if in the homogeneous media with
the refractive indices n(1) or n(2). G̃y(t ) in these intervals is
approximately constant. Namely, G̃y(t ) ∼= G̃(ii)

y (t0) during the

time interval ξ (I ), and G̃y(t ) ∼= G̃(ρρ)
y (t f ) + ˜̇G(ττ )

y (t f ) during

the time interval ξ (III ). Here ˜̇G(aa)
y (ta) is TLM of the ath packet

at the time instant ta; this quantity is defined by the right-hand
side of Eq. (B13) if the integrand g̃y(r; t ) there is replaced by
˜̇g(aa)

y (r; ta) and the integration is carried out over the respective
half space. Next, as |ta| � D, then ξ (I ) ∼= |t0| and ξ (III ) ∼= t f .

So, �̃(I )
y

∼= G̃(ii)
y (t0)|t0| and �̃(III )

y
∼= [G̃(ρρ)

y (t f ) + ˜̇G(ττ )
y (t f )]t f .

The packets’ characteristics �̃(I )
y and �̃(III )

y can be expressed
through the beams’ characteristics. At t = t0 the incident
packet is the sector of the incident beam; hence, G̃(ii)

y (t0) ∼=
�

(ii)
‖,yD. As �

(ii)
‖,y = 0, see Eq. (58), then �̃(I )

y = 0 as well.

�̃(III )
y describes the action of the global bulk TLM during

the time interval ξ (III ). In order to estimate its value, let us
take into account that the αth secondary packet approximately
coincides during the time interval ξ (III ) with the sector of the
αth beam of (n(1)/n(α) )D length. In view of that, ˜̇G(αα)

y (t f ) ∼=
(n(1)/n(α) )�̇(αα)

y D and, as a consequence,

�̃(III )
y

∼=
(
�(ρρ)

y + n(1)

n(2)
�̇(ττ )

y

)
Dt f . (B17)

Let us now turn to the time interval ξ (II ). As D � b, then
ξ (II ) ∼= n(1)D. Next, due to the above condition, the leading
and trailing edges of the incident and secondary packets do
not contact the interface during the main part of ξ (II ). As a
consequence, G̃y(t ) is approximately constant during the time
interval ξ (II ) and it approximately coincides with the global
static STLM. So, the action of the global STLM during this
interval

�̃(II )
y

∼= n(1)GyD. (B18)

Let us compare the magnitudes of the actions �̃(II )
y and

�̃(III )
y . Gy is given by Eq. (97). Taking into account this

equation as well as Eqs. (64), (78), (88), and (95), we can
see that the scale of �̃(II )

y is ϒD. In the total-reflection regime
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�̃(III )
y = 0 because �(ρρ)

y = 0, while the scale of �̃(III )
y in the

partial-reflection regime can be estimated on the basis of Eq.
(B17). Taking into account this equation as well as the relation
(60) and the left relation (B2), we can conclude that the scale
of �̃(III )

y is much less than ϒD; this conclusion is similar to
the conclusion made in the passage that follows Eq. (89).

So, the numerator �̃y on the right-hand side of Eq. (B14)
can be replaced by �̃(II )

y given by Eq. (B18). In order to calcu-
late the denominator in this expression, let us take into account
that W̃ = W̃ (ii)(t0). As the incident packet represents a section
of the incident beam, then W̃ (ii)(t0) ∼= V (ii)D, where V (ii) is
given by Eq. (101). Next, V (ii) = n(1)�

(ii)
‖,z , so, W̃ ∼= n(1)�

(ii)
‖,zD.

Furthermore, if the packets are approximately the sections of
the respective beams at t = ta, then the packets’ characteris-
tics Ỹ (a)(ta) and Q̃(α) on the left-hand side of Eq. (B14) can
be replaced by the respective beams’ characteristics Y (a) and
Q(α). Once the aforementioned replacements in Eq. (B14) are
made, this relation transforms into the relation (102).

