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We provide rigorous definitions of various components of the energy budget for scattering of source-induced
electromagnetic fields by a finite nonmagnetic object. We use the classical volume-integral-equation (VIE)
framework and define power rates in terms of integrals of the Poynting vector over various surfaces, enclosing
some or all of the impressed sources, scatterer, and environment (such as a planar multilayered substrate). Thus,
we generalize the conventional cross sections and obtain new interrelations analogous to the well-known optical
theorem. We rigorously treat the strong singularity of the VIE kernel, but keep derivations accessible to a wide
audience. The defined power rates are further related to the decay rate enhancement and apparent quantum
yield of an arbitrary emitter, which are the core concepts in nanophotonics, surface-enhanced Raman scattering,
and electron energy-loss spectroscopy. We also discuss the practical calculation of the power rates and decay
rate enhancements in the framework of the discrete dipole approximation (DDA). In particular, we derive the
volume-integral expression for the scattered power and use it to prove the automatic satisfaction of the optical
theorem irrespective of the discretization level. Thus, the optical theorem cannot be used as an internal measure
of the DDA accuracy.
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I. INTRODUCTION

Interaction of electromagnetic radiation with particles
(commonly referred to as light scattering) forms a basis
of many physical phenomena and is ubiquitous in various
applications. The frequency-domain volume-integral equation
(VIE) is a general framework for theoretical analysis and
numerical simulations of scattering by particles of arbitrary
shape and internal structure. The VIE has been known for
more than 60 years [1] and widely studied during that time
[2–4]. However, a number of issues remained, which recently
revived the interest in this subject. This led to a rigorous
derivation of the VIE for a set of multilayered particles with
sharp edges and corners [5], further extended to general inci-
dent fields, including those caused by sources located near the
scatterer [6,7]. The only missing element is the energy budget
for such a general scattering problem. Optical cross sections
(extinction, absorption, and scattering) are defined through the
power rates (integrals of the Poynting vectors over the closed
surfaces) in many textbooks on light-scattering theory [3,8].
However, those definitions are incomplete and/or ambiguous
in the case of source-induced fields.

Electromagnetic sources are naturally related to quantum
emitters (atoms, molecules, or nanoparticles). While a lot of
literature is devoted to corresponding enhancement of emis-
sion and decay rates [9–11], it usually considers only local
energy balance at the emitter, but neither the flows of the
Poynting vector nor the optical cross sections. Quantum elec-
trodynamics (QED) is the rigorous framework describing the
emission enhancement [9], but quasiclassical considerations
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often lead to the same results with intuitive understanding.
Fundamentally, those two approaches are connected via the
source Green’s dyadic, which describes both the local density
of states (LDOS) of the quantum system [9] and the classi-
cal scattering of radiation and energy transfer [3]. Another
quantum process is the surface-enhanced Raman scattering
(SERS), where the intensity can be obtained as a combination
of classical near-field enhancement of the incident beam (by
the scatterer) at one frequency and emission enhancement at a
shifted one [12]. Electron energy-loss spectroscopy (EELS)
and cathodoluminescence boil down to interaction of the
electron-induced field with nanoparticles, but the correspond-
ing quasiclassical descriptions are also typically focused on
local energy balance [13,14], with the notable exception of
[15]. In summary, the source-induced fields are widely used in
many applications, including optimization of microwave an-
tennas, complicated light sources, and fluorescent microscopy.
But the corresponding power-flux considerations and simula-
tions, including those with the VIE methods [16], either are
local to the emitter or focus on finite-aperture integrals of
the far field. Thorough consideration of total scattered power
seems to be missing, although it may have only minor direct
importance for those applications.

Apart from its fundamental value for theoretical analy-
sis, the VIE forms the basis for a number of “numerically
exact” computational methods to simulate electromagnetic
scattering, the most popular one being the discrete dipole
approximation (DDA) [17]. On one hand, the DDA has been
successfully applied to all types of emission enhancement—
fluorescence [18,19], SERS [20], and EELS [13,14]. On the
other hand, those applications suffer from incomplete under-
standing of the energy budget described above, complicating
their generalizations to complex environments, although see
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[21,22] for the first steps. Moreover, there exists a controversy
about the use of the optical theorem to quantify the accuracy
of a particular DDA simulation, suggested in [23] but later
criticized in [18].

The goal of this paper is threefold. First, we fill the essen-
tial gap in the classical VIE framework for general source-
induced incident fields, in terms of energy budget among the
sources, scatterer, far field, and environment (e.g., a semi-
infinite substrate). We rigorously treat the strong singularity
of the VIE kernel, but keep derivations as simple and thorough
as possible to make the paper accessible to a wide audience.
Second, we relate those power rates to the decay rate en-
hancement of a point emitter, gaining insights into this widely
studied phenomenon, especially in the presence of a substrate.
Third, we discuss the practical calculation of all power rates
in the framework of the DDA and resolve the long-standing
controversy related to the optical theorem.

We start by recalling the general VIE framework for the
scattering problem in Secs. II and III and give a rigorous
definition of the scattered field inside the scatterer after the
VIE is discretized. Sections IV and V provide the core results
of the paper, including definitions of various power rates
(flow integrals of the Poynting vector) and interconnections
between them. In particular, we derive the volume-integral
expression for the scattered power. In Sec. VI we use these
power rates to calculate the decay rate enhancement and
apparent quantum yield for an emitter with arbitrary intrinsic
quantum yield. We also relate those classical results to that
based on the quantum perturbation theory. Section VII deals
with actual calculation of the power rates in the framework of
the DDA. In particular, we derive general conditions under
which the optical theorem is exactly satisfied for arbitrary
discretization. We consider the limit of distant sources in
Sec. VIII, recovering among others the classical result for the
plane incident wave. In Sec. IX we generalize the previous
results, including decay rate enhancements, to a general envi-
ronment using a planar substrate (homogeneous half space or
multilayered) as an example. Section X concludes the paper.

II. STATEMENT OF THE PROBLEM

The light-scattering problem implies the definition of the
incident wave—an electromagnetic wave in a host medium
when the scatterer is absent. The classical example is a plane
wave, but in this paper we are interested in a broader class
of incident fields. Let us follow the formalism presented in
[5,6] and define the fields in terms of prescribed current
density of external sources Js(r), oscillating with exp(−iωt )
time dependence. In contrast to the free-current density, they
are independent of the resulting electromagnetic field. We
assume that Js(r) is sufficiently regular but may include delta
functions (point dipoles)—this is further discussed in Sec. III.
The incident (or “source-generated”) electromagnetic field
satisfies the following Maxwell equations in R3:

∇ × Einc(r) = iωμ0Hinc(r),

∇ × Hinc(r) = −iωε0Einc(r) + Js(r). (1)

For simplicity, we assume that the host medium is nonmag-
netic and has the dielectric permittivity of the vacuum, but

all derivations can be trivially extended to any positive real
permittivity.

The scatterer is a nonmagnetic object with finite volume
Vint and complex refractive index m(r). The presence of the
object changes the total electromagnetic field everywhere
in the space, including Vint and the external volume Vext =
R3\Vint. This field satisfies the following Maxwell equations:

∇ × E(r) = iωμ0H(r),

∇ × H(r) = −iωε(r)E(r) + Js(r), (2)

where ε(r) is the dielectric permittivity in the whole space,
defined as

ε(r)
def=

{
ε0, r ∈ Vext,

ε0m2(r), r ∈ Vint.
(3)

According to Eq. (2), external sources may be present both
inside and outside the object; however, in the majority of
applications sources are located outside the scatterer. Below,
we assume that the volume occupied by the sources Vs is a
finite subvolume of Vext. The scattered field is defined as the
total field minus the incident field:

Esca (r)
def= E(r) − Einc(r),

Hsca(r)
def= H(r) − Hinc(r). (4)

III. GENERAL VOLUME-INTEGRAL-EQUATION
FRAMEWORK

The solution of the light-scattering problem should satisfy
Eq. (2) together with boundary conditions on the surface of
the object (potentially nonsmooth) and at infinity. One way
to find the electric field which meets these requirements is
through the equivalent VIE [5], also known as the Lippmann-
Schwinger equation:

E(r) = Einc(r)+k2 lim
V0→0

∫
R3\V0

d3r′[m2(r′)−1]Ḡ(r, r′) · E(r′)

− m2(r) − 1

3
E(r), (5)

where V0 is the spherical exclusion volume centered at r [24],
k is the wave number in a host medium (λ is the corresponding
wavelength), and Ḡ(r, r′) is the free-space dyadic Green’s
function, defined as

Ḡ(r, r′) = Ḡ(R) =
(

Ī + ∇ ⊗ ∇
k2

)
exp(ikR)

4πR
= exp(ikR)

4πR

×
[(

Ī − R ⊗ R
R2

)
+ ikR − 1

k2R2

(
Ī − 3

R ⊗ R
R2

)]
,

(6)

where R = r − r′, R = |R|, and R ⊗ R is a dyadic:
(R ⊗ R)μν = RμRν (μ and ν are Cartesian components of the
vector or dyadic). The exclusion of V0 is needed to avoid the
singularity of the Green’s dyadic (∼ R−3); the integral of this
singular part over V0 is replaced by a surface integral. It gives
the last term in (5), the so-called L term or self-term, which
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is regular and does not depend on the size of V0. In contrast,
the integral of the rest of the Green’s dyadic scales together
with V0(r), and is nonzero in computations (the so-called M
term)—see Eq. (12) below.