APPENDIX C: THE GEOMETRICAL INTERPRETATION
OF THE PARTICULAR IOAM-DEPENDENT STLMs

The relation (88) admits a simple geometrical interpreta-
tion of the particular IOAM-dependent STLM. It is based on
the analysis of the IOAM-dependent rotational energy motion
in the beam of the homogenous plane waves, which occurs in a
restricted medium. Such a motion within the ath beam can be
described by the 2D vector perpendicular to the beam’s axis,

ġ(aa)
‖,p (r) = ġ(aa)

‖ (r) − [ẑ(a) · ġ(aa)
‖ (r)]ẑ(a). (C1)

Let us first investigate this motion within the incident
beam assuming for the sake of simplicity that the beam’s
IOAM is well defined, i.e., that the beam is characterized
by the azimuthal index l; see Eq. (24). In order to exclude
the spin-dependent effects from consideration, it will also be
assumed in this Appendix that ê(i) = x̂(i) or ê(i) = ŷ; in this
case g(ii)

⊥ (r) ∼= 0.
Let us denote by �(z(i) ) the (x(i)y) plane whose axial

coordinate is z(i). The distribution of the planar vector g(ii)
‖,p(r)

in every plane �(z(i) ) can be represented by the family of
curves, the vector g(ii)

‖,p(r) being the tangent to the respective

curve; such curves will be called the g(ii)
‖,p lines. Further on,

the actual region of the beam, where |r(i)
p | ∼ b, will be under

consideration; the radial component of the vector g(ii)
‖,p(r) can

be ignored in this region.
Let us introduce a beam whose field vectors are given

by Eqs. (3) and (4) for a ∈ i, but which propagates in the
homogeneous medium with the dielectric constant ε (1); it
will be called a virtual incident beam. The LM density in
the virtual beam will be denoted by g(ii,◦)

‖,p (r(i)
p ); this vector

is approximately independent of z(i) in the near-field region
defined by Eq. (73).

The g(ii,◦)
‖,p lines, which depict the distribution of the vector

g(ii,◦)
‖,p (r(i)

p ) on �(z(i) ), are approximately closed in the actual
region, being the circles if IOAM of the beam is assumed to
be well defined. In Fig. 4, these curves are represented by red
dashed circles; the arrowed red lines show the directions of
the vector g(ii,◦)

‖,p (r(i)
p ) in the respective points on �(z(i) ).

y

interface

x(i)

z(i)

R

1

2
3

I

II
III

FIG. 4. The g(ii,◦)
‖,p lines in a cross section of the incident beam

and possible positions of the interface relative to these lines. l > 0.

The relation between the vectors g(ii,◦)
‖,p (r(i)

p ) and g(ii)
‖,p(r) is

as follows:

g(ii)
‖,p(r) = g(ii,◦)

‖,p
(
r(i)

p

)
�(x(i) − X (i)(z(i) )), (C2)

where X (i)(z(i) ) is the x(i) coordinate of the interface in the
plane �(z(i) ), which is given by X (i)(z(i) ) = z(i) cot θ (i). The
property of the vector g(ii)

‖,p(r) defined by Eq. (C2) is illustrated

in Fig. 4: some g(ii)
‖,p lines, like the g(ii,◦)

‖,p lines, are the circles,
while the other ones are the upper segments of the circles.

Let us mentally select a part of the virtual incident beam
whose shape is the pipe of the diameter 2R and assume that
the thickness of the pipe’s side is small in comparison with
R. Like the g(ii,◦)

‖,p line, the projection of the pipe on �(z(i) ) is
represented by the circle; let it be the red dotted circle 1 in
Fig. 4.

TLMs pul of the real and virtual incident beams, which are
confined in the pipe selected, will be denoted by σ

(ii)
‖,R (z(i) ) and

σ
(ii,◦)
‖,R , respectively. The latter is approximately independent

of z(i), and it is evident that σ (ii,◦)
‖,R = 0. It can be said that this

relation takes place because TLM confined in the upper half
of the pipe selected is compensated by TLM confined in its
lower half.