While the free-space case is the most common in appli-
cations (and an infinite homogeneous medium is equivalent
to it), other environments are also relevant, such as the semi-
infinite plane substrate (Sec. IX). Then the whole theoretical
framework remains valid, but Ḡ should be replaced by that
corresponding to a particular environment. Thus, we further
perform all derivations for arbitrary Ḡ and note explicitly
when Eq. (6) is used to obtain the free-space result.

Some authors express the VIE in terms of forcing func-

tion j(r)
def= k2[m2(r) − 1]E(r) or the polarization density

P(r)
def= [ε(r) − ε0]E(r). The latter leads to the following

VIE representation,

1

3ε0

ε(r) + 2ε0

ε(r) − ε0
P(r)

= Einc(r) + ω2μ0 lim
V0→0

∫
R3\V0

d3r′Ḡ(r, r′) · P(r′), (7)

and the expression for the scattered field:

Esca (r) = ω2μ0 lim
V0→0

∫
R3\V0

d3r′Ḡ(r, r′) · P(r′) − P(r)

3ε0
, (8)

which is valid both outside and inside the object. Equations
(7) and (8) are trivial consequences of the classical Eq. (5),
but they have not been explicitly considered before.

Importantly, the VIE holds true in the presence of sources,
even if they are inside the object [6]. Then Einc in (5) is
expressed as a similar volume integral:

Einc(r) = iωμ0 lim
V0→0

∫
Vs\V0

d3r′Ḡ(r, r′) · Js(r′) − i
Js(r)

3ωε0
, (9)

where the explicit exclusion of the singularity makes it valid
in the whole R3. The regularity of Einc is fully determined
by Js. The simplest case is that of a square-integrable (finite-
energy) Js in a finite Vs, resulting in square-integrable Einc.
A convenient abstraction is a point dipole, given by Js(r) =
J0δ(r − r0), or a combination of several such dipoles. Then
Js is square integrable almost everywhere and so is Einc. The
latter is fine for most derivations except when we apply the
divergence theorem for the surface enclosing the singularity.
One option would be to consider a point dipole (delta func-
tion) as a limit of physically realistic dipoles of a finite size.
But to avoid potential ambiguities we will further explicitly
exclude the singularities in the corresponding integrals; then
the details of the physical realization of the delta function
are not relevant. Another abstraction is that of the infinitely
distant sources (discussed in Sec. VIII)—the resulting Einc has
no singularities near the particle, but is only locally square
integrable, i.e., in any finite volume. We will denote the latter
case further as the “source-free” one, although this definition
is not completely rigorous.

Most implementations of the DDA are based on solving
Eq. (7) given any specific Einc [25]. The first step is to repre-
sent an object as a set of voxels with centers at ri (dipoles),

which are small enough to consider all the relevant functions
constant inside the voxel (refractive index, fields, Green’s
dyadic from another voxel, etc.). Here and below, index i is
used for dipoles and sources. It is used only in subscripts and
summation indexes not to be confused with imaginary unit.
The voxels may have different shapes and volumes [26], but
we consider only the simplest case of a cubical grid with edge
size d . Inside each voxel we can evaluate Eq. (7) at r = ri

and approximate the integral with a sum over all N dipoles,
leading to

ᾱ−1
i · Pi = Einc,i + ω2μ0

∑
j �=i

Ḡi j · P j, (10)

where Einc, i
def= Einc(ri ), Ḡi j

def= Ḡ(ri, r j ) (in the simplest

DDA formulation that we consider here), Pi
def= P(ri )Vd is

the total polarization of the dipole (note the scaling factor of
dipole volume Vd), and ᾱi is the dipole polarizability dyadic
[26]:

ᾱi = ε0Vd

(
1

3

εi + 2ε0

εi − ε0
Ī − M̄i

)−1

, (11)

where εi
def= ε(ri ) and M̄i approximates the self-integral with

excluded singularity:

k2 lim
V0→0

∫
Vi\V0

d3r′Ḡ(r, r′) · P(r′) ≈ M̄i · P(ri ). (12)

Here and below, approximation “≈” corresponds to the dis-
cretization. The expression for M̄i depends on a specific DDA
formulation, but its value always decreases with d at least as
O(d2), since the essential singularity was separated [17].

Equation (10) is typically solved for the unknown polariza-
tions Pi via an iterative method. As soon as the polarizations
are known, one can compute a variety of quantities, for
instance, the scattered field outside the object [see Eq. (8)]:

Esca (r) ≈ ω2μ0

∑
i

Ḡ(r, ri ) · Pi, r ∈ Vext. (13)

The DDA is a numerically rigorous method, which means
that any computed quantity, e.g., Esca (r), converges to the
true one with refining discretization (as d → 0 and N →
∞) [17]. At the same time the mathematical formulation,
in particular, Eqs. (10) and (13), is equivalent to that of the
simple phenomenological picture of interacting point dipoles
with given polarizabilities (for any M̄i ).

However, the underlying discretization needs to be ac-
counted for when calculating Esca (r) inside the particle [or
E(r), see Eq. (4)]. Since we assumed the fields constant over
the dipole volume in the beginning, Eq. (8) may be directly
used only for r = ri (otherwise the integral over Vi\V0 cannot
be neglected), leading to

Esca,i
def= Esca (ri ) ≈ ω2μ0

∑
j �=i

Ḡi j · P j +
(

M̄i − Ī
3

)
· Pi

Vdε0
.

(14)

The fields Esca (r) between dipole centers should be obtained
by interpolation (e.g., nearest-neighbor) of Esca,i. By contrast,
incorrectly replacing ri by r in Eq. (14) would lead to dipole-
scale variation of the fields, which has nothing to do with
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relatively smooth fields inside a homogeneous scatterer. Note

also that Eq. (4) implies Esca,i = Ei − Einc,i, where Ei
def=

E(ri ) = Pi/[Vd(εi − ε0)].

IV. POWER EMITTED BY SOURCES

Consideration of energy flow in a classical light-scattering
problem results in important relations such as the optical
theorem [27,28]. The analysis is even more interesting in the
case of external sources. Let us briefly recall the derivation in
the classical case and extend it to the fields with sources.

The time-averaged rate of electromagnetic energy flow per
unit area is given by the Poynting vector [3]:

S(r) = 1

2
Re[E(r) × H∗(r)]. (15)

Here and below, Re and Im denote the real and imaginary part,
respectively. Integrating S(r) over the closed surface A results
in the power generated or lost in the volume inside the surface
(according to the Poynting theorem):

W =
∮

A
dA · S(r), (16)

where dA def= n d2r, n designates the normal to the surface,
and the sign is chosen such that W is positive when energy
goes outside the surface. Using the divergence theorem, we
can transform the surface integral in Eq. (16) into the volume
integral of ∇S, which equals

∇S(r) = 1

2
Re(∇ · [E(r) × H∗(r)])

= 1

2
Re([∇ × E(r)] · H∗(r) − E(r) · [∇ × H∗(r)])

= 1

2
Re[iωμ0|H(r)|2 − iωε∗(r)|E(r)|2 − E(r) · J∗

s (r)]

= −ω

2
|E(r)|2Im[ε(r)] − 1

2
Re[E(r) · J∗

s (r)], (17)

where we used Eq. (2) for curls. Combining Eqs. (15) and (16)
we obtain

W = −ω

2

∫
VA

d3r|E(r)|2Im[ε(r)]

− 1

2

∫
VA

d3r Re[E(r) · J∗
s (r)], (18)

where VA is the volume bounded by the surface A, and we
assume that fields and currents are regular inside both VA

and A.
In this section we consider the case when only the sources

are present and not the scatterer. If additionally the sources are
regular, we substitute Eq. (9) into Eq. (18) to obtain

W0 = −1

2

∫
Vs

d3r Re[Einc(r) · J∗
s (r)]

= ωμ0

2

∫
Vs

d3r lim
V0(r)→0

∫
Vs\V0(r)

d3r′

× Im[J∗
s (r) · Ḡ(r, r′) · Js(r′)], (19)

where we explicitly specified the exclusion volume center. By
definition,

Im[J∗
s (r) · Ḡ(r, r′) · Js(r′)]

= 1

2i
[J∗

s (r) · Ḡ(r, r′) · Js(r′) − J∗
s (r′) · ḠH (r, r′) · Js(r)],

(20)

where H denotes the Hermitian (conjugate) transpose of a
dyadic (matrix) and we used the property of the dyadic
transpose: a · Ḡ · b = b · ḠT · a, ∀a, b. Note also that the
integration volume in the double integral of Eq. (19) is sym-
metric even accounting for excluded V0; hence, r and r′ may
be interchanged in the integrand. Doing this interchange in the
last term in the right-hand side of Eq. (20), we obtain

W0 = ωμ0

2

∫∫
Vs

d3r d3r′ J∗
s (r) · ḠI (r, r′) · Js(r′), (21)

where we introduced

ḠI (r, r′) def= 1

2i
[Ḡ(r, r′) − ḠH (r′, r)], (22)

and omitted the exclusion volume because (22) has no singu-

larity for r = r′, i.e., ḠI (r, r)
def= lim

r′→r
ḠI (r, r′) is finite [as

far as the host medium is nonabsorbing [29]; see Eq. (25) for
a free space]. ḠI (r, r′) is a symmetric (self-adjoint) operator
kernel [30], i.e., ḠI (r, r′) = [ḠI (r′, r)]H , guaranteeing that
the integral in Eq. (21) is always real. A similar kernel has
recently been used for radiative heat transfer in a nonrecip-
rocal environment [31]. By contrast, ḠI (r, r′) = Im[Ḡ(r, r′)]
in any reciprocal environment, i.e., when Ḡ(r, r′) = ḠT (r′, r)
[6,32].

Equation (21) is valid for any integrable distribution of
currents, which can be derived by a continuous transformation
of regular ones. Moreover, ḠI (r, r′) may be replaced by a con-
stant for sufficiently small Vs, i.e., when all linear dimensions
of Vs are much smaller than both λ and characteristic geomet-
ric scales of the environment. We will further refer to these
conditions as the “static limit” although, strictly speaking,
this name is more appropriate for the long-wavelength limit
alone. The second condition (e.g., the relation to the distance
from Vs to the plane substrate, as discussed in Sec. IX) can be
more restrictive. In this static limit (denoted as Vs → 0), one
obtains

lim
Vs→0

W0 = ωμ0

2
J∗

0 · ḠI (u0, u0) · J0, (23)

where J0 is the total current,

J0
def=

∫
Vs

d3r Js(r), (24)

and u0 is any point inside Vs. In other words, the retardation
may be neglected. However, that does not mean that the
Green’s dyadic is purely real—that would imply a zero value
of Eq. (19); rather its small but significant imaginary part has
to be properly separated.
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In the free space, Eq. (6) implies [see Eq. (A7) in the Appendix]

ḠI (r, r) = lim
r′→r

Im[Ḡ(r, r′)] = kĪ
6π

, (25)

leading to the classical result for the power emitted by a point dipole with dipole moment iJ0/ω, e.g., [4,9]. However, it is
instructive to derive the same result explicitly for Js(r) = J0δ(r − u0). We take A to be a sphere (of radius R) centered at u0:

W0 =
∮

A
dA · S(r) = 1

2

∮
A

d2r Re{(n × Einc(r)) · Hinc(r)∗}

= −ωμ0

2

∮
A

d2r Im{[(n × Ḡ(r, u0)) · J0] · [(∇ × Ḡ(r, u0)) · J0]
∗}

= −ωμ0

2

∮
A

d2r Im

{
(n × J0)

exp(ikR)

4πR

(
1 + ikR − 1

k2R2

)
·
[

(n × J0)
exp(ikR)

4πR2
(ikR − 1)

]∗}

= ωμ0k

8π

1

4πR2

∮
A

d2r J0 · (Ī − n ⊗ n) · J∗
0 = ω2μ0

12πc
|J0|2, (26)

where we used Eqs. (6) and (15) and the fact that averaging
n ⊗ n over all directions results in Ī/3.

To conclude this section, we consider a rather general case
of regular source distribution Jr (r) combined with a finite
number of simple singularities, i.e.,

Js(r) = Jr (r) +
∑

i

Jiδ(r − ui ). (27)

Then the answer is given by Eq. (21), but it can be expanded
as

W0 = ωμ0

2

{ ∫∫
Vs

d3r d3r′ J∗
r (r) · ḠI (r, r′) · Jr (r′)

+ 2
∑

i

∫
Vs

d3r J∗
i · ḠI (ui, r) · Jr (r)

+
∑
i, j

J∗
i · ḠI (ui, u j ) · J j

}
. (28)

If there are only point dipoles, then only the double sum
remains in Eq. (28).

V. ENERGY BUDGET FOR SOURCES
NEAR A SCATTERER

Let us add the scattering object to our consideration. Then
the physical meaning of Eq. (16) depends on the surface of
integration. We further define three different surfaces (Fig. 1):
A1 covers the object and not the sources, A2 covers the sources
and not the object, and A3 covers both the object and the
sources.

Since there are no sources inside A1 and Im[ε(r)] = 0
outside the object, the integration of Eq. (17) over A1 yields
the conventional absorption power:

Wabs
def= −

∮
A1

dA · S(r) = ω

2

∫
Vint

d3r |E(r)|2Im[ε(r)]. (29)

Note the opposite sign as compared to Eq. (17) since Wabs

is the power which goes inside the volume. The integration
around the sources yields the emission power [33]:

Wem
def=

∮
A2

dA · S(r) = −1

2

∫
VS

d3r Re[E(r) · J∗
s (r)], (30)

where the singularities, if present, should be treated analo-
gously to Eqs. (26) and (28). Finally, the integration around
both the sources and the object represents the total rate of
energy radiation from the system:

Wrad
def=

∮
A3

dA · S(r) = Wem − Wabs. (31)

It is important to note that the surfaces may be arbitrarily
deformed as long as they intersect neither the sources nor
the object. For instance, it is sometimes more convenient to
integrate fields in a far zone (A3 → large sphere). A1 and
A2 may be shrunk to the boundaries of the object and the
sources, respectively. Moreover, as the normal component of
the Poynting vector is continuous when passing through the
boundary of the object (in contrast to the fields), A1 may also
be considered on the internal side of the object boundary.

It is common to define scattering and extinction power rates
by separating the Poynting vector into three components [3].
This approach can be used for source-induced fields without
any changes:

S = Sinc + Ssca + Sext, Sinc
def= 1

2
Re(Einc × H∗

inc),

Ssca
def= 1

2
Re(Esca × H∗

sca ),

FIG. 1. Definitions of geometry and energy flows, when the
sources are located near the scattering object. All symbols are defined
in the text.

053824-5



ALEXANDER E. MOSKALENSKY AND MAXIM A. YURKIN PHYSICAL REVIEW A 99, 053824 (2019)

Sext
def= 1

2
Re(Einc × H∗

sca + Esca × H∗
inc). (32)

Using Eqs. (1)–(4), we obtain the divergence of each compo-
nent [see Eq. (17)]:

∇Sinc = −1

2
Re(Einc · J∗

s ),

∇Ssca = ω

2
Im[Esca · (ε∗(r) − ε0)E∗] = ω

2
Im(Esca · P∗),

∇Sext = ω

2
Im[Einc · P∗] − 1

2
Re(Esca · J∗

s ). (33)

Let us first consider the energy balance inside the object.
Integrating ∇Ssca over A1, as in the source-free case, results in
the scattered power:

Wsca
def=

∮
A1

dA · Ssca (r) = ω

2

∫
Vint

d3r Im[Esca(r) · P∗(r)].

(34)

According to Eq. (8), this equals

Wsca = ω3μ0

2

∫
Vint

d3r

× Im

[
P∗(r) · lim

V0(r)→0

∫
Vint\V0(r)

d3r′Ḡ(r, r′) · P(r′)
]

= ω3μ0

2

∫∫
Vint

d3rd3r′ P∗(r) · ḠI (r, r′) · P(r′), (35)

where the last transformation is analogous to that from
Eq. (19) to Eq. (21). The volume-integral representation of
the scattered power is rarely found in the literature, with only
a few exceptions [34–36] that do not explicitly discuss the sin-
gularity. This representation is convenient for computations,
especially in the DDA, as discussed in Sec. VII. Moreover,
it was recently used to rigorously prove the additivity of
scattering cross sections for a fixed multiparticle group under
the single-scattering approximation [37].

The conventional approach to obtain the scattering power
is the integration over a sphere in the far zone, at least in the
free space. In this case Eq. (8) implies

Esca (r) →
r→∞

exp(ikr)

r
F
(

r
r

)
, (36)

which defines the far-field scattering amplitude F (n is a unit
vector):

F(n) = ω2μ0

4π
(Ī − n ⊗ n) ·

∫
Vint

d3r′exp(−ikr′ · n)P(r′).

(37)

Choosing A3 to be a very large sphere we transform the
integral to that over a unit sphere:

Wsca = k

2ωμ0

∮
d2n |F(n)|2. (38)

While Eq. (38) seems to be very different from Eq. (35), their
equivalence can be proven directly by substituting Eq. (37)
into Eq. (38), changing the integration order, and using the

algebraic identity

ḠI (r, r′) = k

(4π )2

∮
d2n exp[ik(r − r′) · n](Ī − n ⊗ n),

(39)

which is derived in the Appendix [see Eq. (A6)]. It is also
natural to introduce the far-field amplitude Finc of the source-
generated incident field by replacing Esca, F, P, Vint, and Wsca

in Eqs. (36)–(38) by Einc, Finc, iJs/ω, Vs, and W0, respectively,
i.e.,

Finc(n) = iωμ0

4π
(Ī − n ⊗ n) ·

∫
Vs

d3r′exp(−ikr′ · n)Js(r′),

(40)

W0 = k

2ωμ0

∮
d2n |Finc(n)|2. (41)

A small-particle (static) limit can be obtained from Eq. (35)
analogously to Eq. (23):

lim
Vint→0

Wsca = ω3μ0

2
P∗

� · ḠI (r, r) · P�, (42)

where r ∈ Vint, and volume should be small compared to
characteristic scales of Ḡ (in particular, λ), but not to the
distance between Vs and Vint. In free space it also follows from
Eqs. (37) and (38).