If

−z(i) > R tan θ (i), (C3)

i.e., if −X (i)(z(i) ) > R, then the interface’s projection on
�(z(i) ) does not touch the cross section of the pipe with the
diameter 2R. In Fig. 4, such a situation is illustrated by the
position of the thick black line I relative the circle 1: the
former does not intersect the latter. So, σ (ii)

‖,R (z(i) ) = σ
(ii,◦)
‖,R = 0

in the above region of z(i). On the contrary, if

|z(i)| < R tan θ (i), (C4)

i.e., if |X (i)(z(i) )| < R, then the lower segment of the circle 1 is
cut by the thick black line; in Fig. 4, this situation is illustrated
by the positions of the thick black lines II and III relative
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the circle 1. This means that in the region of z(i) defined by
Eq. (C4) the interface cuts a lower part of the pipe considered.
So, TLM pul of the pipe, which is located in the upper pipe’s
half, is not compensated by that located in the lower half, and,
as a consequence, σ (ii)

‖,R (z(i) ) = 0 in this region. The incident
beam can be represented as the sum of the pipes of different
radii. Applying the above arguments to every pipe one can
conclude that TLM pul of the incident beam is essentially
nonzero in the region in which |z(i)| ∼ b tan θ (i), and, for this
reason, G(ii)

‖,y = 0 as well.
The analysis of TLMs of the secondary beams can be

carried out in a similar way. So, it can be said that the IOAM-
dependent STLM of an arbitrary beam Ġ(aa)

‖,y occurs because
the part of this beam adjacent to the interface is cut by the
latter.

In the previous part of this Appendix the qualitative ex-
planation of the mechanism of generation of the IOAM-
dependent STLM of the ath beam has been given. Let us turn
to the quantitative analysis of the phenomenon. In order to
simplify the quantitative analysis, let us consider instead of
the real incident beam its model, which is represented by a
cylinder whose axis coincides with the z(i) axis, and assume
that the electromagnetic field and, as a consequence, g(ii)

‖ (r)
exist only on the cylinder’s surface. In this case the family of
curves, which describes the distribution of the vector g(ii)

‖,p(r)
on every �(z(i) ), is replaced by a single curve. Next, for the
illustrative purposes, let us consider the square cylinder as
the incident beam’s model; such a beam will be called the
symbolic one. The characteristics of the symbolic beam will
be denoted by underlined letters. The red sides of the square
in Fig. 5(a) depict the cross section of this beam in the region
of z(i) where −X (i)(z(i) ) > b, b being the length of every side.

Let us denote by ς (ii) the value of the planar LM pul of
the symbolic incident beam that is confined in every beam’s
side. The red arrows in Fig. 5(a) point out the directions of
these momenta. TLMs of the symbolic beam are located on
the horizontal sides of the square cylinder.

TLM pul of the symbolic beam σ (ii)
y (z(i) ) can easily be

calculated. Its value depends on the difference |X (i)(z(i) )| − b.
The black thick lines I and II in Fig. 5(a) show two possible
positions of the interface projection on �(z(i) ) relative the
beam’s cross section. These lines represent the cases when
X (i)(z(i) ) < −b and |X (i)(z(i) )| < b, respectively. The line I
does not intersect the red square; in this case σ (ii)

y (z(i) ) = 0, as
TLMs confined in the upper and lower sides of the symbolic
beam’s cross section compensate each others. The line II
intersects the red square, what means that the interface cuts
the lower horizontal side in the symbolic beam’s cross section.
In this case σ (ii)

y (z(i) ) = ς (ii), as TLM confined in the upper
side of the beam’s cross section is not compensated by TLM
confined in its lower side. Finally, when X (i)(z(i) ) > b, the
symbolic incident beam does not exist. Hence,

G(ii)
y = ς (ii)D(i)

z , (C5)

where D(i)
z is the length of the uncompensated upper side of

the symbolic incident beam; see the solid segment of the red
line in Fig. 6, where the projections of the symbolic beams
on the plane of incidence are shown. It is seen from this
figure that D(i)

z = b tan θ (i). As for the value of ς (ii), it is

interface
b

(i)

(i)

z

x

y

I

II b

(a)

(b)

x

y bx
(τ)

(τ)x(ρ)

b

FIG. 5. The cross section of the incident symbolic beam and
possible positions of the interface in it (a); the cross sections of the
secondary symbolic beams (b). n(1) > n(2), θ (i) < θ (iC).

evidently related to the [yx] part of IOAM pul of the symbolic
incident beam I (ii)

[yx] by ς (ii) = I (ii)
[yx]/b. Substituting the above

expressions for ς (ii) and D(i)
z into the right-hand side of

Eq. (C5) we get the following relation:

G(ii)
y = tan θ (i)I (ii)

[yx]. (C6)

This relation is similar to the one between G(ii,S)
‖,y and I (ii)

‖,[yx]
given by Eq. (88).

θ
θ

x
(τ)

(τ)

(τ)

^

^

interface( )i

z

b

(τ
)

^ (z )

ρ

ρ

^ ( )x

x

^

^

z

( )i

(ρ)

( )i

D
z D z

( )i

D z

FIG. 6. The projections of the symbolic beams onto the plane of
incidence. n(1) > n(2), θ (i) < θ (iC).
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Let us proceed to the analysis of TLMs of the symbolic
reflected and transmitted beams; the latter will be considered
in the partial-reflection regime. The cross sections of the sec-
ondary beams, which are shown in Fig. 5(b), can be obtained
by means of Snell’s law. The x(ρ) and x(τ ) dimensions of
the symbolic reflected and transmitted beams are as follows:
b(ρ)

x = b, while b(τ )
x = b/ζ (τ ). The green and blue arrows in

Fig. 5(b) point out the directions of the planar LMs in the
symbolic reflected and transmitted beams, respectively. Note
that the direction of the former vector is reverse relative to the
direction of the planar LM of the symbolic incident beam; this
effect will be discussed later.

The value of TLM pul of the symbolic secondary beam,
which is confined in the upper or lower beam’s side, will
be denoted by ς̇ (αα). The relation between ς̇ (αα) and the
magnitudes of the IOAM-dependent STLM of the symbolic
secondary beam Ġ

(αα)
y can be obtained in the same way in

which the relation (C5) has been obtained. It is as follows:∣∣Ġ(αα)
y

∣∣ = |ς̇ (αα)|D(α)
z , (C7)

where D(α)
z is the length of the uncompensated upper or lower

side of the symbolic secondary beam, see the green or blue
solid segment of the respective line in Fig. 6. It can be seen
that D(α)

z = (sin θ (α)/ sin θ (i) )D(i)
z = (n(1)/n(α) )D(i)

z . As for the
relationship between ς (ii) and ς̇ (αα), it can be obtained by
means of Fresnel’s law; this relationship is as follows: ς̇ (αα) =
(n(1)/n(α) )Q(α)ς (ii). Substituting the above expressions for
D(α)

z and ς̇ (αα) into the right-hand side of Eq. (C7) and

taking into account Eq. (C5) we get the following relation
between the magnitudes of the IOAM-dependent STLMs of
the symbolic incident and secondary beams:

∣∣Ġ(αα)
y

∣∣ = ε (1)

ε (α)
Q(α)

∣∣G(ii)
y

∣∣. (C8)

The relation (C8) is similar to the relation between the mag-
nitudes of the IOAM-dependent STLMs of the real, beams
which can be obtained on the basis of Eqs. (64) and (88).

As for the signs of G(ρρ)
y and Ġ

(ττ )
y , it will be shown

below that both are opposite to the sign of G(ii)
y , whereas the

reasons for the signs’ changes are different for the processes
of reflection and transmission.

The interface cuts the lower part of the reflected beam,
like that of the incident beam. The signs of G(ρρ)

y and G(ii)
y

are opposite because the directions of TLMs in the upper
(lower) sides of the reflected and incident symbolic beams
are opposite; compare the directions of the green and red
horizontal arrows in Fig. 5. The change of the sign takes place
because the upper side of the incident beam transforms into
the lower side of the reflected beam and vice versa; see Fig. 6.

Unlike in the case of reflection, the upper (lower) side of
the incident beam transforms into the same side of the trans-
mitted beam; see Fig. 6. Hence, the directions of TLMs in the
upper (lower) sides of the symbolic transmitted and incident
beams are the same; compare the directions of the blue and
red horizontal arrows in Fig. 5. However, the interface cuts the
upper part of the transmitted beam, unlike that of the incident
one.
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