The integral of ∇Sinc vanishes when integrating over A1,
as in the source-free case. Integration of the third component
of the Poynting vector, Sext, around the object gives the
conventional extinction power:

Wext
def= −

∮
A1

dA · Sext (r)

= −ω

2

∫
Vint

d3r Im[Einc(r) · P∗(r)], (43)

where the negative sign is used in line with Eq. (29). Com-
bining Eqs. (29), (32), (34), and (43), we obtain the classical
expression commonly called the optical theorem:

−Wabs = −Wext + Wsca ⇔ Wext = Wabs + Wsca. (44)

Thus, this identity holds true in the presence of sources (as
soon as we assume that the sources are located outside the
object). However, the expression of the scattering power in
terms of forward-scattering amplitude [8] (also called the
optical theorem) is only valid for a plane incident wave. By
contrast, the generalized optical theorem [35], valid for any
incident field, is too complicated for practical computations.
Equation (44) also implies that

Wabs = −ω

2

∫
Vint

d3r Im[E(r) · P∗(r)], (45)

consistent with Eq. (29).
For scattering of the plane wave in free space it is conve-

nient to define scattering, absorption, and extinction cross sec-
tions by normalizing corresponding power rates by intensity
of the incident wave [3]. While generalization to some other
incident fields is possible, e.g., to Gaussian beams [18], it is
generally ambiguous, especially when impressed sources are
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present. Therefore, we mostly limit the discussion to power
rates instead of cross sections. Still all linear relations between
power rates, like Eq. (44), can be trivially reformulated in
terms of cross sections.

When the sources are present, Eq. (44) (being still correct
[35]) tells only part of the story. The remaining part corre-
sponds to the integration around Vs. The integral of ∇Sinc gives
the power of radiation emitted by sources when the scatterer
is absent:

W0
def=

∮
A2

dA · Sinc(r) = −1

2

∫
Vs

d3r Re[Einc(r) · J∗
s (r)], (46)

which we discussed above together with potential singularities
in Eqs. (19), (26), and (28). The integral of ∇Ssca vanishes,
and the integral of the extinction part yields

Wenh
def=

∮
A2

dA · Sext (r) = −1

2

∫
VS

d3r Re[Esca(r) · J∗
s (r)],

(47)

where we used Eq. (33) and the result is valid for any distribu-
tion of sources, even with singularities. The physical meaning
of Wenh is the extra power emitted by the sources due to the
presence of the object [38]. Indeed, combining Eqs. (30), (46)
and (47), we obtain

Wem = W0 + Wenh. (48)

Alternatively, one may rewrite Eq. (31) as

Wrad = W0 + Wsca + (Wenh − Wext ), (49)

which illustrates that both Wenh and Wext result from the
interference of fields emitted by the source and scattered by
the object.

Since the induced currents, proportional to P(r), are not
principally different from the impressed ones with respect to
the far-field radiation, we obtain

Wrad = ωμ0

2

∫∫
Vs∪Vint

d3rd3r′[Js(r) − iωP(r)]∗

· ḠI (r, r′) · [Js(r′) − iωP(r′)], (50)

analogously to Eqs. (21) and (35). One can also introduce the
far-field amplitude Frad of the total field by replacing Esca, F,
P, and Wsca in Eqs. (36)–(38) by E, Frad, (P + iJs/ω), and
Wrad, respectively (with appropriate changes to the integration
volume). In other words,

Wrad = k

2ωμ0

∮
d2n |Frad(n)|2, Frad(n)

def= Finc(n) + F(n).

(51)

The inconsistency of indices between E and F is caused by
historically ubiquitous use of such notation for F (correspond-
ing to Esca) in the literature. Wenh can be computed directly
from the near field using Eqs. (8), (30), and (47) [19]:

Wenh = −ω2μ0

2
Re

[∫
VS

d3r J∗
s (r) ·

∫
Vint

d3r′ Ḡ(r, r′) · P(r′)
]
,

(52)

where the exclusion volumes are omitted because r and r′
belong to nonintersecting volumes (Vs and Vint, respectively).

If all sources are in phase or exactly out of phase, i.e.,
Js(r)eiϕ is a real function, and the environment is reciprocal
[Ḡ(r, r′) = ḠT (r′, r)], then Eq. (52) can be transformed to

Wenh = −ω2μ0

2

× Re

[∫
Vint

d3r′ P(r′) ·
∫

VS

d3r Ḡ(r′, r) · e2iϕJi(r)

]

= −ω

2

∫
Vint

d3r Im[e2iϕEinc(r) · P(r)], (53)

which is very similar to Wext [see Eq. (43)]. The main con-
venience of Eq. (53) is that it requires only the knowledge of
Einc(r) in Vint and not the sources themselves (apart from the
common phase), since P(r) is also determined from Einc(r)
through Eq. (7).

Alternatively, let us analyze the static limit of Wenh and
Wrad. In particular, we assume that sizes of both Vs and Vint,
as well as the distance between them, are smaller than all
characteristic scales of ḠI (r, r′) (such as λ). In other words,
the volume enclosing both Vs and Vint is assumed sufficiently
small. Then Eq. (50) implies [see Eqs. (23) and (42)]

lim
Vs∪Vint→0

Wrad = ωμ0

2
(J0 − iωP� )∗ · ḠI (r0, r0) · (J0 − iωP� ),

(54)

i.e., the radiated power of a small system is determined by its
total current (dipole moment)—a common approximation in
nanophotonics [39,40]. Importantly, this does not imply any
simplification in calculation of P� from Js(r); the general
Eq. (7) still needs to be solved.

Unfortunately, Wenh cannot be directly simplified analo-
gously to Eqs. (21) and (35) due to the lack of symmetry
between the two vector functions on the left and right sides
of Ḡ. However, combining it with Wext [Eq. (43)] restores the
symmetry in agreement with the physical sense of Eq. (49):

Wenh − Wext = −ω2μ0

2

∫
VS

∫
Vint

d3rd3r′Re[J∗
s (r) · Ḡ(r, r′) · P(r′) − P∗(r′) · Ḡ(r′, r) · Js(r)]

= −ωμ0

∫
VS

∫
Vint

d3rd3r′Re{J∗
s (r) · ḠI (r, r′) · [iωP(r′)]}, (55)

where we used Eq. (9). Taking the same limit results in

lim
Vs∪Vint→0

(Wenh − Wext ) = −ωμ0 Re[J∗
0 · ḠI (r0, r0) · (iωP� )],

(56)

which also follows from Eqs. (23), (42), (49), and (54).
Therefore, even in the static limit, knowledge of Einc(r) in Vint

is generally not sufficient, in contrast to Eq. (53). However,
only the total source current J0 needs to be additionally known
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to calculate Wenh, while the complex interaction between
distributed Js(r) and P(r), when the sizes of Vs and Vint are
comparable to the distance between them, can be taken from
Wext.

Finally, Wem is closely related to the source Green’s dyadic
Ḡs(r, r′), which is one of the general ways to represent the
solution of the scattering problem at r given point-dipole
excitation at r′ [6]. It is determined solely by the scattering
object (and the environment) and allows representation:

E(r) = iωμ0 lim
V0→0

∫
Vs\V0

d3r′Ḡs(r, r′) · Js(r′) − i
Js(r)

3ωε0
, (57)

analogously to Eq. (9). Importantly, Ḡs(r, r′) − Ḡ(r, r′) is
regular when r, r′ ∈ Vext and, thus, is more convenient for
computations. In particular, Eqs. (47) and (57) imply

Esca (r) = iωμ0

∫
Vs

d3r′[Ḡs(r, r′) − Ḡ(r, r′)] · Js(r′),

r ∈ Vext, (58)

Wenh = ωμ0

2

∫∫
Vs

d3rd3r′

× Im{J∗
s (r) · [Ḡs(r, r′) − Ḡ(r, r′)] · Js(r′)}

= ωμ0

2

∫∫
Vs

d3rd3r′

× J∗
s (r) · [ḠI

s (r, r′) − ḠI (r, r′)] · Js(r′). (59)

A simple expression for Wem is

Wem = ωμ0

2

∫∫
Vs

d3rd3r′ J∗
s (r) · ḠI

s (r, r′) · Js(r′), (60)

lim
Vs→0

Wem = ωμ0

2
J∗

0 · ḠI
s (r0, r0) · J0, (61)

but here Vs should additionally be small compared to the
distance between Vs and Vint, in contrast to the static limit
discussed above. Equation (61) is the well-known expression
for a single point source [39,41]. Comparing it to Eq. (23)
one can see that the scatterer is just another component of
the environment modifying the Green’s dyadic, similar to a
substrate discussed in Sec. IX. The discrete version of Eq. (60)
has been recently discussed in [42].

VI. DECAY RATE ENHANCEMENT

Equation (48) is closely related to the interaction of the
emitting system (atom, molecule, or nanoparticle) with the
environment, for instance, the enhancement of fluorescence
in the presence of nearby scatterers or inside a cavity, also
known as the Purcell effect [10]. The emission process is
quantum in nature, related to the stochastic transition of the
emitter between two levels. The transition probability for a
single emitter can be calculated in terms of QED. However,
the quasiclassical approximation is commonly used, which we
briefly describe below.

In the absence of any particles nearby, the emitters are
considered as sources (usually dipoles) oscillating with damp-
ing constant γ0 (much smaller than the resonance frequency)

[38,43]. The energy of the system E (not to be confused with
the electric field) thus equals

E (t ) = E0e−γ0t = E0e−t/τ0 , (62)

where τ0 is the lifetime of the excited state and E0 is the
initial oscillator energy. On the other hand, the energy may
change over time only due to intrinsic (e.g., intramolecular)
dissipation Win and radiation, which gives [11]

dE (t )

dt
= −γ0E0 = −(W0 + Win ) = −W0

q0
, (63)

where q0 is the intrinsic quantum yield, i.e., the fraction of
energy that is radiated, and the exponent is omitted because
only the initial moment is considered. W0 can be found using
Eq. (21) as soon as the sources are defined. In terms of the

QED, q0
def= γr0/γ0, where γr0 is the radiative decay rate, and

when saying “intrinsic” we assume that both γr0 and W0 are
considered for an emitter in vacuum. The apparent contrast to
the general definition of Eq. (21) is discussed in Sec. IX.

When the scattering object (e.g., a nanoparticle) is present,
the scattered field acts as a driving force for the oscillating
sources. This results in the modified decay rate γ . Strictly
speaking, E0 also changes due to the frequency shift, but this
shift is usually very small. Again, according to the energy
conservation,

γ E0 = Wem + Win. (64)

Assuming that Win is independent of the environment, we
calculate the decay rate enhancement due to the presence of
the object using Eqs. (63), (64), and (48):

γ

γ0
= Wem + Win

W0 + Win
= 1 + q0

Wenh

W0
. (65)

Although the sources typically emit more energy in the
presence of the scatterer, this energy only partly goes to
the far zone due to the absorption. Therefore, the observed
fluorescence intensity may even decrease (be quenched). So
it is common to separate the decay rate into the internally

dissipated part γin
def= γ0 − γr0, nonradiative part γnr (cor-

responding to the radiation absorbed in the scatterer), and
radiative part γr (corresponding to the observable radiation)
[9,19]:

γ = γin + γnr + γr,
γin

γ0
= Win

W0 + Win
= 1 − q0,

γnr

γ0
= q0

Wabs

W0
,

γr

γ0
= q0

Wrad

W0
, (66)

where we used Eq. (31). The apparent quantum yield (modi-
fied by the environment) is then

q = γr

γ
= Wrad

Wenh + W0/q0
= Wrad

Wrad + Wabs + W0(1/q0 − 1)
.

(67)

The correspondence between decay rates, apparent quantum
yield, and classical power rates becomes especially simple
when Win can be neglected, i.e., q0 = 1.

The remaining question is whether W0 and Wem can be
computed by the classical formulas in Sec. V. The latter
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assumes that the source Js(r), a classical representation of
the quantum phenomenon of atomic or molecular emission,
is impressed, i.e., independent of the environment (including
the scatterer). This corresponds to a weak-coupling regime,
where the transition between the excited and ground state of
the emitter can be described with QED based on perturba-
tion theory, i.e., the quantum orbitals are unaffected [9]. For
instance, for the simplest two-level system without intrinsic
dissipation it results in the following expression for the decay
rate:

γ = πω

h̄ε0
|peg|2ρe0 (u0, ω), (68)

where peg is the transition dipole matrix element and
ρe0 (u0, ω) is the projected LDOS, tightly related to the
source Green’s dyadic (thus connecting the QED and classical
description):

ρe0 (u0, ω) = 2ω

πc2

[
e0 · ḠI

s (u0, u0) · e0
]
, (69)

and e0
def= peg/|peg|. Alternatively, ρe0 (u0, ω) is known as

the partial LDOS and may include an additional factor of 3,
corresponding to additional 1/3 in Eq. (68) [11]. In any case,
the unambiguous quantity is the total LDOS, given in terms of
Eq. (69) as

ρ(u0, ω) = 2ω

πc2
Tr

[
ḠI

s (u0, u0)
] =

∑
μ

ρeμ
(u0, ω), (70)

where eμ is the unit vector along the axis μ.
The correspondence between quantum Eqs. (68) and (69)

and (quasi-) classical Eqs. (61) and (64) is exact (assuming
Wint = 0), if we replace E0 → h̄ω and |peg| → |J0|/(2ω),
where the factor 2 appears because the Fourier transform of
the classical dipole moment spans both positive and nega-
tive frequencies [11]. More importantly, irrespective of the
specific constants the dependence on Ḡs is exactly the same,
justifying the calculation of decay rate enhancements through
the classical power ratios—Eq. (66). The only required detail
about the quantum system is q0. Moreover, this quasiclassi-
cal result holds true when many sources are present, where
quantum expression involves the cross density of states [9],
expressed similarly to ḠI (r, r′) [see Eq. (22)]. It is especially
surprising because the classical results follow from consid-
eration of how the environment scatters fields, whereas in
QED the same results follow from vacuum fluctuations (also
depending on the environment).

Moreover, the radiative enhancement plays an important
role in another ubiquitous phenomenon—SERS. Employing
the quasiclassical approximation, SERS intensity can be ob-
tained as a combination of near-field enhancement (by the
scatterer) of the incident beam (e.g., a plane wave) at one
frequency and enhancement of the point-dipole emission at
a shifted one. The latter is directly described by the above
formulas, which implicitly assume that the quantum orbitals
are unaffected by the environment. Otherwise the so-called
chemical mechanism of SERS become significant, which
cannot be described by electrodynamics alone [12].

VII. ENERGY BUDGET IN THE DDA

This section is devoted to some computational issues aris-
ing when calculating integrals of the Poynting vector in the
framework of the DDA. Once the linear system (10) is solved,
polarizations for each dipole inside the object are known.
Hence, all integrals in Sec. V can be approximately computed
by replacing them with finite sums, and the accuracy improves
with refining discretization [44]. In particular, Eqs. (29), (43),
and (45) lead to

Wext ≈ −ω

2

∑
i

Im(Einc,i · P∗
i ), (71)

Wabs ≈ ω

2
Vd

∑
i

Im(εi )|Ei|2 = −ω

2

∑
i

Im(Ei · P∗
i ). (72)

Calculation of scattering quantities is a bit more intricate.
On one hand, direct discretization of Eqs. (35) and (37) leads
to

Wsca ≈ ω3μ0

2

∑
i, j

P∗
i · ḠI

i j · P j, (73)

F(n) ≈ ω2μ0

4π
(Ī − n ⊗ n) ·

∑
i

Piexp(−ikri · n), (74)

which are consistent with each other in the sense that Eq. (38)
is exactly satisfied for these approximate quantities (in the free
space). The simplest proof of the latter is attained by substi-
tuting P(r) = ∑

i Piδ(r − ri ) into Eqs. (35) and (37). But note
that this substitution is just a convenient mathematical trick
rather than the actual discretization. In Eq. (73) we used the
natural extension of Eq. (22):

ḠI
i j

def= ḠI (ri, r j ) = 1

2i

[
Ḡi j − ḠH

ji

]
, (75)

which is a 3 × 3 element of a 3N × 3N Hermitian matrix.
The latter is equal to (−i) times the skew-Hermitian part of a
matrix with elements Ḡi j ; a similar matrix has been discussed
in [36].

On the other hand, Eqs. (34) and (14) lead to

Wsca ≈ ω3μ0

2

⎡
⎢⎣∑

i, j
i �= j

P∗
i · ḠI

i j · P j + 1

Vdk2

∑
i

Im(P∗
i · M̄i · Pi )

⎤
⎥⎦,

(76)

which is consistent with Eqs. (71) and (72), i.e., Eq. (44) is
exactly satisfied. Let us further discuss the relation between
Eqs. (73) and (76). They are identical if and only if

M̄I
i = Vdk2ḠI

ii, (77)

where M̄I
i

def= (M̄i − M̄H
i )/(2i) in accordance with Eq. (75).

The identity (77) seems natural in view of Eq. (12) and
corresponds to the well-known radiative-reaction correction
for the dipole polarizability, given in the free space as [45]

M̄i = i
(kd )3

6π
Ī, (78)
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where we used Eq. (25). Moreover, many formulations for M̄i

only add a Hermitian matrix to Eq. (78), keeping Eq. (77)
valid, as discussed in [18] from a slightly different angle. In
all these cases Eqs. (71) and (72) are consistent with Eq. (74),
i.e., the following reformulation of the optical theorem holds
exactly:

Wext − Wabs = k

2ωμ0

∮
d2n |F(n)|2. (79)

We will call such formulations of the DDA self-consistent
with respect to the optical theorem. This is definitely a nice-
to-have feature, which is closely related to the energy conser-
vation that is often discussed for time-integration numerical
schemes in various fields of science. However, this self-
consistency is not an ultimate goal, since the main virtue of
the numerical method is to produce the value of some quantity
as accurately as possible, as compared to the (potentially
unknown) exact solution. In other words, it is better to have
left- and right-hand sides of Eq. (79) different but close to the
exact value of Wsca than to have them identically equal but
very far from the reference. Note that the difference between
two different ways to calculate Wsca is always not greater than
the sum of their individual errors with respect to the true value.

It has been suggested [23] to use the numerical error in
Eq. (79), i.e., the difference between two different values
of Wsca, as an internal measure of DDA accuracy. However,
the above analysis shows that this suggestion is futile. For
self-consistent DDA formulations the only potential errors
come from the remaining residual of the iterative solution
of Eq. (10) and numerical integration of F(n)—both can be
made (and in most simulations are) much smaller than the
discretization error, caused by the finite dipole size. This iter-
ative residual, or equivalently the difference between Eq. (73)
and Wext − Wabs, is also the primary cause of the “instability”
visible in Fig. 1 of [36]. Even if the DDA formulation is
not self-consistent, it is only marginally so, i.e., the differ-
ence between Eqs. (73) and (76) is caused only by diagonal
terms, the relative contribution of which will always be small.
Therefore, this numerical error may at best correlate with the
actual simulation error, but cannot be used to quantitatively
estimate it. To conclude, Eq. (79) is convenient for testing
the programming implementation of a self-consistent DDA
implementation, but is almost not related to the accuracy of
the DDA itself. This agrees with our previous simulations with
ADDA code [18] and is similar to the reciprocity conditions,
which are automatically satisfied for the majority of the DDA
formulations [46]. An open question, however, is how to make
advanced DDA formulations, which modify the interaction
term Ḡi j , self-consistent. We leave this for future research.

Calculation of energy flows related to sources, i.e., W0,

Wenh, Wem, and Wrad, is similar but requires further discussion
of Js(r). First, the singularities should be separated [see
Eq. (27)], while the regular part Jr (r) may or may not allow
analytical integration. A general Jr (r) may be discretized,
analogously to the scatterer, into voxels replacing the integrals
by sums. In the following we consider only the delta-function
singularities, although the underlying equations have no lim-
itations in this respect. In the discussed equations (with reg-
ular integration kernels) those delta functions are completely

analogous to the one-point approximation of the voxels with

Ji
def= VdsJs(ui ), where Vds is the discretization volume for

sources. Thus, we may use single indexing for the whole Js:

Js(r) ≈
∑

i

Jiδ(r − ui ), (80)

which together with Eq. (9) implies

Einc,i ≈ iωμ0

∑
i

Ḡ(ri, u j ) · J j . (81)

Then W0 is approximated by the last sum in Eq. (28):

W0 = ωμ0

2

∑
i, j

J∗
i · ḠI (ui, u j ) · J j, (82)

while Wenh is obtained from Eq. (52):

Wenh ≈ −ω2μ0

2

∑
i, j

Re[J∗
i · Ḡ(ui, r j ) · P j]. (83)

In principle Wem can be obtained by discretization of Eq. (30)
but that would require careful consideration of the singulari-
ties. Instead the above results can be combined using Eq. (48).
The expression for Wrad follows from Eq. (50):

Wrad = ωμ0

2

⎧⎨
⎩

∑
i, j

J∗
i · ḠI (ui, u j ) · J j

+ω2
∑
i, j

P∗
i · ḠI (ri, r j ) · P j

+ 2ω
∑
i, j

Im[J∗
i · ḠI (ui, r j ) · P j]

⎫⎬
⎭, (84)

where the summation indices run through the full range of the
corresponding arrays (different between the sums). Alterna-
tively, Eq. (84) can be rewritten as a single double sum over
the combined array {J1, J2 . . . ,−iωP1,−iωP2, . . .}.

Interestingly, the generalized optical theorem, given by
Eq. (49), is automatically satisfied in discretized form for
arbitrary Pi (even unrelated to the DDA). Validity of Eq. (31)
is additionally based on Eq. (44) and, thus, depends on the
convergence of the DDA iterative solver and Eq. (77). Alter-
natively, Wrad and/or W0 can be calculated through Eqs. (51)
and (41), respectively, with Finc given by

Finc(n) ≈ iωμ0

4π
(Ī − n ⊗ n) ·

∑
i

Jiexp(−ikri · n), (85)

and Frad given by a combination of Eqs. (74) and (85) [see the
discussion after Eq. (74)]. Then the accuracy of the integration
over the unit sphere also comes into play. In conclusion,
the self-consistency of the standard DDA formulation fully
extends to all variants of the generalized optical theorem in the
presence of sources. However, this self-consistency vanishes
if one modifies the interaction and self-terms involving ḠI in
Eqs. (82)–(84), analogously to the advanced DDA formula-
tions briefly mentioned above.
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FIG. 2. Illustration of the distant source (rs → ∞); a is a charac-
teristic scale (maximal dimension) of both the scattering object and
the sources. A1−A3 are the same as in Fig. 1. A′

3 is a part of A3, which
is a far-field limit of A1. Blue arrows indicate that both incident and
scattered waves are in the far zone near the object and the sources,
respectively.

Finally, if all Ji are in phase, Eq. (53) implies

Wenh ≈ −ω

2

∑
i

Im[e2iϕEinc,i · Pi]. (86)

In particular, if the source is a single point dipole with real
dipole moment p0 then e2iϕ = −1. The resulting formula is
currently used in the ADDA code [18]. Note that the enhance-
ment factor Wenh/W0 is independent of p0 (but depends on the
dipole position).

VIII. INFINITELY DISTANT SOURCES

An important practical case is the incident wave that
propagates from infinity, which physically corresponds to the
sources situated far from the object. The limit of Eqs. (5),
(8), and (9) when the pointlike source is situated in a far
zone was derived in [6,7] and coincides with the conven-
tional light-scattering problem under plane-wave illumination.
Other solutions of homogeneous Maxwell’s equations, like
Gaussian [47], Bessel [48], and Airy beams [49], also corre-
spond to the appropriate distribution of sources at infinity (on
a sphere with infinitely large radius). For brevity we denote
all these cases as source-free ones, and limit ourselves to the
free-space case, since otherwise the particular details of the
environment are essential for taking the following limits.

Let us look at the integrals from Secs. IV and V when
the distance between Vint and Vs (the object and the sources)
rs = |rs| is large compared to their characteristic dimensions
a (Fig. 2), so that each one is in the far-field zone of the other:

krs � 1, krs � (ka)2, (87)

which obviously implies rs � a. In doing so we need to be
careful about the order of limits. Since we previously assumed
that the surface A3 encloses both the source and the scatterer
(Fig. 1), it should expand with increasing rs. To separate the
limiting processes, we deformed A3 as shown in Fig. 2, which

is equivalent to separating it into A2 and A′
3. The latter is

equivalent to A1 but is in the far field of the scatterer.
Let us first consider Vs of a fixed size, then the source-

generated field near the object in the free space is locally a
plane wave [6]:

Einc(r) →
rs→∞ E0 exp(ikninc · r), r ∈ Vint, (88)

where ninc
def= −rs/rs is the propagation direction and the

amplitude

E0 = 1

rs
Finc(ninc) (89)

[see Eq. (40)]. Further, we assume that E0 is fixed (for direct
correspondence with the plane-wave incidence), while the
distribution of sources moves as a whole with a common
scaling by a complex factor. In other words,

Js(r) = rs exp(−ikrs)J(0)
s (r − rs), (90)

where the function J(0)
s is independent of rs. Then,

E0 = iωμ0

4π
(Ī − ninc ⊗ ninc)

·
∫

Vs

d3r exp[−ik(r − rs) · ninc]J(0)
s (r − rs), (91)

which is indeed independent of rs. According to Eq. (21), the
emission power scales quadratically with rs:

W0 = r2
s
ωμ0

2

∫∫
Vs

d3r d3r′

× J(0)∗
s (r − rs) · ḠI (r, r′) · J(0)

s (r′ − rs), (92)

By contrast, Einc(r), E(r), and P(r) inside the scatterer
and all derived quantities [F(n), Wext, Wabs, and Wsca] do not
depend on rs, leading to the following scattered field in Vs [see
Eq. (36)]:

Esca (r) →
rs→∞

exp(ikrs)

rs
exp[ik(rs − r) · ninc]F(−ninc), (93)

where the limit denotes the asymptotic. Hence, Eq. (47) leads
to

Wenh →
rs→∞ −1

2
Re

{
exp(2ikrs)F(−ninc)

·
∫

VS

d3r exp[−ik(r − rs) · ninc]J(0)∗
s (r − rs)

}
. (94)

The remaining integral is different from that in Eq. (91) by
conjugation of current, but is also independent of rs. Thus,
Wenh oscillates with rs but stays O(1), which is related to
backscattering interference.

Hence, the presence of the object enhances the emission
power of sources, even if they are at large distance; but this
enhancement is negligible compared to the total emission
power:

Wenh

W0
= O

(
r−2

s

) →
rs→∞ 0,

Wem

W0
= 1 + Wenh

W0
→

rs→∞ 1. (95)

Therefore, Eq. (49) is still valid, but contains infinities on both
sides (Wrad/W0 →

rs→∞ 1). The meaningful part of it is exactly
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Eq. (44), where all quantities are independent of rs. The
same result is obtained if we interchange the limits and first
let rs → ∞, thus moving the sources out of all integration
surfaces. In this case A3 is replaced by A′

3 (Fig. 2) and the
whole energy budget boils down to Eq. (44)—a classical result
for the source-free case.

Let us further discard the requirement of finiteness of Vs.
Instead we consider the sources that are distributed on a sphere
with radius rs and stretch with it. Analogously to Eq. (90) we
assume that

Js(r) = exp(−ikrs)

rs
δ(r − rs)J(0)

s (ninc), (96)

leading to rs-independent incident field [7]

Einc(r) →
rs→∞

iωμ0

4π

∮
d2n exp(ikn · r)

× (Ī − n ⊗ n) · J(0)
s (n), r ∈ Vint, (97)

where we omitted the subscript “inc” of n for simplicity.
Note that the scatterer is in the far field of each differential
component of J(0)

s (n), but not for the whole Vs. Equation
(97) is exactly the angular-spectrum representation commonly
used for various nonplane beams [48].

Analogously to Eq. (92) we obtain

W0 = r2
s
ωμ0

2

∮ ∮
d2n d2n′ J(0)∗

s (n) · ḠI (rsn, rsn′) · J(0)
s (n′),

(98)

but further analysis requires us to discuss the details of J(0)
s (n).

Fundamentally, the main complication comes from interweav-
ing two limiting processes: rs → ∞ and potential singularities
of J(0)

s (n), e.g., J(0)
s (n) → δ(n − n0). First, consider the case

of a finite number of point sources [see Eq. (27)]:

J(0)
s (n) =

∑
i

J(0)
i δ(n − ni ). (99)

In particular, the case of a single source corresponds
to Eq. (90), keeping in mind that δ(r − rs)δ(n − ni ) =
r2

s δ(r − rsni ). Equation (99) corresponds to taking the singu-
lar limit first, leading to

W0 = r2
s
ωμ0

2

∑
i, j

J(0)∗
i · ḠI (rsni, rsn j ) · J(0)

j

→
rs→∞ r2

s
ω2μ0

12πc

∑
i

∣∣J(0)
i

∣∣2
, (100)

where we used the decay of ḠI at large arguments [see
Eq. (A6)]. In other words, the point sources do not affect each
other.

The behavior of W0 is markedly different in the opposite
case of smooth J(0)

s (n), i.e., when the limit rs → ∞ is taken
first. An explicit derivation in the Appendix [Eq. (A10)]
leads to the bounded W0, the detailed discussion of which is
outside the scope of this paper. However, we believe that such
smooth distribution of sources on a large spherical shell is less
physically relevant. For instance, if one considers the angular
spectrum representation of a beam, those sources—located on
a surface of a distant lens—are virtual ones, caused by real
sources located behind the optical system. And calculating

either W0 or Wenh makes no sense for the virtual sources.
Alternatively, a real source of such large extent is expected to
be not fully coherent. If we assume a fixed coherence length,
the distributed source will be qualitatively similar to a number
of small sources incoherent and separated from each other. In
the limit rs → ∞ each source is seen as a point one, while
their number increases—this case is described by Eqs. (99)
and (100).

The enhanced power for arbitrary J(0)
s (n) is

Wenh →
rs→∞ −1

2
Re

[
exp(2ikrs)

∮
d2n F(−n) · J(0)∗

s (n)

]
,

(101)

which is related to the expression for Wext in terms of F(n)
for the same incident field [35] [see Eqs. (43) and (97)].
Importantly, when Eq. (99) specifies the sources, Eq. (95) is
still valid together with all the discussion around it. The only
change is required in the source-related part of A3 (or A2) in
Fig. 2—it should be stretched into a spherical shell enclosing
the source-supporting sphere, being more distant than A′

3.
Even more general distribution of distant sources can be

considered by adding a radial distribution to Eq. (96), keeping
Eq. (99) satisfied. However, it results in Einc(r) exactly repre-
sentable by Eq. (97) with another effective J(0)

s (n); the same
equivalence applies to all scatterer-related quantities. Expres-
sions for W0 and Wenh are more complicated [combinations of
Eqs. (92) and (98) and Eqs. (94) and (101), respectively], but
Eq. (95) remains unchanged.

Finally, let us briefly comment on the incident field
generated by the moving electron, relevant for the EELS
and cathodoluminescence [15]. The corresponding frequency-
domain sources are distributed along the electron trajectory,
including parts both near to and infinitely far from the scat-
terer. This complicates the rigorous consideration of limits
and integration surfaces, which we leave for future research.
However, all formulas of Sec. V apply since the integrals
over the infinite Vs are well defined, and are already used for
practical simulations [13,14].

IX. PRESENCE OF A PLANAR SUBSTRATE

In many experimental techniques and applications, espe-
cially in nanophotonics, a quantum emitter and/or scattering
objects are located near a plane surface. The substrate alters
both emission of the sources and its interaction with scatterers.
In this section we deal with corresponding power integrals.
Although we assume a planar substrate to keep the discussion
specific, most of the discussion can be extended to other
environments.

Fortunately, the presence of a substrate can be taken into
account by the modification of Green’s dyadic making most
of the previous results valid without any modifications. In
particular, the VIE framework of Eq. (5) remains unchanged,
but Ḡ(r, r′) is no longer given by Eq. (6). The incident field
either is expressed by the same Eq. (9) or needs simple
modification by reflection and transmission if it is given by
a plane wave [see Eq. (88)]. The latter can also be obtained
automatically by taking the proper far-field limit of Ḡ(r, r′).
This VIE framework forms the foundation of the efficient
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FIG. 3. (a) Division of the integration sphere into the upper and lower halves allows one to avoid field discontinuities at the interface. (b)
Extra definitions of integration surfaces for the partly immersed scatterer. (c) A multilayered substrate may contain a planar waveguide, leading
to an additional channel of energy transfer. See the text for explanation.

numerical methods (see, e.g., the DDA [50]). Note that the
actual calculation of Ḡ(r, r′), related to the Sommerfeld
integrals [51,52], is far from trivial even in the case of a
semi-infinite plane homogeneous substrate, especially when
relevant values of r and r′ are on different sides of the surface.

When turning to the energy balance of the obtained so-
lution, the results of Secs. IV–VI are still valid (unless the
free-space case was explicitly mentioned), but a number of
complications appear, which are discussed in the following.
The first issue is related to integration surfaces in Fig. 1.
Previously we freely deformed them with the only require-
ment being to intersect neither the scatterer nor the sources.
Now the additional boundary is that of the substrate. Let us,
first, consider that the sources and the scatterer are above
the substrate [Fig. 3(a)]. Then A1 and A2 require no extra
attention, while A3 can, formally, be extended only down to

the substrate, corresponding to Sa
def= Ha ∪ Ca, where Ha, Hb

and Ca, Cb are hemispheres and circular plane caps above and
below the substrate, respectively. Therefore, we modify the
definition of Wrad to

Wrad
def= Wem − Wabs =

∮
Sa

dA · S(r) (102)

[see Eq. (31)]. Although this slightly changes the physical
meaning of Wrad (see below), it allows us to keep the volume-
integral expressions for Wrad [Eq. (50)] and its components
from Fig. 1—Eqs. (21), (29), (30), (35), (43), and (47), as well
as all relations between them.

Let us additionally define the absorption power inside the
substrate (environment):

W env
abs

def= ω

2

∫
Venv

d3r |E(r)|2Im[εenv(r)] = −
∮

Sb

dA · S(r),

(103)

where Venv includes all absorbing parts of the substrate, Sb
def=

Hb ∪ Cb, and the radius of Hb is assumed infinitely large. Next,
we use the continuity of the normal components of S(r) across
the interface (due to the boundary conditions for the tangential
components of the fields), implying∫∫

Ca

dA · S(r) = −
∫∫

Cb

dA · S(r), (104)

where the minus appears due to the opposite directions of
normal. Coming back to A3, defined as a very large sphere

[Fig. 3(a)], we can calculate the total radiated power going to
infinity:

W ∞
rad

def=
∮

A3

dA · S(r) = Wem − Wabs − W env
abs , (105)

where the second equality follows from Eqs. (102)–(104) and
is also consistent with general energy conservation.

The situation is more complicated when the scatterer is
partly immersed in the substrate [see Fig. 3(b)]. Let us exclude

the parts of Ca and Cb intersecting the scatterer (C′
a,b

def=
Ca,b\Vint) and define the scatterer boundary inside the sub-
strate as A′

1. Then the above results stay the same if we deform
Sa,b into Ha,b ∪ C′

a,b ∪ A′
1 and assume that Venv excludes the

immersed part of the scatterer. Note, however, that the used
Ḡ(r, r′) corresponds to a complete semi-infinite substrate,
which should be accounted for in the VIE. Formulation of
Eq. (7) remains identical, but P(r)

def= [ε(r) − εenv(r)]E(r).
This generalized VIE together with Eq. (105) and the first
part of Eq. (103) are expected to be valid for a wide range
of complicated environments, at least for those where the
far-field limit has some physical sense (e.g., not for a closed
cavity). Moreover, the sources can also be located inside
the medium of the environment. However, the corresponding
rigorous analysis is beyond the scope of this paper.

Considering the simulations of energy flows for a homoge-
neous substrate, e.g., in the framework of the DDA, the direct
calculation of W env

abs (if not zero) has larger computational
complexity than that of Wem and Wabs. Although, after replac-
ing Sb by −Ca in Eq. (103), it requires only values of Ḡ(r, r′)
with r on the interface (presumably simpler to compute), an
even simpler option is to compute W ∞

rad directly in the far-field
zone (in contrast to the free-space case). In most cases the
integration may be limited to Ha, e.g., W ∞

rad = W a
rad, where

W a
rad

def=
∮

Ha

dA · S(r), (106)

but one may also consider a finite substrate (e.g., a hemi-
sphere) with very small absorption that is large enough to
use half-space expressions for Ḡ(r, r′) but not large enough
to completely absorb the radiation scattered into it. If the
substrate is nonabsorbing, the total W ∞

rad = Wrad is obtained
automatically, but many experimental configurations measure
only W a

rad (in the upper hemisphere), which requires separate
calculation unless the substrate is perfectly conducting.
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Fortunately, the far-field limit of Ḡ(r, r′) is not much
more involved than that in the free space. Thus, we can use
the same integral over the unit sphere, Eq. (51), but with
k dependent on n and the scattering amplitudes including
reflected and transmitted terms (see, e.g., the Supporting
Information of Ref. [50]). The integrand is commonly zero
(and, thus, continuous) at the substrate interface [53], but not
for multilayered substrates, which include a dielectric planar
waveguide [Fig. 3(c)]. The latter channel the energy at the
polar angle equal to exactly π/2 [11,54] (with respect to sub-
strate normal) and require extra fragmentation of integration
surfaces. In the waveguide S(r) scales as r−1, in contrast
to r−2 elsewhere, leading to delta-function dependence of
|Frad(n)|2 at exactly oblique direction. The integral over the
unit sphere is still well defined, but it is ambiguous whether
this delta-function contribution should be included in W a

rad.
The latter ultimately depends on the specific measurement
conditions. Additional simplifications for Wext are possible for
the plane-wave excitation [53,55], similar to the free-space
case.

Finally, let us discuss the decay rate enhancements. In
principle, all formulas in Sec. VI are still valid, but a few
ambiguities appear. The first question is what is exactly the
radiative part of the enhancement (i.e., the “useful” part).
Depending on the application (see above), Wrad in Eqs. (66)
and (67) may need to be replaced by W ∞

rad or W a
rad, while Wabs

may need to be replaced by Wabs + W env
abs or by Wem − W a

rad,
respectively. The second question is what is the original state
to compare with—either free space or environment without
the scatterer. To keep using the intrinsic quantum yield q0,
we need to replace W0 by W fr

0 , given by Eq. (20) with the
free-space Green’s dyadic. Then W0 will correspond to the
decay rate in the environment γenv, in contrast to the free-space
γ0, but this emitted power does not necessarily entirely go
to infinity. In the following we list the generalized formulas,
valid for an arbitrary environment:

γenv

γ0
= W0

W fr
0 + Win

= q0
W0

W fr
0

, (107)

γ

γ0
= 1 + q0

(
Wem

W fr
0

− 1

)
,

γnr

γ0
= q0

Wabs + W env
abs

W fr
0

,

γr

γ0
= q0

W ∞
rad

W fr
0

, (108)

q = γr

γ
= W ∞

rad

Wem + W fr
0 (1/q0 − 1)

. (109)

Enhancement relative to γenv can be obtained by dividing
Eq. (108) by Eq. (107), and W ∞

rad can be adjusted to include
only the detectable radiation (depending on a specific applica-
tion).

X. CONCLUSION

We outlined a rigorous approach to treat electromagnetic
energy flows in the frequency-domain light-scattering prob-
lem with explicit sources. Starting from the VIE formulation
of Maxwell’s equation, we considered the flow of the Poynting
vector through different surfaces, including complex geome-
tries in the presence of a substrate. This led to the energy-

balance equations, generalizing the concepts of optical cross
sections and the optical theorem. We showed the relevance of
these energy-balance equations to the measurable quantities in
nanophotonics, such as the enhancement of atomic or molecu-
lar emission and corresponding decay rates by a nanoparticle.
The concepts of radiative and nonradiative parts of decay
rate enhancement have been generalized to nanoparticles near
a planar substrate. This should lead to a wider usage of
those parts in contrast to the first papers, where only the
total enhancement was calculated without any approximations
[21]. We paid special attention to the practical calculation of
the power rates and decay rate enhancements in the framework
of the DDA, substantiating some formulas that are already
used in a production code [18]. Moreover, we showed that
the conventional optical theorem is automatically satisfied for
most of the DDA formulations and, thus, cannot be used as an
internal measure of the DDA accuracy.

Apart from filling the essential gap in the existing liter-
ature the resulting description is reasonably self-contained
and complete, covering the energy budget of the VIE with
impressed sources from all possible perspectives. As such,
this paper can also be considered a state-of-the-art review
of this subject. Moreover, the definitions of power rates and
interrelations between them are applicable to any mathemati-
cal formulation of the frequency-domain scattering problem,
e.g., based on differential or surface-integral equations, and
to corresponding numerical methods. The paper may also
contribute to bringing closer the communities working with
conventional far-field light scattering and applications involv-
ing source-induced fields.

With regards to future research, it is desirable to extend this
analysis to anisotropic and magnetic materials. The energy-
budget concepts remain valid, but consideration of magnetic
materials would require replacing a single VIE with a system
of two coupled VIEs, for the electric and magnetic fields,
respectively. This would require modification of all formulas
that express power rates through the fields inside the scattering
object. Another interesting generalization is that of nonrecip-
rocal environment and/or scatterer. We have mostly avoided
this assumption [see Eq. (22)], but it remains to be seen if
nonreciprocity leads to any new features with respect to the
energy budget.
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APPENDIX

In the following we explicitly derive Eq. (39). First, we
calculate the following for arbitrary real a:

1

4π

∮
d2n exp(ia · n) = 1

2

∫ 1

−1
dξexp(iaξ ) = sin a

a
, (A1)

where we chose the z axis of the spherical coordinate system
along a, making the integrand independent of azimuthal angle
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ϕ, and ξ
def= cos θ , where θ is the polar angle. Second, we define the projection dyadics parallel and perpendicular to a:

Ī‖
def= a ⊗ a

a2
, Ī⊥

def= Ī − Ī‖, (A2)

which separate n into two parts:

n‖
def= Ī‖n ⇒ n‖ ⊗ n‖ = n2

‖ Ī‖, n⊥
def= Ī⊥n ⇒ n = n‖ + n⊥, n2

‖ + n2
⊥ = 1. (A3)

Then in the same spherical coordinate system,

1

2π

∫ 2π

0
dϕn ⊗ n = n‖ ⊗ n‖ + 1

2π

∫ 2π

0
dϕn⊥ ⊗ n⊥ = n2

‖ Ī‖ + 1

2
n2

⊥Ī⊥ = 1

2
[n2

‖(3Ī‖ − Ī) + Ī⊥], (A4)

where the nondiagonal terms (linear in nx and/or ny) vanish due to the symmetry of the integration interval, and 1/2 is the result
of averaging of cos2ϕ and sin2ϕ.

Third, we calculate

1

4π

∮
d2n exp(ia · n)n ⊗ n = 1

4

∫ 1

−1
dξexp(iaξ )[ξ 2(3Ī‖ − Ī) + Ī⊥] = sin a

a
Ī‖ + a cos a − sin a

a3
(3Ī‖ − Ī), (A5)

where we employed integration by parts twice. Combining Eqs. (A1) and (A5) we obtain

k

(4π )2

∮
d2n exp(ik(r − r′) · n)(Ī − n ⊗ n) = 1

4πR

[
sin (kR)

(
Ī − R ⊗ R

R2

)
+ kR cos (kR) − sin (kR)

(kR)2

(
Ī − 3

R ⊗ R
R2

)]

= ḠI (r, r′), (A6)

where R = r − r′, and the last equality is a trivial implication of Eq. (6). Finally, let us expand ḠI (r, r′) for small R:

ḠI (r, r′) = k

6π

{
Ī − (kR)2

10

(
2Ī − R ⊗ R

R2

)
+ O[(kR)4]

}
. (A7)

Mind, however, that Eqs. (A6) and (A7) are valid only in the free space.
In the second part of the Appendix we evaluate W0 for distant shells of sources with smooth density, i.e., Eq. (98) with smooth

J(0)
s (n). For that we consider the inner integral over n′, set the z axis of the coordinate system of n′ (with spherical angles θ and

ϕ) along n, and define xs
def= krs and v def= n′ − n. The latter implies v = 2 sin(θ/2) and sin θdθ = vdv, leading to

r2
s

∮
d2n′ḠI (rsn, rsn′) · J(0)

s (n′) = xs

4πk

∫ 2

0
dv

[
sin (xsv)g1(v) + xsv cos (xsv) − sin (xsv)

(xsv)2 g2(v)

]

= 1

4πk

[
− cos (xsv)g1(v) + sin (xsv)

xsv
g2(v)

]∣∣∣∣
v=2

v=0

+ O
(

1

xs

)

= 1

4πk

[
g1(0) − g2(0) − cos (2xs)g1(2)

] + O
(

1

xs

)
, (A8)

where we used integration by parts, and

g1(v)
def=

∫ 2π

0
dϕ

(
Ī − v ⊗ v

v2

)
J(0)

s (n′), g2(v)
def=

∫ 2π

0
dϕ

(
Ī − 3

v ⊗ v
v2

)
J(0)

s (n′). (A9)

When v → 0, v ⊗ v/v2 averages to half the projector perpendicular to n, similar to the second integral in Eq. (A4); thus, it can
be replaced by (Ī − n ⊗ n)/2. By contrast, v = −2n (independent of ϕ) when v = 2. Substituting Eq. (A9) into Eq. (98) we
obtain

W0 →
rs→∞

μ0c

4

∮
d2n J(0)∗

s (n) · (Ī − n ⊗ n) · [
J(0)

s (n) − cos (2krs)J(0)
s (−n)

]
, (A10)

i.e., W0 oscillates with rs but stays O(1) [see Eq. (94)]. We stress that Eq. (A10) is inapplicable to singular J(0)
s (n), e.g., given by

Eq. (99), since such source distribution is not square integrable. Formally trying to approximate the delta function with smooth
ones leads to unbounded W0, which is consistent with the rs → ∞ limit of Eq. (100).

The above result can be generalized to any J(0)
s (n) that is smooth inside an open region on a unit sphere and equal to zero

otherwise (thus, nonsmooth on the boundary). This may correspond to the aperture of a lens that produces a beam, and leads to an
additional boundary in coordinates of n′, changing the upper limit of integration over v in Eq. (A8) and introducing v-dependent
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integration limits in Eq. (A9). Both of the latter would depend on n, since we aligned the axes of n′ with it. It is expected that
the following will only change the oscillating term in Eq. (A10), still keeping it bounded.
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